

动物等等的 行行动 的复数单位 计数数 化化学 化合金

Accota 2008 Oaxaca

Graph decompositions, Parse trees, and MSO properties

Petr Hliněný

Faculty of Informatics, Masaryk University Botanická 68a, 60200 Brno, Czech Republic

e-mail: hlineny@fi.muni.cz http://www.fi.muni.cz/~hlineny

Petr Hliněný, ACCOTA 2008, 9.12.

Graph parse trees and MSO propertie

Contents

1 Motivation, and a short survey

Measuring how tree-like is a graph (giving easier solutions to hard problems): Traditional *tree-width* and *branch-width* parameters.

2 Parse Trees, a not-much-known tool

Capturing the formal essence of dynamic algorithms on decompositions: *Parse trees* and Myhill-Nerode type congruences.

3 Rank-Width and Parse trees

Outlining *rank-width* – a rather new branch-width-like complexity measure related to *clique-width*, and putting this into the parse tree framework.

4 Final remarks

And some other new and promissing research directions...

Petr Hliněný, ACCOTA 2008, 9.12

Graph parse trees and MSO properties

3

Q

16

22

Algorithmics. Many hard graph problems become easy on *trees*... Any natural problem which is NP-hard on trees?

Algorithmics. Many hard graph problems become easy on *trees*... Any natural problem which is NP-hard on trees? Bandwidth.

- More generaly, many problems are easy on (partial) *k*-trees,
 - i.e. on the graphs of bounded *tree-width* [Arnborg et al, 80's].

Algorithmics. Many hard graph problems become easy on *trees*... Any natural problem which is NP-hard on trees? Bandwidth.

- More generaly, many problems are easy on (partial) k-trees,
 i.e. on the graphs of bounded tree-width [Arnborg et al, 80's].
- In what other ways "similarlity to trees" can be defined?

Algorithmics. Many hard graph problems become easy on *trees*... Any natural problem which is NP-hard on trees? Bandwidth.

- More generaly, many problems are easy on (partial) k-trees,
 i.e. on the graphs of bounded tree-width [Arnborg et al, 80's].
- In what other ways "similarlity to trees" can be defined? See later...

Theory. [Robertson and Seymour, Graph minors 80's] *Tree-decompositions* present a core tool in this deep theory.

Algorithmics. Many hard graph problems become easy on *trees*... Any natural problem which is NP-hard on trees? Bandwidth.

- More generaly, many problems are easy on (partial) k-trees,
 i.e. on the graphs of bounded tree-width [Arnborg et al, 80's].
- In what other ways "similarlity to trees" can be defined? See later...

- **Theory.** [Robertson and Seymour, Graph minors 80's] *Tree-decompositions* present a core tool in this deep theory.
 - This theory started wide interest in tree-width in the CS community...

• The *tree-width* of a graph G equals the smallest possible clique size minus one of a chordal supergraph of G.

- The *tree-width* of a graph G equals the smallest possible clique size minus one of a chordal supergraph of G.
- A really useful definition, isn't it?

- The *tree-width* of a graph G equals the smallest possible clique size minus one of a chordal supergraph of G.
- A really useful definition, isn't it?
- OK, let us try once more... [Robertson and Seymour, 80's]

Definition. A *tree-decomposition* of a graph G is a tree with

- "bags" (subsets) of vertices of G assigned to the tree nodes,
- each edge of G belonging to some bag, and

- The *tree-width* of a graph G equals the smallest possible clique size minus one of a chordal supergraph of G.
- A really useful definition, isn't it?
- OK, let us try once more... [Robertson and Seymour, 80's]

Definition. A *tree-decomposition* of a graph G is a tree with

- "bags" (subsets) of vertices of G assigned to the tree nodes,
- each edge of G belonging to some bag, and
- the bags containing some vertex must form a subtree (interpolation).

- The *tree-width* of a graph G equals the smallest possible clique size minus one of a chordal supergraph of G.
- A really useful definition, isn't it?
- OK, let us try once more... [Robertson and Seymour, 80's]

Definition. A *tree-decomposition* of a graph G is a tree with

- "bags" (subsets) of vertices of G assigned to the tree nodes,
- each edge of G belonging to some bag, and
- the bags containing some vertex must form a subtree (interpolation).

 $\frac{\text{Tree-width} = \min_{\text{decomps. of } G} \max \left\{ |B| - 1 : B \text{ bag in decomp.} \right\}$

Petr Hliněný, ACCOTA 2008, 9.12.

Graph parse trees and MSO properties

Alternative approach

 Independently of R+S, tree-like decomposition have been approached via k-trees, see e.g. a 2-tree:

[Beineke & Pippert, 68 - 69], [Rose 74], [Arnborg & Proskurowski, 86].

Petr Hliněný, ACCOTA 2008, 9.12.

Alternative approach

 Independently of R+S, tree-like decomposition have been approached via k-trees, see e.g. a 2-tree:

[Beineke & Pippert, 68 – 69], [Rose 74], [Arnborg & Proskurowski, 86].

• A graph G has tree-width $\leq k$ iff G is a partial (subgraph of a) k-tree.

Alternative approach

 Independently of R+S, tree-like decomposition have been approached via k-trees, see e.g. a 2-tree:

[Beineke & Pippert, 68 - 69], [Rose 74], [Arnborg & Proskurowski, 86].

- A graph G has tree-width $\leq k$ iff G is a partial (subgraph of a) k-tree.
- Furthermore, *k*-trees easily relate tree-width to simplicial vertices and elimination orderings of chordal graphs.

Petr Hliněný, ACCOTA 2008, 9.12.

Graph parse trees and MSO properties

• We want to measure *connectivity* of a graph G via edges $X \subseteq E(G)$:

 $\lambda_G(X) = \#$ vertices shared between X and E(G) - X.

• We want to measure *connectivity* of a graph G via edges $X \subseteq E(G)$:

 $\lambda_G(X) = \#$ vertices shared between X and E(G) - X.

• [Robertson and Seymour] - in analogy to tree-width...

Definition. Decompose E(G) one-to-one into the leaves of a subcubic tree. Then:

width $(e) = \lambda_G(X)$ where X is displayed by f in the tree.

• We want to measure *connectivity* of a graph G via edges $X \subseteq E(G)$:

 $\lambda_G(X) = \#$ vertices shared between X and E(G) - X.

• [Robertson and Seymour] - in analogy to tree-width...

Definition. Decompose E(G) one-to-one into the leaves of a subcubic tree. Then:

width $(e) = \lambda_G(X)$ where X is displayed by f in the tree.

 $\frac{\mathsf{Branch-width} = \min_{\mathsf{branch-decs. of } G} \max\left\{\mathsf{width}(f): f \text{ tree edge}\right\}$

• We want to measure *connectivity* of a graph G via edges $X \subseteq E(G)$:

 $\lambda_G(X) = \#$ vertices shared between X and E(G) - X.

• [Robertson and Seymour] - in analogy to tree-width...

Definition. Decompose E(G) one-to-one into the leaves of a subcubic tree. Then:

width(e) = $\lambda_G(X)$ where X is displayed by f in the tree.

 $\frac{\textsf{Branch-width} = \min_{\textsf{branch-decs. of } G} \max \left\{ \textsf{width}(f) : f \text{ tree edge} \right\}$

• Branch-width is within a constant factor of tree-width.

etr Hliněný, ACCOTA 2008, 9.12. 6 Graph parse trees and MSO properties

Example. Finding the largest *independent set* in a graph of tree-width at most k, assuming a rooted tree-decomposition is given, in time $O(2^k \cdot n)$.

Example. Finding the largest *independent set* in a graph of tree-width at most k, assuming a rooted tree-decomposition is given, in time $O(2^k \cdot n)$.

• In a bottom-up tree processing we collect this information:

 $\mathcal{I}_X : Y \subseteq \text{decomposition bag } X \rightarrow \\ \max \mid \text{independent set } S \text{ "below" } X \text{ s.t. } S \cap X = Y \mid$

Example. Finding the largest *independent set* in a graph of tree-width at most k, assuming a rooted tree-decomposition is given, in time $O(2^k \cdot n)$.

- In a bottom-up tree processing we collect this information:
 - $\begin{array}{cccc} \mathcal{I}_{X}: & Y \subseteq \text{decomposition bag } X \rightarrow \\ & & & & \text{max} & | \text{ independent set } S \text{ "below" } X \text{ s.t. } S \cap X = Y & | \\ \end{array}$
- Computable by brute force at the leaves, and then straightforwardly combined together at internal nodes...

Example. Finding the largest *independent set* in a graph of tree-width at most k, assuming a rooted tree-decomposition is given, in time $O(2^k \cdot n)$.

• In a bottom-up tree processing we collect this information:

 $\begin{array}{cccc} \mathcal{I}_{X}: & Y \subseteq \text{decomposition bag } X \rightarrow \\ & & & & \text{max} & | \text{ independent set } S \text{ "below" } X \text{ s.t. } S \cap X = Y & | \\ \end{array}$

- Computable by brute force at the leaves, and then straightforwardly combined together at internal nodes...
- Total computing time: $O(2^k)$ times O(n) nodes of the decomposition.

Petr Hliněný, ACCOTA 2008, 9.12

Graph parse trees and MSO properties

• Analogous dynamic (FPT) algorithms exist for, say, the dominating set, vertex cover, chromatic number, Hamiltonian cycle, etc...

Furthermore:

• Analogous dynamic (FPT) algorithms exist for, say, the dominating set, vertex cover, chromatic number, Hamiltonian cycle, etc...

Furthermore:

Theorem. [Courcelle 88], [Arnborg, Lagergren, and Seese, 88] All graph properties expressible in *MSO logic* (MS_2 – vertices and edges) on the graphs of bounded tree-width can be solved in FPT time $O(f(k) \cdot n)$.

Assume a graph G with a given rooted tree-decomposition of with k.

- A typical idea for a *dynamic algorithm* on a tree-decomposition:
 - Capture all relevant information about the problem on a subtree.
 - Process this information bottom-up in the decomposition
 - Importantly, this information has size depending only on k, and not on the graph size.

Assume a graph G with a given rooted tree-decomposition of with k.

- A typical idea for a *dynamic algorithm* on a tree-decomposition:
 - Capture all relevant information about the problem on a subtree.
 - Process this information bottom-up in the decomposition
 - Importantly, this information has size depending only on k, and not on the graph size.
- How to understand words "all relevant information about the problem"? Look for inspiration in traditional finite automata theory!

Assume a graph G with a given rooted tree-decomposition of with k.

- A typical idea for a *dynamic algorithm* on a tree-decomposition:
 - Capture all relevant information about the problem on a subtree.
 - Process this information bottom-up in the decomposition
 - Importantly, this information has size depending only on k, and not on the graph size.
- How to understand words "all relevant information about the problem"? Look for inspiration in traditional finite automata theory!

Theorem. [Myhill–Nerode, folklore]
Finite automaton states (this is our information) ↔ *right congruence* classes on the words (of a regular language).

Assume a graph G with a given rooted tree-decomposition of with k.

- A typical idea for a *dynamic algorithm* on a tree-decomposition:
 - Capture all relevant information about the problem on a subtree.
 - Process this information bottom-up in the decomposition
 - Importantly, this information has size depending only on k, and not on the graph size.
- How to understand words "all relevant information about the problem"? Look for inspiration in traditional finite automata theory!

Theorem. [Myhill–Nerode, folklore]
Finite automaton states (this is our information) ↔ *right congruence* classes on the words (of a regular language).

• Combinatorial extensions of this right congruence appeared in the works [Abrahamson and Fellows, 93], [Downey and Fellows, 99], and [PH, 03].

Petr Hliněný, ACCOTA 2008, 9.12

How does a right congruence extend from formal words with the concatention operation to, say, graphs with a kind of "join" operation?

How does a right congruence extend from formal words with the concatention operation to, say, graphs with a kind of "join" operation?

- Consider the universe of graphs \mathcal{U}_k implicitly associated with
 - some (small) distinguished "boundary of size k" of each graph, and
 - a join operation $G \oplus H$ acting on the boundaries of disjoint G, H.
- Let \mathcal{P} be a graph property we study.

How does a right congruence extend from formal words with the concatention operation to, say, graphs with a kind of "join" operation?

- Consider the universe of graphs \mathcal{U}_k implicitly associated with
 - some (small) distinguished "boundary of size k" of each graph, and
 - a join operation $G \oplus H$ acting on the boundaries of disjoint G, H.
- Let \mathcal{P} be a graph property we study.

Definition. The canonical equivalence of \mathcal{P} on \mathcal{U}_k is defined: $G_1 \approx_{\mathcal{P},k} G_2$ for any $G_1, G_2 \in \mathcal{U}_k$ if and only if, for all $H \in \mathcal{U}_k$,

$$G_1 \oplus H \in \mathcal{P} \iff G_2 \oplus H \in \mathcal{P}.$$

How does a right congruence extend from formal words with the concatention operation to, say, graphs with a kind of "join" operation?

- Consider the universe of graphs \mathcal{U}_k implicitly associated with
 - some (small) distinguished "boundary of size k" of each graph, and
 - a join operation $G \oplus H$ acting on the boundaries of disjoint G, H.
- Let \mathcal{P} be a graph property we study.

Definition. The *canonical equivalence* of \mathcal{P} on \mathcal{U}_k is defined:

 $G_1 \approx_{\mathcal{P},k} G_2$ for any $G_1, G_2 \in \mathcal{U}_k$ if and only if, for all $H \in \mathcal{U}_k$,

 $G_1 \oplus H \in \mathcal{P} \iff G_2 \oplus H \in \mathcal{P}.$

• Informally, the classes of $\approx_{\mathcal{P},k}$ capture all information about the property \mathcal{P} that can "cross" our graph boundary of size k (regardless of actual meaning of "boundary" and "join").

Petr Hliněný, ACCOTA 2008, 9.12.

Graph parse trees and MSO properties

Parse Trees of decompositions

The task now is to make our join operation to "play with" the decomposition we have of our graph...

Parse Trees of decompositions

The task now is to make our join operation to "play with" the decomposition we have of our graph...

- Considering a rooted ???-decomposition of a graph G, we build on the following correspondence:
 - *boundary size* $k \leftrightarrow$ restricted bag-size / width in decomposition
 - *join operator* $\oplus \leftrightarrow$ the way pieces of G "stick together" in decomp.

Parse Trees of decompositions

The task now is to make our join operation to "play with" the decomposition we have of our graph...

• Considering a rooted ???-decomposition of a graph G, we build on the following correspondence:

boundary size $k \leftrightarrow$ restricted bag-size / width in decomposition join operator $\oplus \leftrightarrow$ the way pieces of G "stick together" in decomp.

• E.g. for a tree-decomposition of width k:

Parse Trees of decompositions

The task now is to make our join operation to "play with" the decomposition we have of our graph...

• Considering a rooted ???-decomposition of a graph G, we build on the following correspondence:

boundary size $k \leftrightarrow$ restricted bag-size / width in decomposition join operator $\oplus \leftrightarrow$ the way pieces of G "stick together" in decomp.

• E.g. for a tree-decomposition of width k:

(Similarly for a branch-decomposition, but without sharing bd. edges.)

Petr Hliněný, ACCOTA 2008, 9.12

Graph parse trees and MSO properties

• A boundaried parse tree is then obtained as a

"translation" of the decomposition into the above meaning of a *boundary* and a *join operation* (actually extended to a composition operator).

• A *boundaried parse tree* is then obtained as a

"translation" of the decomposition into the above meaning of a *boundary* and a *join operation* (actually extended to a composition operator).

• Now, mod. some technical assumptions on parse trees and \oplus , we can get:

Theorem. (Analogy of [Myhill–Nerode]) \mathcal{P} is accepted by a finite tree automaton on parse trees of boundary size $\leq k$ if and only if $\approx_{\mathcal{P},k}$ has finitely many classes on \mathcal{U}_k .

Petr Hliněný, ACCOTA 2008, 9.12.

Example. $\mathcal{P} = \mathcal{C}_3$: 3-colourability of graphs of tree-width $\leq k$.

Petr Hliněný, ACCOTA 2008, 9.12.

Graph parse trees and MSO properties

Example. $\mathcal{P} = \mathcal{C}_3$: 3-colourability of graphs of tree-width $\leq k$.

• For G_i with boundary $B_i \subseteq V(G_i)$ s.t. $|B_i| \le k + 1$, i = 1, 2, we have $(G_1, B_1) \approx_{\mathcal{C}_3, k} (G_2, B_2)$ if and only if $\{\chi \upharpoonright B_1 : \chi \text{ prop. 3-col. } G_1\} = \{\chi \upharpoonright B_2 : \chi \text{ prop. 3-col. } G_2\}.$

Example. $\mathcal{P} = \mathcal{C}_3$: 3-colourability of graphs of tree-width $\leq k$.

• For G_i with boundary $B_i \subseteq V(G_i)$ s.t. $|B_i| \le k + 1$, i = 1, 2, we have $(G_1, B_1) \approx_{\mathcal{C}_3, k} (G_2, B_2)$ if and only if $\{\chi \upharpoonright B_1 : \chi \text{ prop. 3-col. } G_1\} = \{\chi \upharpoonright B_2 : \chi \text{ prop. 3-col. } G_2\}.$

• Then $\approx_{\mathcal{C}_{3},k}$ has finitely many classes, depending only on k- information "of size $O(3^k)$ ".

That easily results in an $O(3^k n)$ FPT algorithm for 3-colourability!

How to capture non-decision problems in the previous framework?
 – allow *free variables* in the property Q(X)!

E.g. $Q(X) \equiv independent(X)$, dominating(X), or matching(X).

How to capture non-decision problems in the previous framework?
 – allow *free variables* in the property Q(X)!

E.g. $Q(X) \equiv independent(X)$, dominating(X), or matching(X).

Definition. Extended canonical equivalence $\approx_{\mathcal{Q}(X),k}$

- like $\approx_{\mathcal{P},k}$ on the univ. $\mathcal{U}_k[X]$ of graphs equipped with interpretation of X.

How to capture non-decision problems in the previous framework?
 – allow *free variables* in the property Q(X)!

E.g. $Q(X) \equiv independent(X)$, dominating(X), or matching(X).

Definition. Extended canonical equivalence $\approx_{\mathcal{Q}(X),k}$

- like $\approx_{\mathcal{P},k}$ on the univ. $\mathcal{U}_k[X]$ of graphs equipped with interpretation of X.

LinEMSO properties [Arnborg et al, 88], [Courcelle et al, 00].

- allowing MSO plus optimization and / or enumeration

over linear evaluational terms in the free variables.

E.g. $\max |X|$: independent(X), or #X : matching(X).

Petr Hliněný, ACCOTA 2008, 9.12.

How to capture non-decision problems in the previous framework?
 – allow *free variables* in the property Q(X)!

E.g. $Q(X) \equiv independent(X)$, dominating(X), or matching(X).

Definition. Extended canonical equivalence $\approx_{\mathcal{Q}(X),k}$

- like $\approx_{\mathcal{P},k}$ on the univ. $\mathcal{U}_k[X]$ of graphs equipped with interpretation of X.

LinEMSO properties [Arnborg et al, 88], [Courcelle et al, 00].

allowing MSO plus optimization and / or enumeration

over *linear evaluational terms* in the free variables.

E.g. $\max |X|$: independent(X), or #X : matching(X).

- Fitting into the parse tree framework:
 - In the dynamic programming paradigm, remember optimal representatives and / or partial enum. results for each class of the extended canonical equivalence.

Petr Hliněný, ACCOTA 2008, 9.12. 14 Graph parse trees and MSO properties

Corollary. Besides, we get a straightforward inductive proof that: All MSO formulas ϕ (even with *free variables*) generate finitely many classes of the ext. canonical equivalence $\approx_{\phi,k}$.

[Abrahamson and Fellows, 93], and [PH, 03].

- Clear for *atomic* predicates like $x \in X$ or edge(x, y) (cf. boundary k!).

Corollary. Besides, we get a straightforward inductive proof that: All MSO formulas ϕ (even with *free variables*) generate finitely many classes of the ext. canonical equivalence $\approx_{\phi,k}$.

[Abrahamson and Fellows, 93], and [PH, 03].

- Clear for *atomic* predicates like $x \in X$ or edge(x, y) (cf. boundary k!).
- Then process $\neg \phi$, $\phi \lor \psi$ (easy),

Corollary. Besides, we get a straightforward inductive proof that: All MSO formulas ϕ (even with *free variables*) generate finitely many classes of the ext. canonical equivalence $\approx_{\phi,k}$.

[Abrahamson and Fellows, 93], and [PH, 03].

- Clear for *atomic* predicates like $x \in X$ or edge(x, y) (cf. boundary k!).
- Then process ¬φ, φ∨ψ (easy), or ∃x φ(x), ∃X φ(X) (quite hard, need an exponential jump in the number of classes with each quantification!).

3 Rank-Width and Parse trees

Some other views of being "similar to trees"...

- Clique-width another graph complexity measure [Courcelle and Olariu], defined by operations on vertex–labeled graphs:
 - create a new vertex with label i,
 - take the disjoint union of two labeled graphs,
 - add all edges between vertices of label i and label j,
 - and relabel all vertices with label i to have label j.

3 Rank-Width and Parse trees

Some other views of being "similar to trees"...

- Clique-width another graph complexity measure [Courcelle and Olariu], defined by operations on vertex–labeled graphs:
 - create a new vertex with label i,
 - take the disjoint union of two labeled graphs,
 - add all edges between vertices of label i and label j,
 - and relabel all vertices with label i to have label j.
- Clique-width shares some nice properties with tree-width, e.g.

Theorem. [Courcelle, Makowsky, and Rotics 00]

All graph properties expressible in *MSO logic* (MS_1 – only vertices!!!) on the graphs of bounded clique-width can be solved in time $O(f(k) \cdot n)$.

3 Rank-Width and Parse trees

Some other views of being "similar to trees"...

- Clique-width another graph complexity measure [Courcelle and Olariu], defined by operations on vertex–labeled graphs:
 - create a new vertex with label i,
 - take the disjoint union of two labeled graphs,
 - add all edges between vertices of label i and label j,
 - and relabel all vertices with label i to have label j.
- Clique-width shares some nice properties with tree-width, e.g.

Theorem. [Courcelle, Makowsky, and Rotics 00]

All graph properties expressible in *MSO logic* (MS_1 – only vertices!!!) on the graphs of bounded clique-width can be solved in time $O(f(k) \cdot n)$.

 On the other hand, clique-width has some drawbacks, like we do not know how to test clique-width k if k ≥ 3.

Rank-Decompositions

 [Oum and Seymour, 03] Bringing the branch-decomposition approach to measure "complexity" of vertex subsets X ⊆ V(G) via *cut-rank*:

$$\begin{aligned}
 & V(G) - X \\
 & \varrho_G(X) = \text{rank of} \quad X \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\
 1 & 0 & 1 & 0 & 0 \\
 1 & 0 & 0 & 1 & 1 \end{pmatrix} \text{ modulo } 2
 \end{aligned}$$

Rank-Decompositions

 [Oum and Seymour, 03] Bringing the branch-decomposition approach to measure "complexity" of vertex subsets X ⊆ V(G) via cut-rank:

$$\varrho_{G}(X) = \operatorname{rank} \operatorname{of} X \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix} \operatorname{modulo} 2$$

Definition. Decompose V(G) one-to-one into the leaves of a subcubic tree. Then:

width(e) = $\rho_G(X)$ where X is displayed by f in the tree.

Petr Hliněný, ACCOTA 2008, 9.12.

Rank-Decompositions

 [Oum and Seymour, 03] Bringing the branch-decomposition approach to measure "complexity" of vertex subsets X ⊆ V(G) via cut-rank:

$$\varrho_{G}(X) = \operatorname{rank} \operatorname{of} X \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix} \operatorname{modulo} 2$$

Definition. Decompose V(G) one-to-one into the leaves of a subcubic tree. Then:

width $(e) = \rho_G(X)$ where X is displayed by f in the tree.

 $\mathsf{Rank-width} = \min_{\mathsf{rank-decs. of } G} \max \left\{ \mathsf{width}(f) : f \text{ tree edge} \right\}$

etr Hliněný, ACCOTA 2008, 9.12. 17 Graph parse trees and MSO properties

• An example: cycle C_5 and its *rank-decomposition* of width 2:

• An example: cycle C_5 and its *rank-decomposition* of width 2:

• Rank-width t is related to clique-width k: $k \leq t \leq 2^{k+1} - 1$

Petr Hliněný, ACCOTA 2008, 9.12.

Graph parse trees and MSO properties

• An example: cycle C_5 and its *rank-decomposition* of width 2:

- Rank-width t is related to clique-width k: $k \leq t \leq 2^{k+1}-1$
- [Oum and PH, 07] There is an FPT algorithm for computing an optimal rank-decomposition of a graph in time $O(f(t) \cdot n^3)$.

Petr Hliněný, ACCOTA 2008, 9.12.

Graph parse trees and MSO properties

Unlike branch- or tree-decompositions with obvious parse trees, what is the "boundary" and "join" operation for rank-width?

Our "boundary" includes all vertices, and "join" has just an impl. matrix rank!

Unlike branch- or tree-decompositions with obvious parse trees, what is the "boundary" and "join" operation for rank-width?

Our "boundary" includes all vertices, and "join" has just an impl. matrix rank!

• Bilinear product approach of [Courcelle and Kanté, 07]:

- boundary ~ labeling $lab: V(G) \rightarrow 2^{\{1,2,\dots,t\}}$ (multi-colouring),

Unlike branch- or tree-decompositions with obvious parse trees, what is the "boundary" and "join" operation for rank-width?

Our "boundary" includes all vertices, and "join" has just an impl. matrix rank!

- Bilinear product approach of [Courcelle and Kanté, 07]:
 - boundary ~ labeling $lab: V(G) \rightarrow 2^{\{1,2,\dots,t\}}$ (multi-colouring),
 - join ~ bilinear form g over $GF(2)^t$ s.t.

 $\mathsf{edge} \ uv \ \leftrightarrow \ lab(u) \cdot \mathbf{g} \cdot lab(v) = 1.$

Unlike branch- or tree-decompositions with obvious parse trees, what is the "boundary" and "join" operation for rank-width?

Our "boundary" includes all vertices, and "join" has just an impl. matrix rank!

- Bilinear product approach of [Courcelle and Kanté, 07]:
 - boundary ~ labeling $lab: V(G) \rightarrow 2^{\{1,2,\dots,t\}}$ (multi-colouring),
 - join \sim bilinear form g over $GF(2)^t$ s.t.

 $\mathsf{edge} \ uv \ \leftrightarrow \ lab(u) \cdot \mathbf{g} \cdot lab(v) = 1.$

• Join \rightarrow composition operator with relabelings f_1, f_2 :

 $(G_1, lab^1) \otimes [\mathbf{g} \mid f_1, f_2] (G_2, lab^2) = (H, lab)$

 \rightarrow rank-width *parse tree* [Ganian and PH, 08].

Unlike branch- or tree-decompositions with obvious parse trees, what is the "boundary" and "join" operation for rank-width?

Our "boundary" includes all vertices, and "join" has just an impl. matrix rank!

- Bilinear product approach of [Courcelle and Kanté, 07]:
 - boundary ~ labeling $lab: V(G) \rightarrow 2^{\{1,2,\dots,t\}}$ (multi-colouring),
 - join \sim bilinear form g over $GF(2)^t$ s.t.

 $\mathsf{edge} \ uv \ \leftrightarrow \ lab(u) \cdot \mathbf{g} \cdot lab(v) = 1.$

• Join \rightarrow composition operator with relabelings f_1, f_2 :

 $(G_1, lab^1) \otimes [\mathbf{g} \mid f_1, f_2] (G_2, lab^2) = (H, lab)$

 \rightarrow rank-width *parse tree* [Ganian and PH, 08].

• Independently considered related notion of R_k -join decompositions by [Bui-Xuan, Telle, and Vatshelle, 08].

Bare rank-decomposition — not enough information for dynamic algorithms...

• Stronger *parse trees* give needed extra information for algorithms!

Bare rank-decomposition — not enough information for dynamic algorithms...

- Stronger parse trees give needed extra information for algorithms!
 - With "boundary" and "join" at hand, we get the associated canonical equivalence classes.
 - Again, the whole *LinEMSO* framework fits here nicely...

Bare rank-decomposition — not enough information for dynamic algorithms...

- Stronger parse trees give needed extra information for algorithms!
 - With "boundary" and "join" at hand, we get the associated canonical equivalence classes.

- Again, the whole *LinEMSO* framework fits here nicely...

• **Example:** the 3-colourability problem.

For G_i with *t*-labeling (~boundary) $lab^i : V(G_i) \rightarrow \{1, \ldots, t\}, i = 1, 2,$ we have

$$\begin{split} &(G_1, lab^1) \approx_{\mathcal{C}_{3,t}} (G_2, lab^2) \text{ if } \\ &\left\{ \begin{pmatrix} lab^1(\chi^{-1}(i)) : i = 1, 2, 3 \end{pmatrix} : \chi \text{ prop. 3-col. } G_1 \right\} = \\ &= \left\{ \begin{pmatrix} lab^2(\chi^{-1}(i)) : i = 1, 2, 3 \end{pmatrix} : \chi \text{ prop. 3-col. } G_2 \right\}. \end{split}$$

Bare rank-decomposition — not enough information for dynamic algorithms...

- Stronger parse trees give needed extra information for algorithms!
 - With "boundary" and "join" at hand, we get the associated canonical equivalence classes.

- Again, the whole *LinEMSO* framework fits here nicely...

• **Example:** the 3-colourability problem.

For G_i with *t*-labeling (~boundary) $lab^i : V(G_i) \rightarrow \{1, \ldots, t\}, i = 1, 2,$ we have

$$\begin{split} &(G_1, lab^1) \approx_{\mathcal{C}_{3,t}} (G_2, lab^2) \text{ if} \\ &\left\{ \begin{pmatrix} lab^1(\chi^{-1}(i)) : i = 1, 2, 3 \end{pmatrix} : \chi \text{ prop. 3-col. } G_1 \right\} = \\ &= \left\{ \begin{pmatrix} lab^2(\chi^{-1}(i)) : i = 1, 2, 3 \end{pmatrix} : \chi \text{ prop. 3-col. } G_2 \right\}. \end{split}$$

This readily gives an FPT $O(f(t) \cdot n)$ algorithm.

Petr Hliněný, ACCOTA 2008, 9.12

Graph parse trees and MSO properties

- Parse trees appear a useful tool in algorithms on graphs of bounded width,
 - giving an accessible "bridge" between design of specific algorithms and those very general results (like the MSO theorem).

- Parse trees appear a useful tool in algorithms on graphs of bounded width,
 giving an accessible "bridge" between design of specific algorithms
 - and those very general results (like the MSO theorem).
- Focus on the precise number of canonical equivalence classes gives a fine control over the runtime of a dynamic algorithm.
 - not being considered in depth so far...

- Parse trees appear a useful tool in algorithms on graphs of bounded width,
 - giving an accessible "bridge" between design of specific algorithms and those very general results (like the MSO theorem).
- Focus on the precise number of canonical equivalence classes gives a fine control over the runtime of a dynamic algorithm.
 - not being considered in depth so far...
- Ongoing work
 - indentify a (useful) fragment of MSO with "small" number of classes (in general, each quantifier alternation makes an exponential jump [Frick and Grohe, 04]),

- Parse trees appear a useful tool in algorithms on graphs of bounded width,
 - giving an accessible "bridge" between design of specific algorithms and those very general results (like the MSO theorem).
- Focus on the precise number of canonical equivalence classes gives a fine control over the runtime of a dynamic algorithm.
 - not being considered in depth so far. . .
- Ongoing work
 - indentify a (useful) fragment of MSO with "small" number of classes (in general, each quantifier alternation makes an exponential jump [Frick and Grohe, 04]),
 - this appears useful especially in connection with rank-width...
4 Final remarks

- Parse trees appear a useful tool in algorithms on graphs of bounded width,
 - giving an accessible "bridge" between design of specific algorithms and those very general results (like the MSO theorem).
- Focus on the precise number of canonical equivalence classes gives a fine control over the runtime of a dynamic algorithm.
 - not being considered in depth so far...
- Ongoing work
 - indentify a (useful) fragment of MSO with "small" number of classes (in general, each quantifier alternation makes an exponential jump [Frick and Grohe, 04]),
 - this appears useful especially in connection with rank-width...

THANK YOU FOR YOUR ATTENTION

Petr Hliněný, ACCOTA 2008, 9.12

Graph parse trees and MSO properties