
'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 1 Graph parse trees and MSO properties

Graph decompositions, Parse treesGraph decompositions, Parse trees,

and MSO propertiesand MSO properties

Petr HliněnýPetr Hliněný

Faculty of Informatics, Masaryk University

Botanická 68a, 602 00 Brno, Czech Republic

e-mail: hlineny@fi.muni.cz http://www.fi.muni.cz/~hlineny

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 2 Graph parse trees and MSO properties

Contents

1 Motivation, and a short survey 3

Measuring how tree-like is a graph (giving easier solutions to hard problems):
Traditional tree-width and branch-width parameters.

2 Parse Trees, a not-much-known tool 9

Capturing the formal essence of dynamic algorithms on decompositions:
Parse trees and Myhill-Nerode type congruences.

3 Rank-Width and Parse trees 16

Outlining rank-width – a rather new branch-width-like complexity measure
related to clique-width, and putting this into the parse tree framework.

4 Final remarks 22

And some other new and promissing research directions. . .

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 3 Graph parse trees and MSO properties

1 Motivation, and a short survey1 Motivation, and a short survey

Algorithmics. Many hard graph problems become easy on trees. . .

Any natural problem which is NP-hard on trees?

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 3 Graph parse trees and MSO properties

1 Motivation, and a short survey1 Motivation, and a short survey

Algorithmics. Many hard graph problems become easy on trees. . .

Any natural problem which is NP-hard on trees? Bandwidth.

• More generaly, many problems are easy on (partial) k-trees,

i.e. on the graphs of bounded tree-width [Arnborg et al, 80’s].

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 3 Graph parse trees and MSO properties

1 Motivation, and a short survey1 Motivation, and a short survey

Algorithmics. Many hard graph problems become easy on trees. . .

Any natural problem which is NP-hard on trees? Bandwidth.

• More generaly, many problems are easy on (partial) k-trees,

i.e. on the graphs of bounded tree-width [Arnborg et al, 80’s].

• In what other ways “similarlity to trees” can be defined?

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 3 Graph parse trees and MSO properties

1 Motivation, and a short survey1 Motivation, and a short survey

Algorithmics. Many hard graph problems become easy on trees. . .

Any natural problem which is NP-hard on trees? Bandwidth.

• More generaly, many problems are easy on (partial) k-trees,

i.e. on the graphs of bounded tree-width [Arnborg et al, 80’s].

• In what other ways “similarlity to trees” can be defined? See later. . .

Theory. [Robertson and Seymour, Graph minors 80’s]

Tree-decompositions present a core tool in this deep theory.

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 3 Graph parse trees and MSO properties

1 Motivation, and a short survey1 Motivation, and a short survey

Algorithmics. Many hard graph problems become easy on trees. . .

Any natural problem which is NP-hard on trees? Bandwidth.

• More generaly, many problems are easy on (partial) k-trees,

i.e. on the graphs of bounded tree-width [Arnborg et al, 80’s].

• In what other ways “similarlity to trees” can be defined? See later. . .

Theory. [Robertson and Seymour, Graph minors 80’s]

Tree-decompositions present a core tool in this deep theory.

• This theory started wide interest in tree-width in the CS community. . .

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 4 Graph parse trees and MSO properties

What is Tree-Width?What is Tree-Width?

• The tree-width of a graph G equals the smallest possible
clique size minus one of a chordal supergraph of G.

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 4 Graph parse trees and MSO properties

What is Tree-Width?What is Tree-Width?

• The tree-width of a graph G equals the smallest possible
clique size minus one of a chordal supergraph of G.

• A really useful definition, isn’t it?

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 4 Graph parse trees and MSO properties

What is Tree-Width?What is Tree-Width?

• The tree-width of a graph G equals the smallest possible
clique size minus one of a chordal supergraph of G.

• A really useful definition, isn’t it?

• OK, let us try once more. . . [Robertson and Seymour, 80’s]

Definition. A tree-decomposition of a graph G is a tree with

– “bags” (subsets) of vertices of G assigned to the tree nodes,

– each edge of G belonging to some bag, and

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 4 Graph parse trees and MSO properties

What is Tree-Width?What is Tree-Width?

• The tree-width of a graph G equals the smallest possible
clique size minus one of a chordal supergraph of G.

• A really useful definition, isn’t it?

• OK, let us try once more. . . [Robertson and Seymour, 80’s]

Definition. A tree-decomposition of a graph G is a tree with

– “bags” (subsets) of vertices of G assigned to the tree nodes,

– each edge of G belonging to some bag, and

– the bags containing some vertex must form a subtree (interpolation).

1 2
65

8
4

7
3

{1, 3, 6, 8}

{1, 2, 3, 6}

{3, 6, 7, 8}{1, 3, 4, 8}

{1, 5, 6, 8}

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 4 Graph parse trees and MSO properties

What is Tree-Width?What is Tree-Width?

• The tree-width of a graph G equals the smallest possible
clique size minus one of a chordal supergraph of G.

• A really useful definition, isn’t it?

• OK, let us try once more. . . [Robertson and Seymour, 80’s]

Definition. A tree-decomposition of a graph G is a tree with

– “bags” (subsets) of vertices of G assigned to the tree nodes,

– each edge of G belonging to some bag, and

– the bags containing some vertex must form a subtree (interpolation).

1 2
65

8
4

7
3

{1, 3, 6, 8}

{1, 2, 3, 6}

{3, 6, 7, 8}{1, 3, 4, 8}

{1, 5, 6, 8}

Tree-width = mindecomps. of G max
{|B| − 1 : B bag in decomp.

}

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 5 Graph parse trees and MSO properties

Alternative approach

• Independently of R+S, tree-like decomposition have been approached via
k-trees, see e.g. a 2-tree:

[Beineke & Pippert, 68 – 69], [Rose 74], [Arnborg & Proskurowski, 86].

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 5 Graph parse trees and MSO properties

Alternative approach

• Independently of R+S, tree-like decomposition have been approached via
k-trees, see e.g. a 2-tree:

[Beineke & Pippert, 68 – 69], [Rose 74], [Arnborg & Proskurowski, 86].

• A graph G has tree-width ≤ k iff G is a partial (subgraph of a) k-tree.

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 5 Graph parse trees and MSO properties

Alternative approach

• Independently of R+S, tree-like decomposition have been approached via
k-trees, see e.g. a 2-tree:

[Beineke & Pippert, 68 – 69], [Rose 74], [Arnborg & Proskurowski, 86].

• A graph G has tree-width ≤ k iff G is a partial (subgraph of a) k-tree.

• Furthermore, k-trees easily relate tree-width to simplicial vertices and
elimination orderings of chordal graphs.

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 6 Graph parse trees and MSO properties

Related notion: Branch-WidthRelated notion: Branch-Width

• We want to measure connectivity of a graph G via edges X ⊆ E(G):

λG(X) = # vertices shared between X and E(G)−X.

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 6 Graph parse trees and MSO properties

Related notion: Branch-WidthRelated notion: Branch-Width

• We want to measure connectivity of a graph G via edges X ⊆ E(G):

λG(X) = # vertices shared between X and E(G)−X.

• [Robertson and Seymour] – in analogy to tree-width. . .

Definition. Decompose E(G) one-to-one into the leaves of a subcubic tree.
Then:

fX E(G) −X

width(e) = λG(X) where X is displayed by f in the tree.

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 6 Graph parse trees and MSO properties

Related notion: Branch-WidthRelated notion: Branch-Width

• We want to measure connectivity of a graph G via edges X ⊆ E(G):

λG(X) = # vertices shared between X and E(G)−X.

• [Robertson and Seymour] – in analogy to tree-width. . .

Definition. Decompose E(G) one-to-one into the leaves of a subcubic tree.
Then:

fX E(G) −X

width(e) = λG(X) where X is displayed by f in the tree.

Branch-width = minbranch-decs. of G max
{

width(f) : f tree edge
}

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 6 Graph parse trees and MSO properties

Related notion: Branch-WidthRelated notion: Branch-Width

• We want to measure connectivity of a graph G via edges X ⊆ E(G):

λG(X) = # vertices shared between X and E(G)−X.

• [Robertson and Seymour] – in analogy to tree-width. . .

Definition. Decompose E(G) one-to-one into the leaves of a subcubic tree.
Then:

fX E(G) −X

width(e) = λG(X) where X is displayed by f in the tree.

Branch-width = minbranch-decs. of G max
{

width(f) : f tree edge
}

• Branch-width is within a constant factor of tree-width.

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 7 Graph parse trees and MSO properties

Fast Dynamic AlgorithmsFast Dynamic Algorithms

Example. Finding the largest independent set in a graph of tree-width at
most k, assuming a rooted tree-decomposition is given, in time O(2k · n).

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 7 Graph parse trees and MSO properties

Fast Dynamic AlgorithmsFast Dynamic Algorithms

Example. Finding the largest independent set in a graph of tree-width at
most k, assuming a rooted tree-decomposition is given, in time O(2k · n).

...

...
...

...

X

...
...

• In a bottom-up tree processing we collect this information:

IX : Y ⊆ decomposition bag X →
max

∣∣ independent set S “below” X s.t. S ∩X = Y
∣∣

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 7 Graph parse trees and MSO properties

Fast Dynamic AlgorithmsFast Dynamic Algorithms

Example. Finding the largest independent set in a graph of tree-width at
most k, assuming a rooted tree-decomposition is given, in time O(2k · n).

...

...
...

...

X

...
...

• In a bottom-up tree processing we collect this information:

IX : Y ⊆ decomposition bag X →
max

∣∣ independent set S “below” X s.t. S ∩X = Y
∣∣

• Computable by brute force at the leaves,

and then straightforwardly combined together at internal nodes. . .

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 7 Graph parse trees and MSO properties

Fast Dynamic AlgorithmsFast Dynamic Algorithms

Example. Finding the largest independent set in a graph of tree-width at
most k, assuming a rooted tree-decomposition is given, in time O(2k · n).

...

...
...

...

X

...
...

• In a bottom-up tree processing we collect this information:

IX : Y ⊆ decomposition bag X →
max

∣∣ independent set S “below” X s.t. S ∩X = Y
∣∣

• Computable by brute force at the leaves,

and then straightforwardly combined together at internal nodes. . .

• Total computing time: O(2k) times O(n) nodes of the decomposition.

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 8 Graph parse trees and MSO properties

• Analogous dynamic (FPT) algorithms exist for, say, the dominating set,
vertex cover, chromatic number, Hamiltonian cycle, etc. . .

Furthermore:

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 8 Graph parse trees and MSO properties

• Analogous dynamic (FPT) algorithms exist for, say, the dominating set,
vertex cover, chromatic number, Hamiltonian cycle, etc. . .

Furthermore:

Theorem. [Courcelle 88], [Arnborg, Lagergren, and Seese, 88]

All graph properties expressible in MSO logic (MS2 – vertices and edges) on
the graphs of bounded tree-width can be solved in FPT time O(f(k) · n).

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 9 Graph parse trees and MSO properties

2 Parse Trees, a not-much-known tool2 Parse Trees, a not-much-known tool

Assume a graph G with a given rooted tree-decomposition of with k.

• A typical idea for a dynamic algorithm on a tree-decomposition:

– Capture all relevant information about the problem on a subtree.
– Process this information bottom-up in the decomposition
– Importantly, this information has size depending only on k, and not

on the graph size.

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 9 Graph parse trees and MSO properties

2 Parse Trees, a not-much-known tool2 Parse Trees, a not-much-known tool

Assume a graph G with a given rooted tree-decomposition of with k.

• A typical idea for a dynamic algorithm on a tree-decomposition:

– Capture all relevant information about the problem on a subtree.
– Process this information bottom-up in the decomposition
– Importantly, this information has size depending only on k, and not

on the graph size.

• How to understand words “all relevant information about the problem”?

Look for inspiration in traditional finite automata theory!

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 9 Graph parse trees and MSO properties

2 Parse Trees, a not-much-known tool2 Parse Trees, a not-much-known tool

Assume a graph G with a given rooted tree-decomposition of with k.

• A typical idea for a dynamic algorithm on a tree-decomposition:

– Capture all relevant information about the problem on a subtree.
– Process this information bottom-up in the decomposition
– Importantly, this information has size depending only on k, and not

on the graph size.

• How to understand words “all relevant information about the problem”?

Look for inspiration in traditional finite automata theory!

Theorem. [Myhill–Nerode, folklore]
Finite automaton states (this is our information) ↔

right congruence classes on the words (of a regular language).

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 9 Graph parse trees and MSO properties

2 Parse Trees, a not-much-known tool2 Parse Trees, a not-much-known tool

Assume a graph G with a given rooted tree-decomposition of with k.

• A typical idea for a dynamic algorithm on a tree-decomposition:

– Capture all relevant information about the problem on a subtree.
– Process this information bottom-up in the decomposition
– Importantly, this information has size depending only on k, and not

on the graph size.

• How to understand words “all relevant information about the problem”?

Look for inspiration in traditional finite automata theory!

Theorem. [Myhill–Nerode, folklore]
Finite automaton states (this is our information) ↔

right congruence classes on the words (of a regular language).

• Combinatorial extensions of this right congruence appeared in the works
[Abrahamson and Fellows, 93], [Downey and Fellows, 99], and [PH, 03].

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 10 Graph parse trees and MSO properties

Canonical Equivalence on graphsCanonical Equivalence on graphs

How does a right congruence extend
from formal words with the concatention operation

to, say, graphs with a kind of “join” operation?

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 10 Graph parse trees and MSO properties

Canonical Equivalence on graphsCanonical Equivalence on graphs

How does a right congruence extend
from formal words with the concatention operation

to, say, graphs with a kind of “join” operation?

• Consider the universe of graphs Uk implicitly associated with

– some (small) distinguished “boundary of size k” of each graph, and
– a join operation G⊕H acting on the boundaries of disjoint G, H.

• Let P be a graph property we study.

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 10 Graph parse trees and MSO properties

Canonical Equivalence on graphsCanonical Equivalence on graphs

How does a right congruence extend
from formal words with the concatention operation

to, say, graphs with a kind of “join” operation?

• Consider the universe of graphs Uk implicitly associated with

– some (small) distinguished “boundary of size k” of each graph, and
– a join operation G⊕H acting on the boundaries of disjoint G, H.

• Let P be a graph property we study.

Definition. The canonical equivalence of P on Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊕H ∈ P ⇐⇒ G2 ⊕H ∈ P .

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 10 Graph parse trees and MSO properties

Canonical Equivalence on graphsCanonical Equivalence on graphs

How does a right congruence extend
from formal words with the concatention operation

to, say, graphs with a kind of “join” operation?

• Consider the universe of graphs Uk implicitly associated with

– some (small) distinguished “boundary of size k” of each graph, and
– a join operation G⊕H acting on the boundaries of disjoint G, H.

• Let P be a graph property we study.

Definition. The canonical equivalence of P on Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊕H ∈ P ⇐⇒ G2 ⊕H ∈ P .

• Informally, the classes of ≈P,k capture all information about the property
P that can “cross” our graph boundary of size k

(regardless of actual meaning of “boundary” and “join”).

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 11 Graph parse trees and MSO properties

Parse Trees of decompositionsParse Trees of decompositions

The task now is to make our join operation to “play with”
the decomposition we have of our graph. . .

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 11 Graph parse trees and MSO properties

Parse Trees of decompositionsParse Trees of decompositions

The task now is to make our join operation to “play with”
the decomposition we have of our graph. . .

• Considering a rooted ???-decomposition of a graph G,
we build on the following correspondence:

boundary size k ↔ restricted bag-size / width in decomposition

join operator ⊕ ↔ the way pieces of G “stick together” in decomp.

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 11 Graph parse trees and MSO properties

Parse Trees of decompositionsParse Trees of decompositions

The task now is to make our join operation to “play with”
the decomposition we have of our graph. . .

• Considering a rooted ???-decomposition of a graph G,
we build on the following correspondence:

boundary size k ↔ restricted bag-size / width in decomposition

join operator ⊕ ↔ the way pieces of G “stick together” in decomp.

• E.g. for a tree-decomposition of width k:

ss ss
≤ k + 1 ≥

⊕
ss ss =

ss ss

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 11 Graph parse trees and MSO properties

Parse Trees of decompositionsParse Trees of decompositions

The task now is to make our join operation to “play with”
the decomposition we have of our graph. . .

• Considering a rooted ???-decomposition of a graph G,
we build on the following correspondence:

boundary size k ↔ restricted bag-size / width in decomposition

join operator ⊕ ↔ the way pieces of G “stick together” in decomp.

• E.g. for a tree-decomposition of width k:

ss ss
≤ k + 1 ≥

⊕
ss ss =

ss ss
(Similarly for a branch-decomposition, but without sharing bd. edges.)

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 12 Graph parse trees and MSO properties

• A boundaried parse tree is then obtained as a

“translation” of the decomposition into the above meaning of a boundary
and a join operation (actually extended to a composition operator).

...

...
...

...
...

...

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 12 Graph parse trees and MSO properties

• A boundaried parse tree is then obtained as a

“translation” of the decomposition into the above meaning of a boundary
and a join operation (actually extended to a composition operator).

...

...
...

...
...

...

• Now, mod. some technical assumptions on parse trees and ⊕, we can get:

Theorem. (Analogy of [Myhill–Nerode])

P is accepted by a finite tree automaton on parse trees of boundary size ≤ k
if and only if ≈P,k has finitely many classes on Uk.

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 13 Graph parse trees and MSO properties

Example. P = C3 : 3-colourability of graphs of tree-width ≤ k.

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 13 Graph parse trees and MSO properties

Example. P = C3 : 3-colourability of graphs of tree-width ≤ k.

• For Gi with boundary Bi ⊆ V (Gi) s.t. |Bi| ≤ k + 1, i = 1, 2, we have

(G1, B1)≈C3,k (G2, B2) if and only if{
χ �B1 : χ prop. 3-col. G1

}
=
{
χ �B2 : χ prop. 3-col. G2

}
.

ss ss
B1

G1 ⊕ H vs.

ss ss
B2

G2 ⊕ H

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 13 Graph parse trees and MSO properties

Example. P = C3 : 3-colourability of graphs of tree-width ≤ k.

• For Gi with boundary Bi ⊆ V (Gi) s.t. |Bi| ≤ k + 1, i = 1, 2, we have

(G1, B1)≈C3,k (G2, B2) if and only if{
χ �B1 : χ prop. 3-col. G1

}
=
{
χ �B2 : χ prop. 3-col. G2

}
.

ss ss
B1

G1 ⊕ H vs.

ss ss
B2

G2 ⊕ H

• Then ≈C3,k has finitely many classes, depending only on k
– information “of size O(3k)”.

That easily results in an O(3kn) FPT algorithm for 3-colourability!

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 14 Graph parse trees and MSO properties

Dynamic Algorithms revisitedDynamic Algorithms revisited

• How to capture non-decision problems in the previous framework?
– allow free variables in the property Q(X) !

E.g. Q(X) ≡ independent(X), dominating(X), or matching(X).

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 14 Graph parse trees and MSO properties

Dynamic Algorithms revisitedDynamic Algorithms revisited

• How to capture non-decision problems in the previous framework?
– allow free variables in the property Q(X) !

E.g. Q(X) ≡ independent(X), dominating(X), or matching(X).

Definition. Extended canonical equivalence ≈Q(X),k

– like ≈P,k on the univ. Uk[X] of graphs equipped with interpretation of X.

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 14 Graph parse trees and MSO properties

Dynamic Algorithms revisitedDynamic Algorithms revisited

• How to capture non-decision problems in the previous framework?
– allow free variables in the property Q(X) !

E.g. Q(X) ≡ independent(X), dominating(X), or matching(X).

Definition. Extended canonical equivalence ≈Q(X),k

– like ≈P,k on the univ. Uk[X] of graphs equipped with interpretation of X.

LinEMSO properties [Arnborg et al, 88], [Courcelle et al, 00].

– allowing MSO plus optimization and / or enumeration
over linear evaluational terms in the free variables.

E.g. max |X| : independent(X), or #X : matching(X).

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 14 Graph parse trees and MSO properties

Dynamic Algorithms revisitedDynamic Algorithms revisited

• How to capture non-decision problems in the previous framework?
– allow free variables in the property Q(X) !

E.g. Q(X) ≡ independent(X), dominating(X), or matching(X).

Definition. Extended canonical equivalence ≈Q(X),k

– like ≈P,k on the univ. Uk[X] of graphs equipped with interpretation of X.

LinEMSO properties [Arnborg et al, 88], [Courcelle et al, 00].

– allowing MSO plus optimization and / or enumeration
over linear evaluational terms in the free variables.

E.g. max |X| : independent(X), or #X : matching(X).

• Fitting into the parse tree framework:

– In the dynamic programming paradigm, remember

optimal representatives and / or partial enum. results

for each class of the extended canonical equivalence.

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 15 Graph parse trees and MSO properties

Corollary. Besides, we get a straightforward inductive proof that:

All MSO formulas φ (even with free variables) generate
finitely many classes of the ext. canonical equivalence ≈φ,k.

[Abrahamson and Fellows, 93], and [PH, 03].

– Clear for atomic predicates like x ∈ X or edge(x, y) (cf. boundary k !).

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 15 Graph parse trees and MSO properties

Corollary. Besides, we get a straightforward inductive proof that:

All MSO formulas φ (even with free variables) generate
finitely many classes of the ext. canonical equivalence ≈φ,k.

[Abrahamson and Fellows, 93], and [PH, 03].

– Clear for atomic predicates like x ∈ X or edge(x, y) (cf. boundary k !).

– Then process ¬φ, φ∨ψ (easy),

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 15 Graph parse trees and MSO properties

Corollary. Besides, we get a straightforward inductive proof that:

All MSO formulas φ (even with free variables) generate
finitely many classes of the ext. canonical equivalence ≈φ,k.

[Abrahamson and Fellows, 93], and [PH, 03].

– Clear for atomic predicates like x ∈ X or edge(x, y) (cf. boundary k !).

– Then process ¬φ, φ∨ψ (easy), or ∃xφ(x), ∃X φ(X) (quite hard, need
an exponential jump in the number of classes with each quantification!).

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 16 Graph parse trees and MSO properties

3 Rank-Width and Parse trees3 Rank-Width and Parse trees

Some other views of being “similar to trees”. . .

• Clique-width – another graph complexity measure [Courcelle and Olariu],
defined by operations on vertex–labeled graphs:

– create a new vertex with label i,
– take the disjoint union of two labeled graphs,
– add all edges between vertices of label i and label j,
– and relabel all vertices with label i to have label j.

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 16 Graph parse trees and MSO properties

3 Rank-Width and Parse trees3 Rank-Width and Parse trees

Some other views of being “similar to trees”. . .

• Clique-width – another graph complexity measure [Courcelle and Olariu],
defined by operations on vertex–labeled graphs:

– create a new vertex with label i,
– take the disjoint union of two labeled graphs,
– add all edges between vertices of label i and label j,
– and relabel all vertices with label i to have label j.

• Clique-width shares some nice properties with tree-width, e.g.

Theorem. [Courcelle, Makowsky, and Rotics 00]

All graph properties expressible in MSO logic (MS1 – only vertices!!!) on
the graphs of bounded clique-width can be solved in time O(f(k) ·n).

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 16 Graph parse trees and MSO properties

3 Rank-Width and Parse trees3 Rank-Width and Parse trees

Some other views of being “similar to trees”. . .

• Clique-width – another graph complexity measure [Courcelle and Olariu],
defined by operations on vertex–labeled graphs:

– create a new vertex with label i,
– take the disjoint union of two labeled graphs,
– add all edges between vertices of label i and label j,
– and relabel all vertices with label i to have label j.

• Clique-width shares some nice properties with tree-width, e.g.

Theorem. [Courcelle, Makowsky, and Rotics 00]

All graph properties expressible in MSO logic (MS1 – only vertices!!!) on
the graphs of bounded clique-width can be solved in time O(f(k) ·n).

• On the other hand, clique-width has some drawbacks,

like we do not know how to test clique-width k if k ≥ 3.

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 17 Graph parse trees and MSO properties

Rank-DecompositionsRank-Decompositions

• [Oum and Seymour, 03] Bringing the branch-decomposition approach to
measure “complexity” of vertex subsets X ⊆ V (G) via cut-rank:

%G(X) = rank of

V (G)−X

X

0 1 0 0 1
1 0 1 0 0
1 0 0 1 1

 modulo 2

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 17 Graph parse trees and MSO properties

Rank-DecompositionsRank-Decompositions

• [Oum and Seymour, 03] Bringing the branch-decomposition approach to
measure “complexity” of vertex subsets X ⊆ V (G) via cut-rank:

%G(X) = rank of

V (G)−X

X

0 1 0 0 1
1 0 1 0 0
1 0 0 1 1

 modulo 2

Definition. Decompose V (G) one-to-one into the leaves of a subcubic tree.
Then:

fX V (G) −X

width(e) = %G(X) where X is displayed by f in the tree.

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 17 Graph parse trees and MSO properties

Rank-DecompositionsRank-Decompositions

• [Oum and Seymour, 03] Bringing the branch-decomposition approach to
measure “complexity” of vertex subsets X ⊆ V (G) via cut-rank:

%G(X) = rank of

V (G)−X

X

0 1 0 0 1
1 0 1 0 0
1 0 0 1 1

 modulo 2

Definition. Decompose V (G) one-to-one into the leaves of a subcubic tree.
Then:

fX V (G) −X

width(e) = %G(X) where X is displayed by f in the tree.

Rank-width = minrank-decs. of G max
{

width(f) : f tree edge
}

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 18 Graph parse trees and MSO properties

• An example: cycle C5 and its rank-decomposition of width 2:

s s
sss

a b

c

d

e

a b

cd

e

„
0 0 1
1 0 0

« 0@1 0
0 1
0 0

1A
`
1 0 0 1

´ `
1 1 0 0

´
`
0 1 1 0

´`
0 0 1 1

´
`
1 0 0 1

´

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 18 Graph parse trees and MSO properties

• An example: cycle C5 and its rank-decomposition of width 2:

s s
sss

a b

c

d

e

a b

cd

e

„
0 0 1
1 0 0

« 0@1 0
0 1
0 0

1A
`
1 0 0 1

´ `
1 1 0 0

´
`
0 1 1 0

´`
0 0 1 1

´
`
1 0 0 1

´

• Rank-width t is related to clique-width k: k ≤ t ≤ 2k+1 − 1

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 18 Graph parse trees and MSO properties

• An example: cycle C5 and its rank-decomposition of width 2:

s s
sss

a b

c

d

e

a b

cd

e

„
0 0 1
1 0 0

« 0@1 0
0 1
0 0

1A
`
1 0 0 1

´ `
1 1 0 0

´
`
0 1 1 0

´`
0 0 1 1

´
`
1 0 0 1

´

• Rank-width t is related to clique-width k: k ≤ t ≤ 2k+1 − 1

• [Oum and PH, 07] There is an FPT algorithm for computing an optimal
rank-decomposition of a graph in time O(f(t) · n3).

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 19 Graph parse trees and MSO properties

Boundary and Join for rank-decompositionsBoundary and Join for rank-decompositions

Unlike branch- or tree-decompositions with obvious parse trees, what is the
“boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” has just an impl. matrix rank!

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 19 Graph parse trees and MSO properties

Boundary and Join for rank-decompositionsBoundary and Join for rank-decompositions

Unlike branch- or tree-decompositions with obvious parse trees, what is the
“boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” has just an impl. matrix rank!

• Bilinear product approach of [Courcelle and Kanté, 07]:

– boundary ∼ labeling lab : V (G)→ 2{1,2,...,t} (multi-colouring),

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 19 Graph parse trees and MSO properties

Boundary and Join for rank-decompositionsBoundary and Join for rank-decompositions

Unlike branch- or tree-decompositions with obvious parse trees, what is the
“boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” has just an impl. matrix rank!

• Bilinear product approach of [Courcelle and Kanté, 07]:

– boundary ∼ labeling lab : V (G)→ 2{1,2,...,t} (multi-colouring),

– join ∼ bilinear form g over GF (2)t s.t.

edge uv ↔ lab(u) · g · lab(v) = 1.

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 19 Graph parse trees and MSO properties

Boundary and Join for rank-decompositionsBoundary and Join for rank-decompositions

Unlike branch- or tree-decompositions with obvious parse trees, what is the
“boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” has just an impl. matrix rank!

• Bilinear product approach of [Courcelle and Kanté, 07]:

– boundary ∼ labeling lab : V (G)→ 2{1,2,...,t} (multi-colouring),

– join ∼ bilinear form g over GF (2)t s.t.

edge uv ↔ lab(u) · g · lab(v) = 1.

• Join → composition operator with relabelings f1, f2:

(G1, lab
1) ⊗[g | f1, f2] (G2, lab

2) = (H, lab)

→ rank-width parse tree [Ganian and PH, 08].

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 19 Graph parse trees and MSO properties

Boundary and Join for rank-decompositionsBoundary and Join for rank-decompositions

Unlike branch- or tree-decompositions with obvious parse trees, what is the
“boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” has just an impl. matrix rank!

• Bilinear product approach of [Courcelle and Kanté, 07]:

– boundary ∼ labeling lab : V (G)→ 2{1,2,...,t} (multi-colouring),

– join ∼ bilinear form g over GF (2)t s.t.

edge uv ↔ lab(u) · g · lab(v) = 1.

• Join → composition operator with relabelings f1, f2:

(G1, lab
1) ⊗[g | f1, f2] (G2, lab

2) = (H, lab)

→ rank-width parse tree [Ganian and PH, 08].

• Independently considered related notion of Rk-join decompositions by
[Bui-Xuan, Telle, and Vatshelle, 08].

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 20 Graph parse trees and MSO properties

Parse tree. An example generating the cycle C5 (of rank-width 2):

⊙ a

⊙ b ⊙ c ⊙ d ⊙ e

⊗[id | · , ·]

⊗[id | id, 1→2]
⊗[id | id, 1→∅] ⊗[id |1→2, id]

s sss
b {1}

c {1}

d {1}

e {1}
→ s s sss

a {1} b {1}

c {2}

d {2}

e {1}
→ s s

sss
a {1} b ∅

c {2}

d {2}

e {1}
→

→ s s
sss

a b

c

d

e

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 21 Graph parse trees and MSO properties

Algorithms on bounded Rank-WidthAlgorithms on bounded Rank-Width

Bare rank-decomposition — not enough information for dynamic algorithms. . .

• Stronger parse trees give needed extra information for algorithms!

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 21 Graph parse trees and MSO properties

Algorithms on bounded Rank-WidthAlgorithms on bounded Rank-Width

Bare rank-decomposition — not enough information for dynamic algorithms. . .

• Stronger parse trees give needed extra information for algorithms!

– With “boundary” and “join” at hand, we get the associated
canonical equivalence classes.

– Again, the whole LinEMSO framework fits here nicely. . .

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 21 Graph parse trees and MSO properties

Algorithms on bounded Rank-WidthAlgorithms on bounded Rank-Width

Bare rank-decomposition — not enough information for dynamic algorithms. . .

• Stronger parse trees give needed extra information for algorithms!

– With “boundary” and “join” at hand, we get the associated
canonical equivalence classes.

– Again, the whole LinEMSO framework fits here nicely. . .

• Example: the 3-colourability problem.

For Gi with t-labeling (∼boundary) labi : V (Gi) → {1, . . . , t}, i = 1, 2,
we have

(G1, lab
1)≈C3,t (G2, lab

2) if{(
lab1(χ−1(i)) : i = 1, 2, 3

)
: χ prop. 3-col. G1

}
=

=
{(
lab2(χ−1(i)) : i = 1, 2, 3

)
: χ prop. 3-col. G2

}
.

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 21 Graph parse trees and MSO properties

Algorithms on bounded Rank-WidthAlgorithms on bounded Rank-Width

Bare rank-decomposition — not enough information for dynamic algorithms. . .

• Stronger parse trees give needed extra information for algorithms!

– With “boundary” and “join” at hand, we get the associated
canonical equivalence classes.

– Again, the whole LinEMSO framework fits here nicely. . .

• Example: the 3-colourability problem.

For Gi with t-labeling (∼boundary) labi : V (Gi) → {1, . . . , t}, i = 1, 2,
we have

(G1, lab
1)≈C3,t (G2, lab

2) if{(
lab1(χ−1(i)) : i = 1, 2, 3

)
: χ prop. 3-col. G1

}
=

=
{(
lab2(χ−1(i)) : i = 1, 2, 3

)
: χ prop. 3-col. G2

}
.

This readily gives an FPT O(f(t) · n) algorithm.

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 22 Graph parse trees and MSO properties

4 Final remarks4 Final remarks

• Parse trees appear a useful tool in algorithms on graphs of bounded width,

– giving an accessible “bridge” between design of specific algorithms
and those very general results (like the MSO theorem).

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 22 Graph parse trees and MSO properties

4 Final remarks4 Final remarks

• Parse trees appear a useful tool in algorithms on graphs of bounded width,

– giving an accessible “bridge” between design of specific algorithms
and those very general results (like the MSO theorem).

• Focus on the precise number of canonical equivalence classes gives a fine
control over the runtime of a dynamic algorithm.

– not being considered in depth so far. . .

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 22 Graph parse trees and MSO properties

4 Final remarks4 Final remarks

• Parse trees appear a useful tool in algorithms on graphs of bounded width,

– giving an accessible “bridge” between design of specific algorithms
and those very general results (like the MSO theorem).

• Focus on the precise number of canonical equivalence classes gives a fine
control over the runtime of a dynamic algorithm.

– not being considered in depth so far. . .

• Ongoing work

– indentify a (useful) fragment of MSO with “small” number of classes
(in general, each quantifier alternation makes an exponential jump
[Frick and Grohe, 04]),

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 22 Graph parse trees and MSO properties

4 Final remarks4 Final remarks

• Parse trees appear a useful tool in algorithms on graphs of bounded width,

– giving an accessible “bridge” between design of specific algorithms
and those very general results (like the MSO theorem).

• Focus on the precise number of canonical equivalence classes gives a fine
control over the runtime of a dynamic algorithm.

– not being considered in depth so far. . .

• Ongoing work

– indentify a (useful) fragment of MSO with “small” number of classes
(in general, each quantifier alternation makes an exponential jump
[Frick and Grohe, 04]),

– this appears useful especially in connection with rank-width. . .

'

&

$

%

'

&

$

%Petr Hliněný, ACCOTA 2008, 9.12. 22 Graph parse trees and MSO properties

4 Final remarks4 Final remarks

• Parse trees appear a useful tool in algorithms on graphs of bounded width,

– giving an accessible “bridge” between design of specific algorithms
and those very general results (like the MSO theorem).

• Focus on the precise number of canonical equivalence classes gives a fine
control over the runtime of a dynamic algorithm.

– not being considered in depth so far. . .

• Ongoing work

– indentify a (useful) fragment of MSO with “small” number of classes
(in general, each quantifier alternation makes an exponential jump
[Frick and Grohe, 04]),

– this appears useful especially in connection with rank-width. . .

THANK YOU FOR YOUR ATTENTION

	Motivation, and a short survey
	Parse Trees, a not-much-known tool
	Rank-Width and Parse trees
	Final remarks

