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OverviewOverview

1 Drawings and the Crossing Number 3
Basic definitions, overview of computational complexity.
How to approach with parametrized complexity?

2 On the positive side: Approximations 6
Some recent positive approximation results;
for graphs which are “close” to being planar.

3 And on the negative side. . . 10
Some (likely) harder instances; still open and challenging
– parametrization by tree-width, apex vertices or planarizing edges. . .
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1 Drawings and the Crossing Number1 Drawings and the Crossing Number

Definition. Drawing of a graph G:

– The vertices of G are distinct points,
and every edge e = uv ∈ E(G) is a simple curve joining u to v.

– No edge passes through another vertex,
and no three edges intersect in a common point.
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1 Drawings and the Crossing Number1 Drawings and the Crossing Number

Definition. Drawing of a graph G:

– The vertices of G are distinct points,
and every edge e = uv ∈ E(G) is a simple curve joining u to v.

– No edge passes through another vertex,
and no three edges intersect in a common point.
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Definition. Crossing number cr(G)
is the smallest number of edge crossings in a drawing of G.

Importance – in VLSI design [Leighton et al], graph visualization, etc.
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1 Drawings and the Crossing Number1 Drawings and the Crossing Number

Definition. Drawing of a graph G:

– The vertices of G are distinct points,
and every edge e = uv ∈ E(G) is a simple curve joining u to v.

– No edge passes through another vertex,
and no three edges intersect in a common point.
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Definition. Crossing number cr(G)
is the smallest number of edge crossings in a drawing of G.

Importance – in VLSI design [Leighton et al], graph visualization, etc.

Warning. There are slight variations of the definition of crossing number, some
giving different numbers! (Like counting odd-crossing pairs of edges.)
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Computational complexity

Remark. It is (practically) very hard to determine crossing number.

Observation. The problem CrossingNumber(≤ k) is in NP :
Guess a drawing of G, then replace crossings with vertices, and test planarity.

Theorems.
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Computational complexity

Remark. It is (practically) very hard to determine crossing number.

Observation. The problem CrossingNumber(≤ k) is in NP :
Guess a drawing of G, then replace crossings with vertices, and test planarity.

Theorems.

• [Garey and Johnson, 1983] CrossingNumber is NP -hard.
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Computational complexity

Remark. It is (practically) very hard to determine crossing number.

Observation. The problem CrossingNumber(≤ k) is in NP :
Guess a drawing of G, then replace crossings with vertices, and test planarity.

Theorems.

• [Garey and Johnson, 1983] CrossingNumber is NP -hard.

• [Grohe, 2001] CrossingNumber(≤ k) is in FPT with parameter k,
i.e. solvable in time O(f(k) · n2).
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Computational complexity

Remark. It is (practically) very hard to determine crossing number.

Observation. The problem CrossingNumber(≤ k) is in NP :
Guess a drawing of G, then replace crossings with vertices, and test planarity.

Theorems.

• [Garey and Johnson, 1983] CrossingNumber is NP -hard.

• [Grohe, 2001] CrossingNumber(≤ k) is in FPT with parameter k,
i.e. solvable in time O(f(k) · n2).

• [Even, Guha, and Schieber, 2002]
CrossingNumber has a polytime O(log3 |V (G)|)-approximation algo-
rithm for cr(G) + |V (G)| on bounded-degree graphs.
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Computational complexity

Remark. It is (practically) very hard to determine crossing number.

Observation. The problem CrossingNumber(≤ k) is in NP :
Guess a drawing of G, then replace crossings with vertices, and test planarity.

Theorems.

• [Garey and Johnson, 1983] CrossingNumber is NP -hard.

• [Grohe, 2001] CrossingNumber(≤ k) is in FPT with parameter k,
i.e. solvable in time O(f(k) · n2).

• [Even, Guha, and Schieber, 2002]
CrossingNumber has a polytime O(log3 |V (G)|)-approximation algo-
rithm for cr(G) + |V (G)| on bounded-degree graphs.

• [PH, 2004] CrossingNumber is NP -hard even on simple 3-connected
cubic graphs, hence also in the minor-monotone setting.
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Computational complexity

Remark. It is (practically) very hard to determine crossing number.

Observation. The problem CrossingNumber(≤ k) is in NP :
Guess a drawing of G, then replace crossings with vertices, and test planarity.

Theorems.

• [Garey and Johnson, 1983] CrossingNumber is NP -hard.

• [Grohe, 2001] CrossingNumber(≤ k) is in FPT with parameter k,
i.e. solvable in time O(f(k) · n2).

• [Even, Guha, and Schieber, 2002]
CrossingNumber has a polytime O(log3 |V (G)|)-approximation algo-
rithm for cr(G) + |V (G)| on bounded-degree graphs.

• [PH, 2004] CrossingNumber is NP -hard even on simple 3-connected
cubic graphs, hence also in the minor-monotone setting.

• [Kawarabayashi and Reed, 2007] CrossingNumber(≤ k) is linear
FPT with parameter k, i.e. solvable in time O(f(k) · n).
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Parametrizing crossing number?

• CrossingNumber(≤ k) with parameter k works well. . .
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Parametrizing crossing number?

• CrossingNumber(≤ k) with parameter k works well. . .

. . . But, is this the right parametrization for applications?
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Parametrizing crossing number?

• CrossingNumber(≤ k) with parameter k works well. . .

. . . But, is this the right parametrization for applications?

• Almost-planar graphs:

Given a planar graph G and two of its vertices u, v,

can you efficiently determine cr(G + uv)?

(Crossing number of planar graphs plus one edge. . . Sounds silly enough?)
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Parametrizing crossing number?

• CrossingNumber(≤ k) with parameter k works well. . .

. . . But, is this the right parametrization for applications?

• Almost-planar graphs:

Given a planar graph G and two of its vertices u, v,

can you efficiently determine cr(G + uv)?

(Crossing number of planar graphs plus one edge. . . Sounds silly enough?)

• NO, still open!

• [PH and GS, 2006]
cr(G + uv) can be linear-time approximated up to factor ∆(G).
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Parametrizing crossing number?

• CrossingNumber(≤ k) with parameter k works well. . .

. . . But, is this the right parametrization for applications?

• Almost-planar graphs:

Given a planar graph G and two of its vertices u, v,

can you efficiently determine cr(G + uv)?

(Crossing number of planar graphs plus one edge. . . Sounds silly enough?)

• NO, still open!

• [PH and GS, 2006]
cr(G + uv) can be linear-time approximated up to factor ∆(G).

• Any guess for the crossing number of planar graphs plus k edges?
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Parametrizing crossing number?

• CrossingNumber(≤ k) with parameter k works well. . .

. . . But, is this the right parametrization for applications?

• Almost-planar graphs:

Given a planar graph G and two of its vertices u, v,

can you efficiently determine cr(G + uv)?

(Crossing number of planar graphs plus one edge. . . Sounds silly enough?)

• NO, still open!

• [PH and GS, 2006]
cr(G + uv) can be linear-time approximated up to factor ∆(G).

• Any guess for the crossing number of planar graphs plus k edges?

• Any other idea of a “nontrivial” graph class with an efficient Crossing-
Number solution?
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2 On the positive side: Approximations2 On the positive side: Approximations

Natural (expected) approaches often lead to “good approximations” in special
cases. . .
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2 On the positive side: Approximations2 On the positive side: Approximations

Natural (expected) approaches often lead to “good approximations” in special
cases. . .

Almost-planar graphs; revisited with a natural drawing approach

• Take a suitable planar drawing of G, and draw uw inside G.

• Quite well usable in a practical iterative heuristics. . .
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%Petr Hliněný, Dagstuhl #07281 6 Approximating Crossing Number

2 On the positive side: Approximations2 On the positive side: Approximations

Natural (expected) approaches often lead to “good approximations” in special
cases. . .

Almost-planar graphs; revisited with a natural drawing approach

• Take a suitable planar drawing of G, and draw uw inside G.

• Quite well usable in a practical iterative heuristics. . .

• BridgingMinimization: find a planar drawing of G such that the edge
uv can be inserted to G with the minimum number of crossings.
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%Petr Hliněný, Dagstuhl #07281 6 Approximating Crossing Number

2 On the positive side: Approximations2 On the positive side: Approximations

Natural (expected) approaches often lead to “good approximations” in special
cases. . .

Almost-planar graphs; revisited with a natural drawing approach

• Take a suitable planar drawing of G, and draw uw inside G.

• Quite well usable in a practical iterative heuristics. . .

• BridgingMinimization: find a planar drawing of G such that the edge
uv can be inserted to G with the minimum number of crossings.

Theorem 1. [Gutwenger, Mutzel, Weiskircher, 2001]
The problem BridgingMinimization is (practically) solvable in linear time.

(The status of k-edge BridgingMinimization unknown. . . )
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2 On the positive side: Approximations2 On the positive side: Approximations

Natural (expected) approaches often lead to “good approximations” in special
cases. . .

Almost-planar graphs; revisited with a natural drawing approach

• Take a suitable planar drawing of G, and draw uw inside G.

• Quite well usable in a practical iterative heuristics. . .

• BridgingMinimization: find a planar drawing of G such that the edge
uv can be inserted to G with the minimum number of crossings.

Theorem 1. [Gutwenger, Mutzel, Weiskircher, 2001]
The problem BridgingMinimization is (practically) solvable in linear time.

(The status of k-edge BridgingMinimization unknown. . . )

How good in theory is this solution?
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• [Farr 2005; indep. PH and GS] A solution to one-edge bridging minimiza-
tion (left) can be arbitrarily far from the crossing number (right).
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• [Farr 2005; indep. PH and GS] A solution to one-edge bridging minimiza-
tion (left) can be arbitrarily far from the crossing number (right).
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Theorem 2. [PH and GS, 2006]
The bridging minimization problem on G and uv has a solution with at most

∆(G) · cr(G + uv)

crossings; hence it approximates up to factor ∆(G).

Proof idea: Whitney flips between two planar subdrawings, ≤ 2 flips per crossing
and each one makes ≤ ∆(G)/2 new crossings.
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Graphs on small surfaces; projective and toroidal

• Recent results drawing graphs with linear number of crossings:

[Böröczky, Pach and Tóth] surface embedded graphs,

[Djidjev and Vrt’o] surface (orientable) embedded graphs, with much
better constants,

[Telle and Wood] graphs excluding a fixed minor.
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Graphs on small surfaces; projective and toroidal

• Recent results drawing graphs with linear number of crossings:

[Böröczky, Pach and Tóth] surface embedded graphs,

[Djidjev and Vrt’o] surface (orientable) embedded graphs, with much
better constants,

[Telle and Wood] graphs excluding a fixed minor.

• Those results provide no factor approximation, only upper bounds.

• We need a refinement with corresponding lower bounds — actually quite
close to structural and topological graph theory (face-width and grid-like
minors).
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Graphs on small surfaces; projective and toroidal

• Recent results drawing graphs with linear number of crossings:

[Böröczky, Pach and Tóth] surface embedded graphs,

[Djidjev and Vrt’o] surface (orientable) embedded graphs, with much
better constants,

[Telle and Wood] graphs excluding a fixed minor.

• Those results provide no factor approximation, only upper bounds.

• We need a refinement with corresponding lower bounds — actually quite
close to structural and topological graph theory (face-width and grid-like
minors).

A natural approach. (See also [Pach and Tóth])

Cut the surface along short noncontractible loops (→ face-width or dual edge-
width), then re-insert edges to resulting planar subgraph(s).

Such loops can be computed quickly [Cabello and Mohar] O(n
√

n) time, [un-
published improvements. . . ] O(n log n) time.
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Theorem 3. [Gitler, Leaños, PH and GS, 2007]
The crossing number of a projective graph is quadratic in its face-width.

This gives a 4.5∆(G)2 approximation of CrossingNumber.
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Theorem 3. [Gitler, Leaños, PH and GS, 2007]
The crossing number of a projective graph is quadratic in its face-width.

This gives a 4.5∆(G)2 approximation of CrossingNumber.

Theorem 4. [PH and GS, 2007]
The crossing number of a toroidal graph can be efficiently approximated up to
factor 9∆(G)2 for all graphs which have sufficiently “dense” toroidal embed-
dings (meaning large dual edge-width compared to ∆(G)).
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Theorem 3. [Gitler, Leaños, PH and GS, 2007]
The crossing number of a projective graph is quadratic in its face-width.

This gives a 4.5∆(G)2 approximation of CrossingNumber.

Theorem 4. [PH and GS, 2007]
The crossing number of a toroidal graph can be efficiently approximated up to
factor 9∆(G)2 for all graphs which have sufficiently “dense” toroidal embed-
dings (meaning large dual edge-width compared to ∆(G)).

• Getting a lower bound in the projective case is relatively easy.
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Theorem 3. [Gitler, Leaños, PH and GS, 2007]
The crossing number of a projective graph is quadratic in its face-width.

This gives a 4.5∆(G)2 approximation of CrossingNumber.

Theorem 4. [PH and GS, 2007]
The crossing number of a toroidal graph can be efficiently approximated up to
factor 9∆(G)2 for all graphs which have sufficiently “dense” toroidal embed-
dings (meaning large dual edge-width compared to ∆(G)).

• Getting a lower bound in the projective case is relatively easy.

• Lower bounds in the toroidal case considerably more involved.

This is closely related to [Brunet, Mohar and Richter, 1996], but not quite
there. . . (And we can get better constants.)
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Theorem 3. [Gitler, Leaños, PH and GS, 2007]
The crossing number of a projective graph is quadratic in its face-width.

This gives a 4.5∆(G)2 approximation of CrossingNumber.

Theorem 4. [PH and GS, 2007]
The crossing number of a toroidal graph can be efficiently approximated up to
factor 9∆(G)2 for all graphs which have sufficiently “dense” toroidal embed-
dings (meaning large dual edge-width compared to ∆(G)).

• Getting a lower bound in the projective case is relatively easy.

• Lower bounds in the toroidal case considerably more involved.

This is closely related to [Brunet, Mohar and Richter, 1996], but not quite
there. . . (And we can get better constants.)

• Ongoing work: Extending good lower bounds to higher (orientable, at
least) surfaces.
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Theorem 3. [Gitler, Leaños, PH and GS, 2007]
The crossing number of a projective graph is quadratic in its face-width.

This gives a 4.5∆(G)2 approximation of CrossingNumber.

Theorem 4. [PH and GS, 2007]
The crossing number of a toroidal graph can be efficiently approximated up to
factor 9∆(G)2 for all graphs which have sufficiently “dense” toroidal embed-
dings (meaning large dual edge-width compared to ∆(G)).

• Getting a lower bound in the projective case is relatively easy.

• Lower bounds in the toroidal case considerably more involved.

This is closely related to [Brunet, Mohar and Richter, 1996], but not quite
there. . . (And we can get better constants.)

• Ongoing work: Extending good lower bounds to higher (orientable, at
least) surfaces.

• Problem: Can one get rid of dependence on ∆(G)?
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3 And on the negative side. . .3 And on the negative side. . .

Crossing number (with no upper bound on the number of crossings) shows a
“very global” behavior, which makes parametrized approaches harder. . .

Bounding tree-width

Question. [Seese, 90?]
What is the complexity of CrossingNumber on graphs of bounded tree-
width?
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3 And on the negative side. . .3 And on the negative side. . .

Crossing number (with no upper bound on the number of crossings) shows a
“very global” behavior, which makes parametrized approaches harder. . .

Bounding tree-width

Question. [Seese, 90?]
What is the complexity of CrossingNumber on graphs of bounded tree-
width?

• We have no idea how to approach this question. . .

• Can we prove that CrossingNumber is W [1]-hard when parametrized
by tree-width?
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3 And on the negative side. . .3 And on the negative side. . .

Crossing number (with no upper bound on the number of crossings) shows a
“very global” behavior, which makes parametrized approaches harder. . .

Bounding tree-width

Question. [Seese, 90?]
What is the complexity of CrossingNumber on graphs of bounded tree-
width?

• We have no idea how to approach this question. . .

• Can we prove that CrossingNumber is W [1]-hard when parametrized
by tree-width?

• Can we prove that CrossingNumber is NP -hard for graphs of bounded
clique-width?
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Closing to planarity

Question. [Mohar; PH and GS, 2006]
Is CrossingNumber NP -hard for apex graphs? (planar plus a vertex)
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Closing to planarity

Question. [Mohar; PH and GS, 2006]
Is CrossingNumber NP -hard for apex graphs? (planar plus a vertex)

• This question is related to complexity of optimal linear arrangement on
planar graphs, still unknown?



'

&

$

%

'

&

$
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Closing to planarity

Question. [Mohar; PH and GS, 2006]
Is CrossingNumber NP -hard for apex graphs? (planar plus a vertex)

• This question is related to complexity of optimal linear arrangement on
planar graphs, still unknown?

• Can we, at least, prove that CrossingNumber is W [1]-hard when
parametrized by G being k vertices / edges from a planar graph?
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Closing to planarity

Question. [Mohar; PH and GS, 2006]
Is CrossingNumber NP -hard for apex graphs? (planar plus a vertex)

• This question is related to complexity of optimal linear arrangement on
planar graphs, still unknown?

• Can we, at least, prove that CrossingNumber is W [1]-hard when
parametrized by G being k vertices / edges from a planar graph?

Thank you for attention.
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