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Overview

1 Drawings and the Crossing Number
Basic definitions, overview of computational complexity.
How to approach with parametrized complexity?

2 On the positive side: Approximations
Some recent positive approximation results;
for graphs which are “close” to being planar.

3 And on the negative side. ..
Some (likely) harder instances; still open and challenging
— parametrization by tree-width, apex vertices or planarizing edges. ..
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— The vertices of G are distinct points,
and every edge e = uv € E(G) is a simple curve joining u to v.

— No edge passes through another vertex,
and no three edges intersect in a common point.
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Definition. Drawing of a graph G:

— The vertices of G are distinct points,
and every edge e = uv € E(G) is a simple curve joining u to v.

— No edge passes through another vertex,
and no three edges intersect in a common point.

Definition. Crossing number cr(G)
is the smallest number of edge crossings in a drawing of G.

Importance — in VLSI design [Leighton et al], graph visualization, etc.

Warning. There are slight variations of the definition of crossing number, some
giving different numbers! (Like counting odd-crossing pairs of edges.) J
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Observation. The problem CROSSINGNUMBER(< k) is in NP:
Guess a drawing of G, then replace crossings with vertices, and test planarity.

Theorems.
[Garey and Johnson, 1983] CROSSINGNUMBER is N P-hard.

[Grohe, 2001] CROSSINGNUMBER(< k) is in F'PT with parameter £,
i.e. solvable in time O(f (k) - n?).

[Even, Guha, and Schieber, 2002]
CROSSINGNUMBER has a polytime O(log® |V (G)|)-approximation algo-
rithm for cr(G) + |V (G)| on bounded-degree graphs.

[PH, 2004] CROSSINGNUMBER is N P-hard even on simple 3-connected
cubic graphs, hence also in the minor-monotone setting.
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Computational complexity
Remark. It is (practically) very hard to determine crossing number.

Observation. The problem CROSSINGNUMBER(< k) is in NP:
Guess a drawing of G, then replace crossings with vertices, and test planarity.

Theorems.
[Garey and Johnson, 1983] CROSSINGNUMBER is N P-hard.

[Grohe, 2001] CROSSINGNUMBER(< k) is in F'PT with parameter £,
i.e. solvable in time O(f (k) - n?).

[Even, Guha, and Schieber, 2002]
CROSSINGNUMBER has a polytime O(log® |V (G)|)-approximation algo-
rithm for cr(G) + |V (G)| on bounded-degree graphs.

[PH, 2004] CROSSINGNUMBER is N P-hard even on simple 3-connected
cubic graphs, hence also in the minor-monotone setting.

[Kawarabayashi and Reed, 2007] CROSSINGNUMBER(< k) is linear
FPT with parameter k, i.e. solvable in time O(f(k) - n).
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Parametrizing crossing number? \
e CROSSINGNUMBER(< k) with parameter k works well. ..

. But, is this the right parametrization for applications?
e Almost-planar graphs:

Given a planar graph G and two of its vertices u, v,

can you efficiently determine cr(G + uv)?
(Crossing number of planar graphs plus one edge. .. Sounds silly enough?)
e NO, still open!

e [PH and GS, 2006]
cr(G + uv) can be linear-time approximated up to factor A(G).

e Any guess for the crossing number of planar graphs plus k edges?

e Any other idea of a “nontrivial” graph class with an efficient CROSSING-
NUMBER solution?
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Natural (expected) approaches often lead to “good approximations” in special
cases. ..

Almost-planar graphs; revisited with a natural drawing approach
e Take a suitable planar drawing of G, and draw uw inside G.
o Quite well usable in a practical iterative heuristics. ..

e BRIDGINGMINIMIZATION: find a planar drawing of G such that the edge
uv can be inserted to G with the minimum number of crossings.

Theorem 1. [Gutwenger, Mutzel, Weiskircher, 2001]
The problem BRIDGINGMINIMIZATION is (practically) solvable in linear time.

(The status of k-edge BRIDGINGMINIMIZATION unknown. .. )

How good in theory is this solution?
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tion (left) can be arbitrarily far from the crossing number (right).

Theorem 2. [PH and GS, 2006]
The bridging minimization problem on G and uv has a solution with at most

A(G) - cr(G + uv)
crossings; hence it approximates up to factor A(G).

Proof idea: Whitney flips between two planar subdrawings, < 2 flips per crossing
and each one makes < A(G)/2 new crossings. J
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better constants,
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Graphs on small surfaces; projective and toroidal

e Recent results drawing graphs with linear number of crossings:
[Boroczky, Pach and Téth| surface embedded graphs,

[Djidjev and Vrt'o] surface (orientable) embedded graphs, with much
better constants,

[Telle and Wood] graphs excluding a fixed minor.
e Those results provide no factor approximation, only upper bounds.

e We need a refinement with corresponding lower bounds — actually quite
close to structural and topological graph theory (face-width and grid-like
minors).

A natural approach. (See also [Pach and Téth])

Cut the surface along short noncontractible loops (— face-width or dual edge-
width), then re-insert edges to resulting planar subgraph(s).

Such loops can be computed quickly [Cabello and Mohar] O(ny/n) time, [un-
published improvements...] O(nlogn) time. j
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The crossing number of a projective graph is quadratic in its face-width.

This gives a 4.5A(G)? approximation of CROSSINGNUMBER.

Theorem 4. [PH and GS, 2007]

The crossing number of a toroidal graph can be efficiently approximated up to
factor 9A(G)? for all graphs which have sufficiently “dense” toroidal embed-
dings (meaning large dual edge-width compared to A(Q)).

e Getting a lower bound in the projective case is relatively easy.

e Lower bounds in the toroidal case considerably more involved.

This is closely related to [Brunet, Mohar and Richter, 1996], but not quite
there. .. (And we can get better constants.)

e Ongoing work: Extending good lower bounds to higher (orientable, at
least) surfaces.

e Problem: Can one get rid of dependence on A(G)?
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Crossing number (with no upper bound on the number of crossings) shows a
“very global” behavior, which makes parametrized approaches harder. ..

Bounding tree-width

Question. [Seese, 907]
What is the complexity of CROSSINGNUMBER on graphs of bounded tree-
width?

e We have no idea how to approach this question. ..

e Can we prove that CROSSINGNUMBER is W[1]-hard when parametrized
by tree-width?

e Can we prove that CROSSINGNUMBER is N P-hard for graphs of bounded
clique-width?
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Closing to planarity

Question. [Mohar; PH and GS, 2006]
Is CROSSINGNUMBER N P-hard for apex graphs? (planar plus a vertex)

e This question is related to complexity of optimal linear arrangement on
planar graphs, still unknown?

e Can we, at least, prove that CROSSINGNUMBER is W[l]-hard when
parametrized by G being k vertices / edges from a planar graph?

Thank you for attention.
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