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1 Motivation, and a short survey

Algorithmics. Many hard graph problems become easy on trees. ..

Any natural problem which is NP-hard on trees? Bandwidth.

e More generaly, many problems are easy on (partial) k-trees,

i.e. on the graphs of bounded tree-width [Arnborg et al, 80's].

e In what other ways “similarlity to trees’ can be defined? See later. ..

Theory. [Robertson and Seymour, Graph minors 80's]

Tree-decompositions present a core tool in this deep theory.

e This theory started wide interest in tree-width in the CS community. . .
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/What is Tree-Width?
e The tree-width of a graph G equals the smallest possible

clique size minus one of a chordal supergraph of G.

e A really useful definition, isn't it?

e OK, let us try once more... [Robertson and Seymour, 80's]
Definition. A tree-decomposition of a graph G is a tree with

— “bags” (subsets) of vertices of G assigned to the tree nodes,

— each edge of G belonging to some bag, and

— the bags containing some vertex must form a subtree (interpolation).

1 2 {1,5,6,8} {1,2,3,6}
5 6
{1,3,6,8}
8 7
4 3 {1737478} {3767778}

Tree-width = mingecomps. of ¢ Max {|B| — 1 : B bag in decomp.}
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e Independently of R+S, tree-like decomposition have been approached via
k-trees, see e.g. a 2-tree:
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Alternative approach

e Independently of R+S, tree-like decomposition have been approached via
k-trees, see e.g. a 2-tree:

[Beineke & Pippert, 68 — 69], [Rose 74], [Arnborg & Proskurowski, 86].
e A graph G has tree-width < k iff G is a partial (subgraph of a) k-tree.

e Furthermore, k-trees easily relate tree-width to simplicial vertices and
elimination orderings of chordal graphs.
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Related notion: Branch-Width

e We want to measure connectivity of a graph G via edges X C E(G):
Ac(X) = # vertices shared between X and F(G) — X. 9
e [Robertson and Seymour| — in analogy to tree-width. . .

Definition. Decompose E(G) one-to-one into the leaves of a subcubic tree.
Then:

width(e) = Ag(X) where X is displayed by f in the tree.
Branch-width = minganch-decs. of ¢ max {width(f) : f tree edge}

e Branch-width is within a constant factor of tree-width.

\_ /
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Example. Finding the largest independent set in a graph of tree-width at
most k, assuming a rooted tree-decomposition is given, in time O(2F - n).

—,

— T
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Fast Dynamic Algorithms

e In a bottom-up tree processing we collect this information:

Zx : Y C decomposition bag X —
max | independent set S “below’ X s.t. SNX =Y

e Computable by brute force at the leaves,

and then straightforwardly combined together at internal nodes. ..

e Total computing time: O(2¥) times O(n) nodes of the decomposition.
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Furthermore:

Theorem. [Courcelle 88], [Arnborg, Lagergren, and Seese, 88]

All graph properties expressible in MSO logic (MSs — vertices and edges) on
the graphs of bounded tree-width can be solved in FPT time O(f(k) - n).
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on the graph size.
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2 Parse Trees, a not-much-known tool
Assume a graph G with a given rooted tree-decomposition of with k.

e A typical idea for a dynamic algorithm on a tree-decomposition:

— Capture all relevant information about the problem on a subtree.

— Process this information bottom-up in the decomposition

— Importantly, this information has size depending only on k&, and not
on the graph size.

e How to understand words “all relevant information about the problem™?
Look for inspiration in traditional finite automata theory!
Theorem. [Myhill-Nerode, folklore]

Finite automaton states (this is our information) «
right congruence classes on the words (of a regular language).

e Combinatorial extensions of this right congruence appeared in the works
[Abrahamson and Fellows, 93], [Downey and Fellows, 99], and [PH, 03].
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Canonical Equivalence on graphs

How does a right congruence extend
from formal words with the concatention operation
to, say, graphs with a kind of “join” operation?

e Consider the universe of graphs U} implicitly associated with

— some (small) distinguished “boundary of size k" of each graph, and
— a join operation G & H acting on the boundaries of disjoint G, H.

e Let P be a graph property we study.
Definition. The canonical equivalence of P on Uy, is defined:
G1 =p Go forany G1,G2 € Uy, if and only if, for all H € Uy,
GioHeEP < G2doHcP.
o Informally, the classes of ~p ;. capture all information about the property

P that can ‘“cross” our graph boundary of size &k
(regardless of actual meaning of “boundary” and “join”).
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Parse Trees of decompositions

The task now is to make our join operation to “play with"
the decomposition we have of our graph. ..

e Considering a rooted ?77-decomposition of a graph G,
we build on the following correspondence:

boundary size k<«  restricted bag-size / width in decomposition

Jjoin operator @ <«  the way pieces of G “stick together" in decomp.

e E.g. for a tree-decomposition of width k:

‘L < k+1 = —\
N D [
N =

(Similarly for a branch-decomposition, but without sharing bd. edges.)
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and a join operation (actually extended to a composition operator).
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e A boundaried parse tree is then obtained as a

“translation” of the decomposition into the above meaning of a boundary
and a join operation (actually extended to a composition operator).

(=0

/ \

D S

SN SN

e Now, mod. some technical assumptions on parse trees and @, we can get:

Theorem. (Analogy of [Myhill-Nerode])

P is accepted by a finite tree automaton on parse trees of boundary size < k

if and only if ~p 1 has finitely many classes on /.

\ /
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Example. P = Cs: 3-colourability of graphs of tree-width < k.

e For G; with boundary B; C V(G;) s.t. |B;| < k+1,i=1,2, we have
(G1, B1) ~¢, 1 (G2, Ba) if and only if

{X [ B1 : x prop. 3-col. Gl} = {X [ By : x prop. 3-col. Gg}.

N\ B L O\ B2
N L
— @ H VS. "> @ H

e Then =, ;. has finitely many classes, depending only on &
— information “of size O(3%)

That easily results in an O(3¥n) FPT algorithm for 3-colourability!

\
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Dynamic Algorithms revisited
e How to capture non-decision problems in the previous framework?
— allow free variables in the property Q(X)!
E.g. Q(X) = independent(X), dominating(X), or matching(X).

Definition. Extended canonical equivalence =gx)k

— like =p j on the univ. Uy[X] of graphs equipped with interpretation of X.

LinEMSO properties [Arnborg et al, 88], [Courcelle et al, 00].

— allowing MSO plus optimization and / or enumeration
over linear evaluational terms in the free variables.

E.g. max|X| : independent(X), or #X : matching(X).

e Fitting into the parse tree framework:
— In the dynamic programming paradigm, remember
optimal representatives and / or partial enum. results
for each class of the extended canonical equivalence.

\_ /




\

Corollary. Besides, we get a straightforward inductive proof that:

All MSO formulas ¢ (even with free variables) generate
finitely many classes of the ext. canonical equivalence = k.

[Abrahamson and Fellows, 93], and [PH, 03].

— Clear for atomic predicates like x € X or edge(z,y) (cf. boundary k1).
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Corollary. Besides, we get a straightforward inductive proof that:

All MSO formulas ¢ (even with free variables) generate
finitely many classes of the ext. canonical equivalence = k.

[Abrahamson and Fellows, 93], and [PH, 03].
— Clear for atomic predicates like x € X or edge(z,y) (cf. boundary k1).

— Then process =@, ¢V (easy), or Iz ¢(x), IX ¢(X) (quite hard, need
an exponential jump in the number of classes with each quantification!).
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Some other views of being “similar to trees”. ..

o Clique-width — another graph complexity measure [Courcelle and Olariu],
defined by operations on vertex—labeled graphs:

— create a new vertex with label 7,

— take the disjoint union of two labeled graphs,

— add all edges between vertices of label ¢ and label j,
and relabel all vertices with label 7 to have label j.

e Clique-width shares some nice properties with tree-width, e.g.

Theorem. [Courcelle, Makowsky, and Rotics 00]

All graph properties expressible in MSO logic (MS; — only vertices!!!) on

the graphs of bounded clique-width can be solved in time O(f(k) - n).
e On the other hand, clique-width has some drawbacks,

like we do not know how to test clique-width k if k > 3.
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e [Oum and Seymour, 03] Bringing the branch-decomposition approach to
measure “complexity” of vertex subsets X C V(G) via cut-rank:

V(G

o R, O~

0 1 01
oc(X) =rankof X |1 0 0 0| modulo 2
10 11

Definition. Decompose V' (G) one-to-one into the leaves of a subcubic tree.
Then:
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e [Oum and Seymour, 03] Bringing the branch-decomposition approach to
measure “complexity” of vertex subsets X C V(G) via cut-rank:

V(G

Rank-Decompositions

o = O

0 1 01
oc(X) =rankof X |1 0 0 0| modulo 2
10 11

Definition. Decompose V' (G) one-to-one into the leaves of a subcubic tree.
Then:

width(e) = pg(X) where X is displayed by f in the tree.

Rank-width = mingpi_decs. of @ Max {width(f) : f tree edge}

\_
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e An example: cycle Cs and its rank-decomposition of width 2:

d
€ c
a b
d @
10
(0 o 1 1) ((1) 8 (1)) i (g (1]) (0 1 1 0)
1 o o0 1) [(1001) 1 1 0 0
e @ b




4 )

e An example: cycle Cs and its rank-decomposition of width 2:

d
e c
a b
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e Rank-width ¢ is related to clique-width k: k <t < 2kt —1
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d
e c
a b
d €
10
(0 0o 1 1) ((1) 8 (1)) ,\ (8 (1]) 0 1 1 0)
(1 0o 0 1) [(1001) (1 1 0 0
e @ b

e Rank-width ¢ is related to clique-width k: k <t < 2kt —1

e [Oum and PH, 07] There is an FPT algorithm for computing an optimal
rank-decomposition of a graph in time O(f(t) - n%).

\ /
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e Bilinear product approach of [Courcelle and Kanté, 07]:

— boundary ~ labeling lab : V(G) — 2{12t (multi-colouring),
— join ~ bilinear form g over GF(2)! s.t.
edge uv < lab(u) - g -lab(v) = 1.

e Join — composition operator with relabelings f1, fo:

(lelabl) ®[g‘f17f2] (G27lab2) = (H?lab)

— rank-width parse tree [Ganian and PH, 08].

\




4 )

Unlike branch- or tree-decompositions with obvious parse trees, what is the
“boundary” and “join" operation for rank-width?

Boundary and Join for rank-decompositions

Our “boundary” includes all vertices, and “join” has just an impl. matrix rank!

e Bilinear product approach of [Courcelle and Kanté, 07]:

— boundary ~ labeling lab : V(G) — 2{1:2-t} (multi-colouring),
— Jjoin ~ bilinear form g over GF(2)! s.t.
edge uv < lab(u) - g -lab(v) = 1.

e Join — composition operator with relabelings f1, fo:
(Gy,lab") ®[g| f1, f2] (G2,lab®) = (H,lab)
— rank-width parse tree [Ganian and PH, 08].

e Independently considered related notion of Rj-join decompositions by
[Bui-Xuan, Telle, and Vatshelle, 08].

\_ /
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Parse tree. An example generating the cycle C5 (of rank-width 2):

®id |-, -]

®lid| id, 1-0] . .
d|1—2,id
®lid| id, 1-7] ®lid|1-2, id]

®a
®b ®ec od ®e
d{1} d{2} d{2}
e{l} o c{1}  efl} / {2}  e{l} / c{2}
oy JuC s e b
d
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Bare rank-decomposition — not enough information for dynamic algorithms. . .
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Bare rank-decomposition — not enough information for dynamic algorithms. . .

e Stronger parse trees give needed extra information for algorithms!
— With “boundary” and “join” at hand, we get the associated
canonical equivalence classes.

— Again, the whole LinEMSO framework fits here nicely. ..

e Example: the 3-colourability problem.

For G; with t-labeling (~boundary) lab® : V(G;) — {1,...,t}, i = 1,2,
we have

(Glylab )~ 3f(G2,lab ) if
{( 11=1,2 3) X prop. 3-col. G1} =

{(labz( ( ) :i=1,2,3) : x prop. 3-col. Ga}.

This readily gives an FPT O(f(t) - n) algorithm.
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