Approximating the Crossing Number for Graphs close to "Planarity"

Petr Hliněný

Faculty of Informatics, Masaryk University Botanická 68a, 60200 Brno, Czech Rep.

e-mail: hlineny@fi.muni.cz http://wWW.fi.muni.cz/~hlineny

joint work with Gelasio Salazar
Universidad Autónoma de San Luis Potosí, Mexico

Overview

1 Drawings and the Crossing Number 3
Basic definitions, overview of computational complexity.
How to approach with parametrized complexity?
2 On the positive side: Approximations
Some recent positive approximation results; for graphs which are "close" to being planar.

3 And on the negative side...
10
Some (likely) harder instances; still open and challenging

- parametrization by tree-width, apex vertices or planarizing edges...

1 Drawings and the Crossing Number

Definition. Drawing of a graph G :

- The vertices of G are distinct points, and every edge $e=u v \in E(G)$ is a simple curve joining u to v.
- No edge passes through another vertex, and no three edges intersect in a common point.

1 Drawings and the Crossing Number

Definition. Drawing of a graph G :

- The vertices of G are distinct points, and every edge $e=u v \in E(G)$ is a simple curve joining u to v.
- No edge passes through another vertex, and no three edges intersect in a common point.

Definition. Crossing number $\operatorname{cr}(G)$ is the smallest number of edge crossings in a drawing of G.

Importance - in VLSI design [Leighton et al], graph visualization, etc.

1 Drawings and the Crossing Number

Definition. Drawing of a graph G :

- The vertices of G are distinct points, and every edge $e=u v \in E(G)$ is a simple curve joining u to v.
- No edge passes through another vertex, and no three edges intersect in a common point.

Definition. Crossing number cr (G) is the smallest number of edge crossings in a drawing of G.

Importance - in VLSI design [Leighton et al], graph visualization, etc.
Warning. There are slight variations of the definition of crossing number, some giving different numbers! (Like counting odd-crossing pairs of edges.)

Computational complexity

Remark. It is (practically) very hard to determine crossing number.
Observation. The problem CrossingNumber $(\leq k)$ is in $N P$:
Guess a drawing of G, then replace crossings with vertices, and test planarity.
Theorems.

Computational complexity

Remark. It is (practically) very hard to determine crossing number.
Observation. The problem CrossingNumber $(\leq k)$ is in $N P$:
Guess a drawing of G, then replace crossings with vertices, and test planarity.
Theorems.

- [Garey and Johnson, 1983] CrossingNumber is $N P$-hard.

Computational complexity

Remark. It is (practically) very hard to determine crossing number.
Observation. The problem CrossingNumber $(\leq k)$ is in $N P$:
Guess a drawing of G, then replace crossings with vertices, and test planarity.

Theorems.

- [Garey and Johnson, 1983] CrossingNumber is $N P$-hard.
- [Grohe, 2001] CrossingNumber $(\leq k)$ is in $F P T$ with parameter k, i.e. solvable in time $O\left(f(k) \cdot n^{2}\right)$.

Computational complexity

Remark. It is (practically) very hard to determine crossing number.
Observation. The problem CrossingNumber $(\leq k)$ is in $N P$:
Guess a drawing of G, then replace crossings with vertices, and test planarity.

Theorems.

- [Garey and Johnson, 1983] CrossingNumber is $N P$-hard.
- [Grohe, 2001] CrossingNumber $(\leq k)$ is in $F P T$ with parameter k, i.e. solvable in time $O\left(f(k) \cdot n^{2}\right)$.
- [Even, Guha, and Schieber, 2002]

Crossing Number has a polytime $O\left(\log ^{3}|V(G)|\right)$-approximation algorithm for $\operatorname{cr}(G)+|V(G)|$ on bounded-degree graphs.

Computational complexity

Remark. It is (practically) very hard to determine crossing number.
Observation. The problem CrossingNumber $(\leq k)$ is in $N P$:
Guess a drawing of G, then replace crossings with vertices, and test planarity.

Theorems.

- [Garey and Johnson, 1983] CrossingNumber is $N P$-hard.
- [Grohe, 2001] CrossingNumber $(\leq k)$ is in $F P T$ with parameter k, i.e. solvable in time $O\left(f(k) \cdot n^{2}\right)$.
- [Even, Guha, and Schieber, 2002]

CrossingNumber has a polytime $O\left(\log ^{3}|V(G)|\right)$-approximation algorithm for $\operatorname{cr}(G)+|V(G)|$ on bounded-degree graphs.

- [PH, 2004] CrossingNumber is $N P$-hard even on simple 3 -connected cubic graphs, hence also in the minor-monotone setting.

Computational complexity

Remark. It is (practically) very hard to determine crossing number.
Observation. The problem CrossingNumber $(\leq k)$ is in $N P$:
Guess a drawing of G, then replace crossings with vertices, and test planarity.

Theorems.

- [Garey and Johnson, 1983] CrossingNumber is $N P$-hard.
- [Grohe, 2001] CrossingNumber $(\leq k)$ is in $F P T$ with parameter k, i.e. solvable in time $O\left(f(k) \cdot n^{2}\right)$.
- [Even, Guha, and Schieber, 2002]

CrossingNumber has a polytime $O\left(\log ^{3}|V(G)|\right)$-approximation algorithm for $\operatorname{cr}(G)+|V(G)|$ on bounded-degree graphs.

- [PH, 2004] CrossingNumber is $N P$-hard even on simple 3-connected cubic graphs, hence also in the minor-monotone setting.
- [Kawarabayashi and Reed, 2007] CrossingNumber $(\leq k)$ is linear $F P T$ with parameter k, i.e. solvable in time $O(f(k) \cdot n)$.

Parametrizing crossing number?

- CrossingNumber $(\leq k)$ with parameter k works well...

Parametrizing crossing number?

- CrossingNumber $(\leq k)$ with parameter k works well...
... But, is this the right parametrization for applications?

Parametrizing crossing number?

- CrossingNumber $(\leq k)$ with parameter k works well...
... But, is this the right parametrization for applications?
- Almost-planar graphs:

Given a planar graph G and two of its vertices u, v, can you efficiently determine $\operatorname{cr}(G+u v)$?
(Crossing number of planar graphs plus one edge. . . Sounds silly enough?)

Parametrizing crossing number?

- CrossingNumber $(\leq k)$ with parameter k works well...
... But, is this the right parametrization for applications?
- Almost-planar graphs:

Given a planar graph G and two of its vertices u, v, can you efficiently determine $\operatorname{cr}(G+u v)$?
(Crossing number of planar graphs plus one edge... Sounds silly enough?)

- NO, still open!
- [PH and GS, 2006]
$\operatorname{cr}(G+u v)$ can be linear-time approximated up to factor $\Delta(G)$.

Parametrizing crossing number?

- CrossingNumber $(\leq k)$ with parameter k works well...
... But, is this the right parametrization for applications?
- Almost-planar graphs:

Given a planar graph G and two of its vertices u, v, can you efficiently determine $\operatorname{cr}(G+u v)$?
(Crossing number of planar graphs plus one edge. . . Sounds silly enough?)

- NO, still open!
- [PH and GS, 2006]
$\operatorname{cr}(G+u v)$ can be linear-time approximated up to factor $\Delta(G)$.
- Any guess for the crossing number of planar graphs plus k edges?

Parametrizing crossing number?

- CrossingNumber $(\leq k)$ with parameter k works well...
... But, is this the right parametrization for applications?
- Almost-planar graphs:

Given a planar graph G and two of its vertices u, v, can you efficiently determine $\operatorname{cr}(G+u v)$?
(Crossing number of planar graphs plus one edge. . . Sounds silly enough?)

- NO, still open!
- [PH and GS, 2006]
$\operatorname{cr}(G+u v)$ can be linear-time approximated up to factor $\Delta(G)$.
- Any guess for the crossing number of planar graphs plus k edges?
- Any other idea of a "nontrivial" graph class with an efficient CrossingNumber solution?

2 On the positive side: Approximations

Natural (expected) approaches often lead to "good approximations" in special cases...

2 On the positive side: Approximations

Natural (expected) approaches often lead to "good approximations" in special cases...

Almost-planar graphs; revisited with a natural drawing approach

- Take a suitable planar drawing of G, and draw $u w$ inside G.
- Quite well usable in a practical iterative heuristics...

2 On the positive side: Approximations

Natural (expected) approaches often lead to "good approximations" in special cases...

Almost-planar graphs; revisited with a natural drawing approach

- Take a suitable planar drawing of G, and draw $u w$ inside G.
- Quite well usable in a practical iterative heuristics...
- BridgingMinimization: find a planar drawing of G such that the edge $u v$ can be inserted to G with the minimum number of crossings.

2 On the positive side: Approximations

Natural (expected) approaches often lead to "good approximations" in special cases. . .

Almost-planar graphs; revisited with a natural drawing approach

- Take a suitable planar drawing of G, and draw $u w$ inside G.
- Quite well usable in a practical iterative heuristics...
- BridgingMinimization: find a planar drawing of G such that the edge $u v$ can be inserted to G with the minimum number of crossings.

Theorem 1. [Gutwenger, Mutzel, Weiskircher, 2001]
The problem BridgingMinimization is (practically) solvable in linear time.
(The status of k-edge BridgingMinimization unknown...)

2 On the positive side: Approximations

Natural (expected) approaches often lead to "good approximations" in special cases. . .

Almost-planar graphs; revisited with a natural drawing approach

- Take a suitable planar drawing of G, and draw $u w$ inside G.
- Quite well usable in a practical iterative heuristics...
- BridgingMinimization: find a planar drawing of G such that the edge $u v$ can be inserted to G with the minimum number of crossings.

Theorem 1. [Gutwenger, Mutzel, Weiskircher, 2001]
The problem BridgingMinimization is (practically) solvable in linear time.
(The status of k-edge BridgingMinimization unknown...)
How good in theory is this solution?

- [Farr 2005; indep. PH and GS] A solution to one-edge bridging minimization (left) can be arbitrarily far from the crossing number (right).

- [Farr 2005; indep. PH and GS] A solution to one-edge bridging minimization (left) can be arbitrarily far from the crossing number (right).

Theorem 2. [PH and GS, 2006]
The bridging minimization problem on G and $u v$ has a solution with at most

$$
\Delta(G) \cdot \operatorname{cr}(G+u v)
$$

crossings; hence it approximates up to factor $\Delta(G)$.
Proof idea: Whitney flips between two planar subdrawings, ≤ 2 flips per crossing and each one makes $\leq \Delta(G) / 2$ new crossings.

Graphs on small surfaces; projective and toroidal

- Recent results drawing graphs with linear number of crossings:
[Böröczky, Pach and Tóth] surface embedded graphs,
[Djidjev and Vrt'o] surface (orientable) embedded graphs, with much better constants,
[Telle and Wood] graphs excluding a fixed minor.

Graphs on small surfaces; projective and toroidal

- Recent results drawing graphs with linear number of crossings:
[Böröczky, Pach and Tóth] surface embedded graphs,
[Djidjev and Vrt'o] surface (orientable) embedded graphs, with much better constants,
[Telle and Wood] graphs excluding a fixed minor.
- Those results provide no factor approximation, only upper bounds.
- We need a refinement with corresponding lower bounds - actually quite close to structural and topological graph theory (face-width and grid-like minors).

Graphs on small surfaces; projective and toroidal

- Recent results drawing graphs with linear number of crossings: [Böröczky, Pach and Tóth] surface embedded graphs, [Djidjev and Vrt'o] surface (orientable) embedded graphs, with much better constants,
[Telle and Wood] graphs excluding a fixed minor.
- Those results provide no factor approximation, only upper bounds.
- We need a refinement with corresponding lower bounds - actually quite close to structural and topological graph theory (face-width and grid-like minors).

A natural approach. (See also [Pach and Tóth])
Cut the surface along short noncontractible loops (\rightarrow face-width or dual edgewidth), then re-insert edges to resulting planar subgraph(s).
Such loops can be computed quickly [Cabello and Mohar] $O(n \sqrt{n})$ time, [unpublished improvements...] $O(n \log n)$ time.

Theorem 3. [Gitler, Leaños, PH and GS, 2007]
The crossing number of a projective graph is quadratic in its face-width.
This gives a $4.5 \Delta(G)^{2}$ approximation of CrossingNumber.

Theorem 3. [Gitler, Leaños, PH and GS, 2007]
The crossing number of a projective graph is quadratic in its face-width.
This gives a $4.5 \Delta(G)^{2}$ approximation of CrossingNumber.
Theorem 4. [PH and GS, 2007]
The crossing number of a toroidal graph can be efficiently approximated up to factor $\mathbf{9 \Delta}(G)^{2}$ for all graphs which have sufficiently "dense" toroidal embeddings (meaning large dual edge-width compared to $\Delta(G)$).

Theorem 3. [Gitler, Leaños, PH and GS, 2007]
The crossing number of a projective graph is quadratic in its face-width.
This gives a $4.5 \Delta(G)^{2}$ approximation of CrossingNumber.
Theorem 4. [PH and GS, 2007]
The crossing number of a toroidal graph can be efficiently approximated up to factor $\mathbf{9 \Delta}(G)^{2}$ for all graphs which have sufficiently "dense" toroidal embeddings (meaning large dual edge-width compared to $\Delta(G)$).

- Getting a lower bound in the projective case is relatively easy.

Theorem 3. [Gitler, Leaños, PH and GS, 2007]
The crossing number of a projective graph is quadratic in its face-width.
This gives a $4.5 \Delta(G)^{2}$ approximation of CrossingNumber.
Theorem 4. [PH and GS, 2007]
The crossing number of a toroidal graph can be efficiently approximated up to factor $\mathbf{9 \Delta}(G)^{2}$ for all graphs which have sufficiently "dense" toroidal embeddings (meaning large dual edge-width compared to $\Delta(G)$).

- Getting a lower bound in the projective case is relatively easy.
- Lower bounds in the toroidal case considerably more involved.

This is closely related to [Brunet, Mohar and Richter, 1996], but not quite there... (And we can get better constants.)

Theorem 3. [Gitler, Leaños, PH and GS, 2007]
The crossing number of a projective graph is quadratic in its face-width.
This gives a $4.5 \Delta(G)^{2}$ approximation of CrossingNumber.
Theorem 4. [PH and GS, 2007]
The crossing number of a toroidal graph can be efficiently approximated up to factor $\mathbf{9 \Delta}(G)^{\mathbf{2}}$ for all graphs which have sufficiently "dense" toroidal embeddings (meaning large dual edge-width compared to $\Delta(G)$).

- Getting a lower bound in the projective case is relatively easy.
- Lower bounds in the toroidal case considerably more involved.

This is closely related to [Brunet, Mohar and Richter, 1996], but not quite there... (And we can get better constants.)

- Ongoing work: Extending good lower bounds to higher (orientable, at least) surfaces.

Theorem 3. [Gitler, Leaños, PH and GS, 2007]
The crossing number of a projective graph is quadratic in its face-width.
This gives a $4.5 \Delta(G)^{2}$ approximation of CrossingNumber.
Theorem 4. [PH and GS, 2007]
The crossing number of a toroidal graph can be efficiently approximated up to factor $\mathbf{9 \Delta}(G)^{\mathbf{2}}$ for all graphs which have sufficiently "dense" toroidal embeddings (meaning large dual edge-width compared to $\Delta(G)$).

- Getting a lower bound in the projective case is relatively easy.
- Lower bounds in the toroidal case considerably more involved.

This is closely related to [Brunet, Mohar and Richter, 1996], but not quite there... (And we can get better constants.)

- Ongoing work: Extending good lower bounds to higher (orientable, at least) surfaces.
- Problem: Can one get rid of dependence on $\Delta(G)$?

3 And on the negative side. . .

Crossing number (with no upper bound on the number of crossings) shows a "very global" behavior, which makes parametrized approaches harder...

Bounding tree-width

Question. [Seese, 90?]
What is the complexity of CrossingNumber on graphs of bounded treewidth?

3 And on the negative side. . .

Crossing number (with no upper bound on the number of crossings) shows a "very global" behavior, which makes parametrized approaches harder...

Bounding tree-width

Question. [Seese, 90?]
What is the complexity of CrossingNumber on graphs of bounded treewidth?

- We have no idea how to approach this question...
- Can we prove that CrossingNumber is W [1]-hard when parametrized by tree-width?

3 And on the negative side. . .

Crossing number (with no upper bound on the number of crossings) shows a "very global" behavior, which makes parametrized approaches harder...

Bounding tree-width

Question. [Seese, 90?]
What is the complexity of CrossingNumber on graphs of bounded treewidth?

- We have no idea how to approach this question...
- Can we prove that CrossingNumber is W [1]-hard when parametrized by tree-width?
- Can we prove that CrossingNumber is $N P$-hard for graphs of bounded clique-width?

Closing to planarity

Question. [Mohar; PH and GS, 2006]
Is CrossingNumber $N P$-hard for apex graphs? (planar plus a vertex)

Closing to planarity

Question. [Mohar; PH and GS, 2006]
Is CrossingNumber $N P$-hard for apex graphs? (planar plus a vertex)

- This question is related to complexity of optimal linear arrangement on planar graphs, still unknown?

Closing to planarity

Question. [Mohar; PH and GS, 2006]
Is CrossingNumber $N P$-hard for apex graphs? (planar plus a vertex)

- This question is related to complexity of optimal linear arrangement on planar graphs, still unknown?
- Can we, at least, prove that CrossingNumber is W [1]-hard when parametrized by G being k vertices / edges from a planar graph?

Closing to planarity

Question. [Mohar; PH and GS, 2006]
Is CrossingNumber $N P$-hard for apex graphs? (planar plus a vertex)

- This question is related to complexity of optimal linear arrangement on planar graphs, still unknown?
- Can we, at least, prove that CrossingNumber is W [1]-hard when parametrized by G being k vertices / edges from a planar graph?

Thank you for attention.

