Approximating the Crossing Number for Graphs close to "Planarity"

Petr Hliněný

Faculty of Informatics, Masaryk University Botanická 68a, 602 00 Brno, Czech Rep.

e-mail: hlineny@fi.muni.cz http://www.fi.muni.cz/~hlineny

joint work with **Gelasio Salazar** Universidad Autónoma de San Luis Potosí, Mexico

Overview

1	Drawings and the Crossing Number Basic definitions, overview of computational complexity. How to approach with parametrized complexity?
2	On the positive side: Approximations Some recent positive approximation results; for graphs which are "close" to being planar.
3	And on the negative side Some (likely) harder instances; still open and challenging – parametrization by tree-width, apex vertices or planarizing edges

1 Drawings and the Crossing Number

Definition. Drawing of a graph G:

- The vertices of G are distinct points, and every edge $e = uv \in E(G)$ is a simple curve joining u to v.
- No edge passes through another vertex, and no three edges intersect in a common point.

1 Drawings and the Crossing Number

Definition. Drawing of a graph G:

- The vertices of G are distinct points, and every edge $e = uv \in E(G)$ is a simple curve joining u to v.

 No edge passes through another vertex, and no three edges intersect in a common point.

Definition. Crossing number cr(G) is the smallest number of edge crossings in a drawing of G.

Importance – in VLSI design [Leighton et al], graph visualization, etc.

1 Drawings and the Crossing Number

Definition. Drawing of a graph G:

- The vertices of G are distinct points, and every edge $e = uv \in E(G)$ is a simple curve joining u to v.

 No edge passes through another vertex, and no three edges intersect in a common point.

Definition. Crossing number cr(G) is the smallest number of edge crossings in a drawing of G.

Importance – in VLSI design [Leighton et al], graph visualization, etc.

Warning. There are slight variations of the definition of crossing number, some giving different numbers! (Like counting odd-crossing pairs of edges.)

Petr Hliněný, Dagstuhl #07281

Remark. It is (practically) very hard to determine crossing number.

Observation. The problem CROSSINGNUMBER($\leq k$) is in *NP*: Guess a drawing of *G*, then replace crossings with vertices, and test planarity.

Remark. It is (practically) very hard to determine crossing number.

Observation. The problem CROSSINGNUMBER($\leq k$) is in *NP*: Guess a drawing of *G*, then replace crossings with vertices, and test planarity.

Theorems.

• [Garey and Johnson, 1983] CROSSINGNUMBER is *NP*-hard.

Remark. It is (practically) very hard to determine crossing number.

Observation. The problem CROSSINGNUMBER($\leq k$) is in NP: Guess a drawing of G, then replace crossings with vertices, and test planarity.

- [Garey and Johnson, 1983] CROSSINGNUMBER is *NP*-hard.
- [Grohe, 2001] CROSSINGNUMBER(≤ k) is in FPT with parameter k, i.e. solvable in time O(f(k) ⋅ n²).

Remark. It is (practically) very hard to determine crossing number.

Observation. The problem CROSSINGNUMBER($\leq k$) is in NP: Guess a drawing of G, then replace crossings with vertices, and test planarity.

- [Garey and Johnson, 1983] CROSSINGNUMBER is *NP*-hard.
- [Grohe, 2001] CROSSINGNUMBER(≤ k) is in FPT with parameter k, i.e. solvable in time O(f(k) ⋅ n²).
- [Even, Guha, and Schieber, 2002] CROSSINGNUMBER has a polytime $O(\log^3 |V(G)|)$ -approximation algorithm for cr(G) + |V(G)| on bounded-degree graphs.

Remark. It is (practically) very hard to determine crossing number.

Observation. The problem CROSSINGNUMBER($\leq k$) is in NP: Guess a drawing of G, then replace crossings with vertices, and test planarity.

- [Garey and Johnson, 1983] CROSSINGNUMBER is *NP*-hard.
- [Grohe, 2001] CROSSINGNUMBER(≤ k) is in FPT with parameter k, i.e. solvable in time O(f(k) ⋅ n²).
- [Even, Guha, and Schieber, 2002] CROSSINGNUMBER has a polytime $O(\log^3 |V(G)|)$ -approximation algorithm for cr(G) + |V(G)| on bounded-degree graphs.
- [PH, 2004] CROSSINGNUMBER is *NP*-hard even on simple 3-connected cubic graphs, hence also in the minor-monotone setting.

Remark. It is (practically) very hard to determine crossing number.

Observation. The problem CROSSINGNUMBER($\leq k$) is in NP: Guess a drawing of G, then replace crossings with vertices, and test planarity.

- [Garey and Johnson, 1983] CROSSINGNUMBER is *NP*-hard.
- [Grohe, 2001] CROSSINGNUMBER(≤ k) is in FPT with parameter k, i.e. solvable in time O(f(k) ⋅ n²).
- [Even, Guha, and Schieber, 2002] CROSSINGNUMBER has a polytime $O(\log^3 |V(G)|)$ -approximation algorithm for cr(G) + |V(G)| on bounded-degree graphs.
- [PH, 2004] CROSSINGNUMBER is *NP*-hard even on simple 3-connected cubic graphs, hence also in the minor-monotone setting.
- [Kawarabayashi and Reed, 2007] CROSSINGNUMBER($\leq k$) is linear *FPT* with parameter k, i.e. solvable in time $O(f(k) \cdot n)$.

• CROSSINGNUMBER $(\leq k)$ with parameter k works well...

• CROSSINGNUMBER $(\leq k)$ with parameter k works well...

... But, is this the right parametrization for applications?

- CROSSINGNUMBER $(\leq k)$ with parameter k works well...
 - ... But, is this the right parametrization for applications?
- Almost-planar graphs:

Given a planar graph G and two of its vertices u, v, can you efficiently determine cr(G + uv)?

(Crossing number of planar graphs plus one edge... Sounds silly enough?)

- CROSSINGNUMBER $(\leq k)$ with parameter k works well...
 - ... But, is this the right parametrization for applications?
- Almost-planar graphs:

Given a planar graph G and two of its vertices u, v, can you efficiently determine cr(G + uv)? (Crossing number of planar graphs plus one edge... Sounds silly enough?)

- NO, still open!
- [PH and GS, 2006] cr(G + uv) can be linear-time approximated up to factor $\Delta(G)$.

- CROSSINGNUMBER $(\leq k)$ with parameter k works well...
 - ... But, is this the right parametrization for applications?
- Almost-planar graphs:

Given a planar graph G and two of its vertices u, v, can you efficiently determine cr(G + uv)? (Crossing number of planar graphs plus one edge... Sounds silly enough?)

- NO, still open!
- [PH and GS, 2006] cr(G + uv) can be linear-time approximated up to factor $\Delta(G)$.
- Any guess for the crossing number of planar graphs plus k edges?

- CROSSINGNUMBER $(\leq k)$ with parameter k works well...
 - ... But, is this the right parametrization for applications?
- Almost-planar graphs:

Given a planar graph G and two of its vertices u, v, can you efficiently determine cr(G + uv)? (Crossing number of planar graphs plus one edge... Sounds silly enough?)

- NO, still open!
- [PH and GS, 2006] cr(G + uv) can be linear-time approximated up to factor $\Delta(G)$.
- Any guess for the crossing number of planar graphs plus k edges?
- Any other idea of a "nontrivial" graph class with an efficient CROSSING-NUMBER solution?

Petr Hliněný, Dagstuhl #0728

Approximating Crossing Number

Natural (expected) approaches often lead to "good approximations" in special cases...

Natural (expected) approaches often lead to "good approximations" in special cases...

Almost-planar graphs; revisited with a natural drawing approach

- Take a suitable planar drawing of G, and draw uw inside G.
- Quite well usable in a practical iterative heuristics...

Natural (expected) approaches often lead to "good approximations" in special cases...

Almost-planar graphs; revisited with a natural drawing approach

- Take a suitable planar drawing of G, and draw uw inside G.
- Quite well usable in a practical iterative heuristics...
- BRIDGINGMINIMIZATION: find a planar drawing of G such that the edge uv can be inserted to G with the minimum number of crossings.

Natural (expected) approaches often lead to "good approximations" in special cases...

Almost-planar graphs; revisited with a natural drawing approach

- Take a suitable planar drawing of G, and draw uw inside G.
- Quite well usable in a practical iterative heuristics...
- BRIDGINGMINIMIZATION: find a planar drawing of G such that the edge uv can be inserted to G with the minimum number of crossings.

Theorem 1. [Gutwenger, Mutzel, Weiskircher, 2001] The problem BRIDGINGMINIMIZATION is (practically) solvable in linear time.

(The status of *k*-edge BRIDGINGMINIMIZATION unknown...)

Natural (expected) approaches often lead to "good approximations" in special cases...

Almost-planar graphs; revisited with a natural drawing approach

- Take a suitable planar drawing of G, and draw uw inside G.
- Quite well usable in a practical iterative heuristics...
- BRIDGINGMINIMIZATION: find a planar drawing of G such that the edge uv can be inserted to G with the minimum number of crossings.

Theorem 1. [Gutwenger, Mutzel, Weiskircher, 2001] The problem BRIDGINGMINIMIZATION is (practically) solvable in linear time.

(The status of *k*-edge BRIDGINGMINIMIZATION unknown...) How good in theory is this solution? • [Farr 2005; indep. PH and GS] A solution to one-edge bridging minimization (left) can be arbitrarily far from the crossing number (right).

• [Farr 2005; indep. PH and GS] A solution to one-edge bridging minimization (left) can be arbitrarily far from the crossing number (right).

Theorem 2. [**PH and GS**, 2006] The bridging minimization problem on *G* and *uv* has a solution with at most

$$\Delta(G)\cdot \mathrm{cr}(G+uv)$$

crossings; hence it approximates up to factor $\Delta(G)$.

Proof idea: Whitney flips between two planar subdrawings, ≤ 2 flips per crossing and each one makes $\leq \Delta(G)/2$ new crossings.

Petr Hliněný, Dagstuhl #07281

Approximating Crossing Number

Graphs on small surfaces; projective and toroidal

Recent results drawing graphs with linear number of crossings:
 [Böröczky, Pach and Tóth] surface embedded graphs,
 [Djidjev and Vrt'o] surface (orientable) embedded graphs, with much better constants,

[Telle and Wood] graphs excluding a fixed minor.

Graphs on small surfaces; projective and toroidal

 Recent results drawing graphs with linear number of crossings: [Böröczky, Pach and Tóth] surface embedded graphs,
 [Djidjev and Vrt'o] surface (orientable) embedded graphs, with much better constants,

[Telle and Wood] graphs excluding a fixed minor.

- Those results provide no factor approximation, only upper bounds.
- We need a refinement with corresponding lower bounds actually quite close to structural and topological graph theory (face-width and grid-like minors).

8

Graphs on small surfaces; projective and toroidal

Recent results drawing graphs with linear number of crossings:
 [Böröczky, Pach and Tóth] surface embedded graphs,
 [Djidjev and Vrt'o] surface (orientable) embedded graphs, with much better constants,

[Telle and Wood] graphs excluding a fixed minor.

- Those results provide no factor approximation, only upper bounds.
- We need a refinement with corresponding lower bounds actually quite close to structural and topological graph theory (face-width and grid-like minors).

A natural approach. (See also [Pach and Tóth])

Cut the surface along short noncontractible loops (\rightarrow face-width or dual edge-width), then re-insert edges to resulting planar subgraph(s).

Such loops can be computed quickly [Cabello and Mohar] $O(n\sqrt{n})$ time, [unpublished improvements...] $O(n \log n)$ time.

Petr Hliněný, Dagstuhl #0728

8

This gives a $4.5\Delta(G)^2$ approximation of CROSSINGNUMBER.

This gives a $4.5\Delta(G)^2$ approximation of CROSSINGNUMBER.

Theorem 4. [PH and GS, 2007] The crossing number of a toroidal graph can be efficiently approximated up to factor $9\Delta(G)^2$ for all graphs which have sufficiently "dense" toroidal embeddings (meaning large dual edge-width compared to $\Delta(G)$).

This gives a $4.5\Delta(G)^2$ approximation of CROSSINGNUMBER.

Theorem 4. [PH and GS, 2007] The crossing number of a toroidal graph can be efficiently approximated up to factor $9\Delta(G)^2$ for all graphs which have sufficiently "dense" toroidal embeddings (meaning large dual edge-width compared to $\Delta(G)$).

• Getting a lower bound in the projective case is relatively easy.

This gives a $4.5\Delta(G)^2$ approximation of CROSSINGNUMBER.

Theorem 4. [PH and GS, 2007] The crossing number of a toroidal graph can be efficiently approximated up to factor $9\Delta(G)^2$ for all graphs which have sufficiently "dense" toroidal embeddings (meaning large dual edge-width compared to $\Delta(G)$).

- Getting a lower bound in the projective case is relatively easy.
- Lower bounds in the toroidal case considerably more involved.
 This is closely related to [Brunet, Mohar and Richter, 1996], but not quite there... (And we can get better constants.)

9

This gives a $4.5\Delta(G)^2$ approximation of CROSSINGNUMBER.

Theorem 4. [PH and GS, 2007] The crossing number of a toroidal graph can be efficiently approximated up to factor $9\Delta(G)^2$ for all graphs which have sufficiently "dense" toroidal embeddings (meaning large dual edge-width compared to $\Delta(G)$).

- Getting a lower bound in the projective case is relatively easy.
- Lower bounds in the toroidal case considerably more involved.
 This is closely related to [Brunet, Mohar and Richter, 1996], but not quite there... (And we can get better constants.)
- **Ongoing work**: Extending good lower bounds to higher (orientable, at least) surfaces.

This gives a $4.5\Delta(G)^2$ approximation of CROSSINGNUMBER.

Theorem 4. [PH and GS, 2007] The crossing number of a toroidal graph can be efficiently approximated up to factor $9\Delta(G)^2$ for all graphs which have sufficiently "dense" toroidal embeddings (meaning large dual edge-width compared to $\Delta(G)$).

- Getting a lower bound in the projective case is relatively easy.
- Lower bounds in the toroidal case considerably more involved.
 This is closely related to [Brunet, Mohar and Richter, 1996], but not quite there... (And we can get better constants.)
- **Ongoing work**: Extending good lower bounds to higher (orientable, at least) surfaces.
- **Problem**: Can one get rid of dependence on $\Delta(G)$?

3 And on the negative side...

Crossing number (with no upper bound on the number of crossings) shows a "very global" behavior, which makes parametrized approaches harder...

Bounding tree-width

Question. [Seese, 90?] What is the complexity of CROSSINGNUMBER on graphs of bounded treewidth?

3 And on the negative side...

Crossing number (with no upper bound on the number of crossings) shows a "very global" behavior, which makes parametrized approaches harder...

Bounding tree-width

Question. [Seese, 90?] What is the complexity of CROSSINGNUMBER on graphs of bounded treewidth?

- We have no idea how to approach this question...
- Can we prove that CROSSINGNUMBER is W[1]-hard when parametrized by tree-width?

3 And on the negative side...

Crossing number (with no upper bound on the number of crossings) shows a "very global" behavior, which makes parametrized approaches harder...

Bounding tree-width

Question. [Seese, 90?] What is the complexity of CROSSINGNUMBER on graphs of bounded treewidth?

- We have no idea how to approach this question...
- Can we prove that CROSSINGNUMBER is W[1]-hard when parametrized by tree-width?
- Can we prove that CROSSINGNUMBER is *NP*-hard for graphs of bounded clique-width?

Question. [Mohar; PH and GS, 2006] Is CROSSINGNUMBER *NP*-hard for *apex graphs*? (planar plus a vertex)

Question. [Mohar; PH and GS, 2006] Is CROSSINGNUMBER *NP*-hard for *apex graphs*? (planar plus a vertex)

• This question is related to complexity of *optimal linear arrangement* on planar graphs, still unknown?

Question. [Mohar; PH and GS, 2006] Is CROSSINGNUMBER *NP*-hard for *apex graphs*? (planar plus a vertex)

- This question is related to complexity of *optimal linear arrangement* on planar graphs, still unknown?
- Can we, at least, prove that CROSSINGNUMBER is W[1]-hard when parametrized by G being k vertices / edges from a planar graph?

Question. [Mohar; PH and GS, 2006] Is CROSSINGNUMBER *NP*-hard for *apex graphs*? (planar plus a vertex)

- This question is related to complexity of *optimal linear arrangement* on planar graphs, still unknown?
- Can we, at least, prove that CROSSINGNUMBER is W[1]-hard when parametrized by G being k vertices / edges from a planar graph?

Thank you for attention.