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1 Motivation, and a short survey1 Motivation, and a short survey

Algorithmics. Many hard graph problems become easy on trees. . .

Any natural problem which is NP-hard on trees?
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1 Motivation, and a short survey1 Motivation, and a short survey

Algorithmics. Many hard graph problems become easy on trees. . .

Any natural problem which is NP-hard on trees? Bandwidth.

• More generaly, many problems are easy on (partial) k-trees,

i.e. on the graphs of bounded tree-width [Arnborg et al, 80’s].
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1 Motivation, and a short survey1 Motivation, and a short survey

Algorithmics. Many hard graph problems become easy on trees. . .

Any natural problem which is NP-hard on trees? Bandwidth.

• More generaly, many problems are easy on (partial) k-trees,

i.e. on the graphs of bounded tree-width [Arnborg et al, 80’s].

• In what other ways “similarlity to trees” can be defined?
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1 Motivation, and a short survey1 Motivation, and a short survey

Algorithmics. Many hard graph problems become easy on trees. . .

Any natural problem which is NP-hard on trees? Bandwidth.

• More generaly, many problems are easy on (partial) k-trees,

i.e. on the graphs of bounded tree-width [Arnborg et al, 80’s].

• In what other ways “similarlity to trees” can be defined? See later. . .

Theory. [Robertson and Seymour, Graph minors 80’s]

Tree-decompositions present a core tool in this deep theory.
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1 Motivation, and a short survey1 Motivation, and a short survey

Algorithmics. Many hard graph problems become easy on trees. . .

Any natural problem which is NP-hard on trees? Bandwidth.

• More generaly, many problems are easy on (partial) k-trees,

i.e. on the graphs of bounded tree-width [Arnborg et al, 80’s].

• In what other ways “similarlity to trees” can be defined? See later. . .

Theory. [Robertson and Seymour, Graph minors 80’s]

Tree-decompositions present a core tool in this deep theory.

• This theory started wide interest in tree-width in the CS community. . .
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What is Tree-Width?What is Tree-Width?

• The tree-width of a graph G equals the smallest possible
clique size minus one of a chordal supergraph of G.
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What is Tree-Width?What is Tree-Width?

• The tree-width of a graph G equals the smallest possible
clique size minus one of a chordal supergraph of G.

• A really useful definition, isn’t it?
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What is Tree-Width?What is Tree-Width?

• The tree-width of a graph G equals the smallest possible
clique size minus one of a chordal supergraph of G.

• A really useful definition, isn’t it?

• OK, let us try once more. . . [Robertson and Seymour, 80’s]

Definition. A tree-decomposition of a graph G is a tree with

– “bags” (subsets) of vertices of G assigned to the tree nodes,

– each edge of G belonging to some bag, and
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What is Tree-Width?What is Tree-Width?

• The tree-width of a graph G equals the smallest possible
clique size minus one of a chordal supergraph of G.

• A really useful definition, isn’t it?

• OK, let us try once more. . . [Robertson and Seymour, 80’s]

Definition. A tree-decomposition of a graph G is a tree with

– “bags” (subsets) of vertices of G assigned to the tree nodes,

– each edge of G belonging to some bag, and

– the bags containing some vertex must form a subtree (interpolation).

1 2
65

8
4

7
3

{1, 3, 6, 8}

{1, 2, 3, 6}

{3, 6, 7, 8}{1, 3, 4, 8}

{1, 5, 6, 8}
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What is Tree-Width?What is Tree-Width?

• The tree-width of a graph G equals the smallest possible
clique size minus one of a chordal supergraph of G.

• A really useful definition, isn’t it?

• OK, let us try once more. . . [Robertson and Seymour, 80’s]

Definition. A tree-decomposition of a graph G is a tree with

– “bags” (subsets) of vertices of G assigned to the tree nodes,

– each edge of G belonging to some bag, and

– the bags containing some vertex must form a subtree (interpolation).

1 2
65

8
4

7
3

{1, 3, 6, 8}

{1, 2, 3, 6}

{3, 6, 7, 8}{1, 3, 4, 8}

{1, 5, 6, 8}

Tree-width = mindecomps. of G max
{|B| − 1 : B bag in decomp.

}
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Alternative approach

• Independently of R+S, tree-like decomposition have been approached via
k-trees, see e.g. a 2-tree:

[Beineke & Pippert, 68 – 69], [Rose 74], [Arnborg & Proskurowski, 86].
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Alternative approach

• Independently of R+S, tree-like decomposition have been approached via
k-trees, see e.g. a 2-tree:

[Beineke & Pippert, 68 – 69], [Rose 74], [Arnborg & Proskurowski, 86].

• A graph G has tree-width ≤ k iff G is a partial (subgraph of a) k-tree.
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Alternative approach

• Independently of R+S, tree-like decomposition have been approached via
k-trees, see e.g. a 2-tree:

[Beineke & Pippert, 68 – 69], [Rose 74], [Arnborg & Proskurowski, 86].

• A graph G has tree-width ≤ k iff G is a partial (subgraph of a) k-tree.

• Furthermore, k-trees easily relate tree-width to simplicial vertices and
elimination orderings of chordal graphs.



'

&

$

%

'

&

$
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Related notion: Branch-WidthRelated notion: Branch-Width

• We want to measure connectivity of a graph G via edges X ⊆ E(G):

λG(X) = # vertices shared between X and E(G)−X.



'

&

$

%

'

&

$
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Related notion: Branch-WidthRelated notion: Branch-Width

• We want to measure connectivity of a graph G via edges X ⊆ E(G):

λG(X) = # vertices shared between X and E(G)−X.

• [Robertson and Seymour] – in analogy to tree-width. . .

Definition. Decompose E(G) one-to-one into the leaves of a subcubic tree.
Then:

fX E(G) −X

width(e) = λG(X) where X is displayed by f in the tree.
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Related notion: Branch-WidthRelated notion: Branch-Width

• We want to measure connectivity of a graph G via edges X ⊆ E(G):

λG(X) = # vertices shared between X and E(G)−X.

• [Robertson and Seymour] – in analogy to tree-width. . .

Definition. Decompose E(G) one-to-one into the leaves of a subcubic tree.
Then:

fX E(G) −X

width(e) = λG(X) where X is displayed by f in the tree.

Branch-width = minbranch-decs. of G max
{

width(f) : f tree edge
}
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Related notion: Branch-WidthRelated notion: Branch-Width

• We want to measure connectivity of a graph G via edges X ⊆ E(G):

λG(X) = # vertices shared between X and E(G)−X.

• [Robertson and Seymour] – in analogy to tree-width. . .

Definition. Decompose E(G) one-to-one into the leaves of a subcubic tree.
Then:

fX E(G) −X

width(e) = λG(X) where X is displayed by f in the tree.

Branch-width = minbranch-decs. of G max
{

width(f) : f tree edge
}

• Branch-width is within a constant factor of tree-width.
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Fast Dynamic AlgorithmsFast Dynamic Algorithms

Example. Finding the largest independent set in a graph of tree-width at
most k, assuming a rooted tree-decomposition is given, in time O(2k · n).
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Fast Dynamic AlgorithmsFast Dynamic Algorithms

Example. Finding the largest independent set in a graph of tree-width at
most k, assuming a rooted tree-decomposition is given, in time O(2k · n).

...

...
...

...

X

...
...

• In a bottom-up tree processing we collect this information:

IX : Y ⊆ decomposition bag X →
max

∣∣ independent set S “below” X s.t. S ∩X = Y
∣∣
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%Petr Hliněný, ACCOTA 2008, 9.12. 7 Graph parse trees and MSO properties

Fast Dynamic AlgorithmsFast Dynamic Algorithms

Example. Finding the largest independent set in a graph of tree-width at
most k, assuming a rooted tree-decomposition is given, in time O(2k · n).

...

...
...

...

X

...
...

• In a bottom-up tree processing we collect this information:

IX : Y ⊆ decomposition bag X →
max

∣∣ independent set S “below” X s.t. S ∩X = Y
∣∣

• Computable by brute force at the leaves,

and then straightforwardly combined together at internal nodes. . .
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Fast Dynamic AlgorithmsFast Dynamic Algorithms

Example. Finding the largest independent set in a graph of tree-width at
most k, assuming a rooted tree-decomposition is given, in time O(2k · n).

...

...
...

...

X

...
...

• In a bottom-up tree processing we collect this information:

IX : Y ⊆ decomposition bag X →
max

∣∣ independent set S “below” X s.t. S ∩X = Y
∣∣

• Computable by brute force at the leaves,

and then straightforwardly combined together at internal nodes. . .

• Total computing time: O(2k) times O(n) nodes of the decomposition.
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• Analogous dynamic (FPT) algorithms exist for, say, the dominating set,
vertex cover, chromatic number, Hamiltonian cycle, etc. . .

Furthermore:
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• Analogous dynamic (FPT) algorithms exist for, say, the dominating set,
vertex cover, chromatic number, Hamiltonian cycle, etc. . .

Furthermore:

Theorem. [Courcelle 88], [Arnborg, Lagergren, and Seese, 88]

All graph properties expressible in MSO logic (MS2 – vertices and edges) on
the graphs of bounded tree-width can be solved in FPT time O(f(k) · n).
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2 Parse Trees, a not-much-known tool2 Parse Trees, a not-much-known tool

Assume a graph G with a given rooted tree-decomposition of with k.

• A typical idea for a dynamic algorithm on a tree-decomposition:

– Capture all relevant information about the problem on a subtree.
– Process this information bottom-up in the decomposition
– Importantly, this information has size depending only on k, and not

on the graph size.
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%Petr Hliněný, ACCOTA 2008, 9.12. 9 Graph parse trees and MSO properties

2 Parse Trees, a not-much-known tool2 Parse Trees, a not-much-known tool

Assume a graph G with a given rooted tree-decomposition of with k.

• A typical idea for a dynamic algorithm on a tree-decomposition:

– Capture all relevant information about the problem on a subtree.
– Process this information bottom-up in the decomposition
– Importantly, this information has size depending only on k, and not

on the graph size.

• How to understand words “all relevant information about the problem”?

Look for inspiration in traditional finite automata theory!
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2 Parse Trees, a not-much-known tool2 Parse Trees, a not-much-known tool

Assume a graph G with a given rooted tree-decomposition of with k.

• A typical idea for a dynamic algorithm on a tree-decomposition:

– Capture all relevant information about the problem on a subtree.
– Process this information bottom-up in the decomposition
– Importantly, this information has size depending only on k, and not

on the graph size.

• How to understand words “all relevant information about the problem”?

Look for inspiration in traditional finite automata theory!

Theorem. [Myhill–Nerode, folklore]
Finite automaton states (this is our information) ↔

right congruence classes on the words (of a regular language).
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2 Parse Trees, a not-much-known tool2 Parse Trees, a not-much-known tool

Assume a graph G with a given rooted tree-decomposition of with k.

• A typical idea for a dynamic algorithm on a tree-decomposition:

– Capture all relevant information about the problem on a subtree.
– Process this information bottom-up in the decomposition
– Importantly, this information has size depending only on k, and not

on the graph size.

• How to understand words “all relevant information about the problem”?

Look for inspiration in traditional finite automata theory!

Theorem. [Myhill–Nerode, folklore]
Finite automaton states (this is our information) ↔

right congruence classes on the words (of a regular language).

• Combinatorial extensions of this right congruence appeared in the works
[Abrahamson and Fellows, 93], [Downey and Fellows, 99], and [PH, 03].
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Canonical Equivalence on graphsCanonical Equivalence on graphs

How does a right congruence extend
from formal words with the concatention operation

to, say, graphs with a kind of “join” operation?
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Canonical Equivalence on graphsCanonical Equivalence on graphs

How does a right congruence extend
from formal words with the concatention operation

to, say, graphs with a kind of “join” operation?

• Consider the universe of graphs Uk implicitly associated with

– some (small) distinguished “boundary of size k” of each graph, and
– a join operation G⊕H acting on the boundaries of disjoint G, H.

• Let P be a graph property we study.
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Canonical Equivalence on graphsCanonical Equivalence on graphs

How does a right congruence extend
from formal words with the concatention operation

to, say, graphs with a kind of “join” operation?

• Consider the universe of graphs Uk implicitly associated with

– some (small) distinguished “boundary of size k” of each graph, and
– a join operation G⊕H acting on the boundaries of disjoint G, H.

• Let P be a graph property we study.

Definition. The canonical equivalence of P on Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊕H ∈ P ⇐⇒ G2 ⊕H ∈ P .
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Canonical Equivalence on graphsCanonical Equivalence on graphs

How does a right congruence extend
from formal words with the concatention operation

to, say, graphs with a kind of “join” operation?

• Consider the universe of graphs Uk implicitly associated with

– some (small) distinguished “boundary of size k” of each graph, and
– a join operation G⊕H acting on the boundaries of disjoint G, H.

• Let P be a graph property we study.

Definition. The canonical equivalence of P on Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊕H ∈ P ⇐⇒ G2 ⊕H ∈ P .

• Informally, the classes of ≈P,k capture all information about the property
P that can “cross” our graph boundary of size k

(regardless of actual meaning of “boundary” and “join”).
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Parse Trees of decompositionsParse Trees of decompositions

The task now is to make our join operation to “play with”
the decomposition we have of our graph. . .
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Parse Trees of decompositionsParse Trees of decompositions

The task now is to make our join operation to “play with”
the decomposition we have of our graph. . .

• Considering a rooted ???-decomposition of a graph G,
we build on the following correspondence:

boundary size k ↔ restricted bag-size / width in decomposition

join operator ⊕ ↔ the way pieces of G “stick together” in decomp.
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Parse Trees of decompositionsParse Trees of decompositions

The task now is to make our join operation to “play with”
the decomposition we have of our graph. . .

• Considering a rooted ???-decomposition of a graph G,
we build on the following correspondence:

boundary size k ↔ restricted bag-size / width in decomposition

join operator ⊕ ↔ the way pieces of G “stick together” in decomp.

• E.g. for a tree-decomposition of width k:

ss ss
≤ k + 1 ≥

⊕
ss ss =

ss ss
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Parse Trees of decompositionsParse Trees of decompositions

The task now is to make our join operation to “play with”
the decomposition we have of our graph. . .

• Considering a rooted ???-decomposition of a graph G,
we build on the following correspondence:

boundary size k ↔ restricted bag-size / width in decomposition

join operator ⊕ ↔ the way pieces of G “stick together” in decomp.

• E.g. for a tree-decomposition of width k:

ss ss
≤ k + 1 ≥

⊕
ss ss =

ss ss
(Similarly for a branch-decomposition, but without sharing bd. edges.)
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• A boundaried parse tree is then obtained as a

“translation” of the decomposition into the above meaning of a boundary
and a join operation (actually extended to a composition operator).

...

...
...

...
...

...
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• A boundaried parse tree is then obtained as a

“translation” of the decomposition into the above meaning of a boundary
and a join operation (actually extended to a composition operator).

...

...
...

...
...

...

• Now, mod. some technical assumptions on parse trees and ⊕, we can get:

Theorem. (Analogy of [Myhill–Nerode])

P is accepted by a finite tree automaton on parse trees of boundary size ≤ k
if and only if ≈P,k has finitely many classes on Uk.
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Example. P = C3 : 3-colourability of graphs of tree-width ≤ k.
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Example. P = C3 : 3-colourability of graphs of tree-width ≤ k.

• For Gi with boundary Bi ⊆ V (Gi) s.t. |Bi| ≤ k + 1, i = 1, 2, we have

(G1, B1)≈C3,k (G2, B2) if and only if{
χ �B1 : χ prop. 3-col. G1

}
=
{
χ �B2 : χ prop. 3-col. G2

}
.

ss ss
B1

G1 ⊕ H vs.

ss ss
B2

G2 ⊕ H
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Example. P = C3 : 3-colourability of graphs of tree-width ≤ k.

• For Gi with boundary Bi ⊆ V (Gi) s.t. |Bi| ≤ k + 1, i = 1, 2, we have

(G1, B1)≈C3,k (G2, B2) if and only if{
χ �B1 : χ prop. 3-col. G1

}
=
{
χ �B2 : χ prop. 3-col. G2

}
.

ss ss
B1

G1 ⊕ H vs.

ss ss
B2

G2 ⊕ H

• Then ≈C3,k has finitely many classes, depending only on k
– information “of size O(3k)”.

That easily results in an O(3kn) FPT algorithm for 3-colourability!
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Dynamic Algorithms revisitedDynamic Algorithms revisited

• How to capture non-decision problems in the previous framework?
– allow free variables in the property Q(X) !

E.g. Q(X) ≡ independent(X), dominating(X), or matching(X).
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Dynamic Algorithms revisitedDynamic Algorithms revisited

• How to capture non-decision problems in the previous framework?
– allow free variables in the property Q(X) !

E.g. Q(X) ≡ independent(X), dominating(X), or matching(X).

Definition. Extended canonical equivalence ≈Q(X),k

– like ≈P,k on the univ. Uk[X] of graphs equipped with interpretation of X.
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Dynamic Algorithms revisitedDynamic Algorithms revisited

• How to capture non-decision problems in the previous framework?
– allow free variables in the property Q(X) !

E.g. Q(X) ≡ independent(X), dominating(X), or matching(X).

Definition. Extended canonical equivalence ≈Q(X),k

– like ≈P,k on the univ. Uk[X] of graphs equipped with interpretation of X.

LinEMSO properties [Arnborg et al, 88], [Courcelle et al, 00].

– allowing MSO plus optimization and / or enumeration
over linear evaluational terms in the free variables.

E.g. max |X| : independent(X), or #X : matching(X).
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Dynamic Algorithms revisitedDynamic Algorithms revisited

• How to capture non-decision problems in the previous framework?
– allow free variables in the property Q(X) !

E.g. Q(X) ≡ independent(X), dominating(X), or matching(X).

Definition. Extended canonical equivalence ≈Q(X),k

– like ≈P,k on the univ. Uk[X] of graphs equipped with interpretation of X.

LinEMSO properties [Arnborg et al, 88], [Courcelle et al, 00].

– allowing MSO plus optimization and / or enumeration
over linear evaluational terms in the free variables.

E.g. max |X| : independent(X), or #X : matching(X).

• Fitting into the parse tree framework:

– In the dynamic programming paradigm, remember

optimal representatives and / or partial enum. results

for each class of the extended canonical equivalence.
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Corollary. Besides, we get a straightforward inductive proof that:

All MSO formulas φ (even with free variables) generate
finitely many classes of the ext. canonical equivalence ≈φ,k.

[Abrahamson and Fellows, 93], and [PH, 03].

– Clear for atomic predicates like x ∈ X or edge(x, y) (cf. boundary k !).
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Corollary. Besides, we get a straightforward inductive proof that:

All MSO formulas φ (even with free variables) generate
finitely many classes of the ext. canonical equivalence ≈φ,k.

[Abrahamson and Fellows, 93], and [PH, 03].

– Clear for atomic predicates like x ∈ X or edge(x, y) (cf. boundary k !).

– Then process ¬φ, φ∨ψ (easy),
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Corollary. Besides, we get a straightforward inductive proof that:

All MSO formulas φ (even with free variables) generate
finitely many classes of the ext. canonical equivalence ≈φ,k.

[Abrahamson and Fellows, 93], and [PH, 03].

– Clear for atomic predicates like x ∈ X or edge(x, y) (cf. boundary k !).

– Then process ¬φ, φ∨ψ (easy), or ∃xφ(x), ∃X φ(X) (quite hard, need
an exponential jump in the number of classes with each quantification!).
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3 Rank-Width and Parse trees3 Rank-Width and Parse trees

Some other views of being “similar to trees”. . .

• Clique-width – another graph complexity measure [Courcelle and Olariu],
defined by operations on vertex–labeled graphs:

– create a new vertex with label i,
– take the disjoint union of two labeled graphs,
– add all edges between vertices of label i and label j,
– and relabel all vertices with label i to have label j.
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3 Rank-Width and Parse trees3 Rank-Width and Parse trees

Some other views of being “similar to trees”. . .

• Clique-width – another graph complexity measure [Courcelle and Olariu],
defined by operations on vertex–labeled graphs:

– create a new vertex with label i,
– take the disjoint union of two labeled graphs,
– add all edges between vertices of label i and label j,
– and relabel all vertices with label i to have label j.

• Clique-width shares some nice properties with tree-width, e.g.

Theorem. [Courcelle, Makowsky, and Rotics 00]

All graph properties expressible in MSO logic (MS1 – only vertices!!!) on
the graphs of bounded clique-width can be solved in time O(f(k) ·n).
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3 Rank-Width and Parse trees3 Rank-Width and Parse trees

Some other views of being “similar to trees”. . .

• Clique-width – another graph complexity measure [Courcelle and Olariu],
defined by operations on vertex–labeled graphs:

– create a new vertex with label i,
– take the disjoint union of two labeled graphs,
– add all edges between vertices of label i and label j,
– and relabel all vertices with label i to have label j.

• Clique-width shares some nice properties with tree-width, e.g.

Theorem. [Courcelle, Makowsky, and Rotics 00]

All graph properties expressible in MSO logic (MS1 – only vertices!!!) on
the graphs of bounded clique-width can be solved in time O(f(k) ·n).

• On the other hand, clique-width has some drawbacks,

like we do not know how to test clique-width k if k ≥ 3.
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Rank-DecompositionsRank-Decompositions

• [Oum and Seymour, 03] Bringing the branch-decomposition approach to
measure “complexity” of vertex subsets X ⊆ V (G) via cut-rank:

%G(X) = rank of

V (G)−X

X

0 1 0 0 1
1 0 1 0 0
1 0 0 1 1

 modulo 2
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Rank-DecompositionsRank-Decompositions

• [Oum and Seymour, 03] Bringing the branch-decomposition approach to
measure “complexity” of vertex subsets X ⊆ V (G) via cut-rank:

%G(X) = rank of

V (G)−X

X

0 1 0 0 1
1 0 1 0 0
1 0 0 1 1

 modulo 2

Definition. Decompose V (G) one-to-one into the leaves of a subcubic tree.
Then:

fX V (G) −X

width(e) = %G(X) where X is displayed by f in the tree.
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Rank-DecompositionsRank-Decompositions

• [Oum and Seymour, 03] Bringing the branch-decomposition approach to
measure “complexity” of vertex subsets X ⊆ V (G) via cut-rank:

%G(X) = rank of

V (G)−X

X

0 1 0 0 1
1 0 1 0 0
1 0 0 1 1

 modulo 2

Definition. Decompose V (G) one-to-one into the leaves of a subcubic tree.
Then:

fX V (G) −X

width(e) = %G(X) where X is displayed by f in the tree.

Rank-width = minrank-decs. of G max
{

width(f) : f tree edge
}



'

&

$

%

'

&

$
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• An example: cycle C5 and its rank-decomposition of width 2:

s s
sss

a b

c

d

e

a b

cd

e

„
0 0 1
1 0 0

« 0@1 0
0 1
0 0

1A
`
1 0 0 1

´ `
1 1 0 0

´
`
0 1 1 0

´`
0 0 1 1

´
`
1 0 0 1

´
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• An example: cycle C5 and its rank-decomposition of width 2:

s s
sss

a b

c

d

e

a b

cd

e

„
0 0 1
1 0 0

« 0@1 0
0 1
0 0

1A
`
1 0 0 1

´ `
1 1 0 0

´
`
0 1 1 0

´`
0 0 1 1

´
`
1 0 0 1

´

• Rank-width t is related to clique-width k: k ≤ t ≤ 2k+1 − 1
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• An example: cycle C5 and its rank-decomposition of width 2:

s s
sss

a b

c

d

e

a b

cd

e

„
0 0 1
1 0 0

« 0@1 0
0 1
0 0

1A
`
1 0 0 1

´ `
1 1 0 0

´
`
0 1 1 0

´`
0 0 1 1

´
`
1 0 0 1

´

• Rank-width t is related to clique-width k: k ≤ t ≤ 2k+1 − 1

• [Oum and PH, 07] There is an FPT algorithm for computing an optimal
rank-decomposition of a graph in time O(f(t) · n3).
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Boundary and Join for rank-decompositionsBoundary and Join for rank-decompositions

Unlike branch- or tree-decompositions with obvious parse trees, what is the
“boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” has just an impl. matrix rank!
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Boundary and Join for rank-decompositionsBoundary and Join for rank-decompositions

Unlike branch- or tree-decompositions with obvious parse trees, what is the
“boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” has just an impl. matrix rank!

• Bilinear product approach of [Courcelle and Kanté, 07]:

– boundary ∼ labeling lab : V (G)→ 2{1,2,...,t} (multi-colouring),
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Boundary and Join for rank-decompositionsBoundary and Join for rank-decompositions

Unlike branch- or tree-decompositions with obvious parse trees, what is the
“boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” has just an impl. matrix rank!

• Bilinear product approach of [Courcelle and Kanté, 07]:

– boundary ∼ labeling lab : V (G)→ 2{1,2,...,t} (multi-colouring),

– join ∼ bilinear form g over GF (2)t s.t.

edge uv ↔ lab(u) · g · lab(v) = 1.
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Boundary and Join for rank-decompositionsBoundary and Join for rank-decompositions

Unlike branch- or tree-decompositions with obvious parse trees, what is the
“boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” has just an impl. matrix rank!

• Bilinear product approach of [Courcelle and Kanté, 07]:

– boundary ∼ labeling lab : V (G)→ 2{1,2,...,t} (multi-colouring),

– join ∼ bilinear form g over GF (2)t s.t.

edge uv ↔ lab(u) · g · lab(v) = 1.

• Join → composition operator with relabelings f1, f2:

(G1, lab
1) ⊗[g | f1, f2] (G2, lab

2) = (H, lab)

→ rank-width parse tree [Ganian and PH, 08].
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Boundary and Join for rank-decompositionsBoundary and Join for rank-decompositions

Unlike branch- or tree-decompositions with obvious parse trees, what is the
“boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” has just an impl. matrix rank!

• Bilinear product approach of [Courcelle and Kanté, 07]:

– boundary ∼ labeling lab : V (G)→ 2{1,2,...,t} (multi-colouring),

– join ∼ bilinear form g over GF (2)t s.t.

edge uv ↔ lab(u) · g · lab(v) = 1.

• Join → composition operator with relabelings f1, f2:

(G1, lab
1) ⊗[g | f1, f2] (G2, lab

2) = (H, lab)

→ rank-width parse tree [Ganian and PH, 08].

• Independently considered related notion of Rk-join decompositions by
[Bui-Xuan, Telle, and Vatshelle, 08].
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Parse tree. An example generating the cycle C5 (of rank-width 2):

⊙ a

⊙ b ⊙ c ⊙ d ⊙ e

⊗[id | · , · ]

⊗[id | id, 1→2]
⊗[id | id, 1→∅] ⊗[id |1→2, id]

s sss
b {1}

c {1}

d {1}

e {1}
→ s s sss

a {1} b {1}

c {2}

d {2}

e {1}
→ s s

sss
a {1} b ∅

c {2}

d {2}

e {1}
→

→ s s
sss

a b

c

d

e
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Algorithms on bounded Rank-WidthAlgorithms on bounded Rank-Width

Bare rank-decomposition — not enough information for dynamic algorithms. . .

• Stronger parse trees give needed extra information for algorithms!
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Algorithms on bounded Rank-WidthAlgorithms on bounded Rank-Width

Bare rank-decomposition — not enough information for dynamic algorithms. . .

• Stronger parse trees give needed extra information for algorithms!

– With “boundary” and “join” at hand, we get the associated
canonical equivalence classes.

– Again, the whole LinEMSO framework fits here nicely. . .
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Algorithms on bounded Rank-WidthAlgorithms on bounded Rank-Width

Bare rank-decomposition — not enough information for dynamic algorithms. . .

• Stronger parse trees give needed extra information for algorithms!

– With “boundary” and “join” at hand, we get the associated
canonical equivalence classes.

– Again, the whole LinEMSO framework fits here nicely. . .

• Example: the 3-colourability problem.

For Gi with t-labeling (∼boundary) labi : V (Gi) → {1, . . . , t}, i = 1, 2,
we have

(G1, lab
1)≈C3,t (G2, lab

2) if{(
lab1(χ−1(i)) : i = 1, 2, 3

)
: χ prop. 3-col. G1

}
=

=
{(
lab2(χ−1(i)) : i = 1, 2, 3

)
: χ prop. 3-col. G2

}
.
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%Petr Hliněný, ACCOTA 2008, 9.12. 21 Graph parse trees and MSO properties

Algorithms on bounded Rank-WidthAlgorithms on bounded Rank-Width

Bare rank-decomposition — not enough information for dynamic algorithms. . .

• Stronger parse trees give needed extra information for algorithms!

– With “boundary” and “join” at hand, we get the associated
canonical equivalence classes.

– Again, the whole LinEMSO framework fits here nicely. . .

• Example: the 3-colourability problem.

For Gi with t-labeling (∼boundary) labi : V (Gi) → {1, . . . , t}, i = 1, 2,
we have

(G1, lab
1)≈C3,t (G2, lab

2) if{(
lab1(χ−1(i)) : i = 1, 2, 3

)
: χ prop. 3-col. G1

}
=

=
{(
lab2(χ−1(i)) : i = 1, 2, 3

)
: χ prop. 3-col. G2

}
.

This readily gives an FPT O(f(t) · n) algorithm.
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4 Final remarks4 Final remarks

• Parse trees appear a useful tool in algorithms on graphs of bounded width,

– giving an accessible “bridge” between design of specific algorithms
and those very general results (like the MSO theorem).
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4 Final remarks4 Final remarks

• Parse trees appear a useful tool in algorithms on graphs of bounded width,

– giving an accessible “bridge” between design of specific algorithms
and those very general results (like the MSO theorem).

• Focus on the precise number of canonical equivalence classes gives a fine
control over the runtime of a dynamic algorithm.

– not being considered in depth so far. . .
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4 Final remarks4 Final remarks

• Parse trees appear a useful tool in algorithms on graphs of bounded width,

– giving an accessible “bridge” between design of specific algorithms
and those very general results (like the MSO theorem).

• Focus on the precise number of canonical equivalence classes gives a fine
control over the runtime of a dynamic algorithm.

– not being considered in depth so far. . .

• Ongoing work

– indentify a (useful) fragment of MSO with “small” number of classes
(in general, each quantifier alternation makes an exponential jump
[Frick and Grohe, 04]),
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4 Final remarks4 Final remarks

• Parse trees appear a useful tool in algorithms on graphs of bounded width,

– giving an accessible “bridge” between design of specific algorithms
and those very general results (like the MSO theorem).

• Focus on the precise number of canonical equivalence classes gives a fine
control over the runtime of a dynamic algorithm.

– not being considered in depth so far. . .

• Ongoing work

– indentify a (useful) fragment of MSO with “small” number of classes
(in general, each quantifier alternation makes an exponential jump
[Frick and Grohe, 04]),

– this appears useful especially in connection with rank-width. . .
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4 Final remarks4 Final remarks

• Parse trees appear a useful tool in algorithms on graphs of bounded width,

– giving an accessible “bridge” between design of specific algorithms
and those very general results (like the MSO theorem).

• Focus on the precise number of canonical equivalence classes gives a fine
control over the runtime of a dynamic algorithm.

– not being considered in depth so far. . .

• Ongoing work

– indentify a (useful) fragment of MSO with “small” number of classes
(in general, each quantifier alternation makes an exponential jump
[Frick and Grohe, 04]),

– this appears useful especially in connection with rank-width. . .

THANK YOU FOR YOUR ATTENTION


	Motivation, and a short survey
	Parse Trees, a not-much-known tool
	Rank-Width and Parse trees
	Final remarks

