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Abstract. We prove that it is NP-hard to determine whether the crossing number of an input
graph is even or odd.
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1. Introduction. For many graph invariants, the complexity of determining the
parity of the invariant is the same as that of determining the invariant itself. Suppose,
for example, that we have an algorithm for finding the parity of the chromatic number
χ(G) of a graph G. Then we can apply the algorithm to the graphs K1∪G,K2∪G, . . .
where Kn is the complete graph with n vertices. The sequence of parities is first
constant and then alternating. The number of elements in the constant part of the
sequence is the chromatic number of G. Similar arguments apply to the clique number
ω(G) and the independence number α(G). It also applies to the genus g(G) of a
graph G, since one can construct, in polynomial time, a graph G′ such that g(G′) =
α(G)− |E(G)|, as proved in [16].

The crossing number cr(G) of a graph G is the minimum number of pairwise
edge crossings in a drawing of G in the plane. The crossing number has a certain
similarity to the genus: For planar graphs, the invariants agree, and for each fixed k
the questions ”Is cr(G) ≤ k”, and ”Is g(G) ≤ k” are in P. The former can easily be
reduced to a planarity problem (see also [6]). The latter is in P by the Robertson-
Seymour theory. Both problems are NP-complete when k is part of the input [5],[16].
Both problems remain NP-complete even for very restricted graphs, and they may
be hard to determine even for very simple classes of graphs such as complete graphs
and complete bipartite graphs where the crossing numbers are still unknown. The
crossing number problem is NP-complete even for cubic graphs [8] and for graphs that
become planar after removing only one edge [4], and also for drawings where all local
orientations are prescribed [13]. Even approximation is hard: There exists a number
c > 1 such that the crossing number cannot be approximated within the factor c in
polynomial time (unless NP=P) [3].

For some graphs we know the parity of the crossing number, i.e., the value
cr(G) (mod 2), for example for G = Kp and G = Kq,r when all p, q, r are odd, see
[10, 7, 1]. Knowledge of parity is sometimes useful for determining the crossing num-
ber.

It seems that the hardness results for crossing numbers in [3, 4, 5, 8, 13], do not
answer to the associated parity question, and Schaefer [15] asks the question: What
is the complexity of determining cr(G) (mod 2)?

The purpose of this note is to point out that a recent hardness result on crossing
numbers of tiles by Hliněný and Derňár [9] can be used to prove that that the parity
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Fig. 1. Two possible drawings of a twisted join of two planar tiles T1, T2. Clearly tcr(T1⊗lT2) ≤
min{tcr(T1

l), tcr(T2
l)}, although strict inequality might be achieved by a different drawing.

question is NP-hard.

2. Crossing number of graphs and tiles. We consider multigraphs (although
we can subdivide loops and parallel edges in order to make the graphs simple if we
wish so). We follow basic terminology of topological graph theory, see e.g. [12]. In a
drawing of a graph G in the plane, the vertices of G are distinct points, and the edges
are simple curves joining their endvertices. An edge contains no vertex, except its
ends. Two edges are disjoint except for common ends. Finally, no three edges meet
in a common point. A crossing is a point which is not a vertex and which belongs to
two distinct edges.

The crossing number cr(G) of a graph G is the minimum number of crossings in
a drawing of G in the plane.

Hence, a graph G is planar if and only if cr(G) = 0.
Inspired by [11, 14] we define a tile T = (G, a, b, c, d) where G is a graph and

a, b, c, d is a sequence of distinct vertices. We call a, b the left wall and c, d the right
wall of T . The right-inverted tile T l is the tile (G, a, b, d, c) and the left-inverted tile
lT is (G, b, a, c, d).

A tile drawing of a tile T = (G, a, b, c, d) is a drawing of the underlying graph G
in the unit square such that the vertices a, b, c, d are the upper left, lower left, lower
right, and upper right corner, respectively.

The tile crossing number tcr(T ) of a tile T is the minimum number of crossings
over all tile drawings of T . A tile T is planar if tcr(T ) = 0.

The join of two tiles T = (G, a, b, c, d) and T ′ = (G′, a′, b′, c′, d′) is defined as the
tile T ⊗T ′ := (G′′, a, b, c′, d′), where G′′ is the graph obtained from the disjoint union
of G and G′, by identifying c, b′ and d, a′

Clearly, the join of two planar tiles is again a planar tile.
Let T1, T2 be planar tiles. Then tcr(T1 ⊗ lT2) ≤ min{tcr(T1

l), tcr(T2
l)}. This is

illustrated in Figure 1.
We now define a diagonally separated planar tile as a planar tile, which has the

following additional property: there exists a path Q ⊆ G, called a special diagonal
path, from a to c such that every tile drawing of T l with tcr(T l) crossings has no
crossing on Q.

The definition of a diagonally separated planar tiles in [9, Definition 9] is more
restricted that the definition above. Hence [9, Lemma 10 and Corollary 12] implies
the following.

Theorem 1 ([9]). Let T be a diagonally separated planar tile. Then computing
tcr(T l) is an NP-hard problem.

3. Hardness reduction. Let Sk be the tile with 6 vertices and 5 + k edges as
in Figure 2, where the edge between r and d′ consists of k parallel edges.

Theorem 2. Let T be any diagonally separated planar tile with q edges and a



DECIDING PARITY OF GRAPH CROSSING NUMBER 3

b′

a′ d′

c′

r

s

Fig. 2. A planar tile Sk used in Theorem 2. The thick edge rd consists of k parallel edges.

special diagonal path Q, and let k be any natural number. Replace every edge in Q
by q2 parallel edges and call the resulting tile T1. Similarly, replace every edge in the
path a′rc′ of Sk by q2 parallel edges and call the result S′k = T2. Then

tcr(T1 ⊗ lT2) = min{tcr(T1
l), tcr(S′k

l)} = min{tcr(T l), k}.

Proof. Clearly, tcr(T1 ⊗ lT2) ≤ min{tcr(T1
l), tcr(S′k

l)} = min{tcr(T l), k}.
Suppose now that there is a tile drawing of T1 ⊗ lS′k with fewer than

min{tcr(T l), k} crossings. Then the multiple edge rd′ is not involved in any crossing
because that would imply at least k crossings. Also, no edge of the paths Q or a′rc′

is involved in any crossing since that would imply at least q2 > tcr(T l) crossings. So
S′k is drawn without crossings, and therefore the paths a′rd′ and b′sc′ are disjoint. If
necessary, we can redraw them so that they do not cross any edge of T . Using these
paths we hence obtain a tile drawing of T l. However such a drawing has at least
tcr(T l) crossings, a contradiction which completes the proof.

Using Theorems 1 and 2 we proceed to the main result.

Theorem 3. The problem of determining the parity of the crossing number
cr(G) (mod 2) for any given graph G is NP-hard in general.

Proof. We prove that the problem of determining cr(G) (mod 2) for any graph G
is at least as hard as the problem of computing tcr(T l) for any diagonally separated
planar tile T .

Consider therefore an algorithm A for determining cr(G) (mod 2) for any graph
G. Let T be any diagonally separated planar tile T . Now we form a graph Gk as
follows: We form the tile T1 ⊗ lS′k as in Theorem 2. We let p denote the number of
edges (outside the special diagonal paths) in this tile and add p2 edges between the
four corners of the unit square in which the tile T1 ⊗ lS′k is drawn, more precisely,
between the pairs (a, b), (b, c′), (c′, d′), (d′, a); see Figure 3. The crossing number of
the resulting graph Gk equals tcr(T1 ⊗ lS′k) since none of the edges ab, bc′, c′d′, d′a
are involved in crossings in an optimum drawing of Gk. By Theorem 2, cr(Gk) =
tcr(T1 ⊗ lS′k) = min{tcr(T l), k}.

We now apply the algorithmA to the graphsG1, G2, . . .. This results in a sequence
which is first alternating, and then constant. The number of entries in the maximal
alternating subsequence equals tcr(T l) which is hard to find, by Theorem 1.

4. Conclusions. Our arguments can easily be extended to show that deciding,
for any fixed integer p ≥ 2, whether cr(G) is divisible by p is NP-hard.

The method in this note also extends to other variants of the crossing number.
For example, it is NP-hard to determine the parity of the rectilinear crossing number
since the crossing number of a graph G equals the rectilinear crossing number of an
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Fig. 3. A sketch of the construction of Gk from the tile T in the proof of Theorem 3. Each of
the four thick lines represents many parallel edges which cannot be crossed in an optimal drawing.

appropriate subdivision of G. On the other hand, it is shown in [8] that it is NP-hard
to determine the so-called minor crossing number [2]. But, we do not know if it is
equally hard to determine the parity.
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