Petr Hliněný

Are matroids interesting combinatorial structures?

Department of Computer Science FEI, VŠB – Technical University of Ostrava

and

Institute of Theoretical Computer Science MFF, Charles University

Czech Republic

e-mail: petr.hlineny@vsb.cz http://www.cs.vsb.cz/hlineny

1 Motivation

The Graph Minor Project

[Robertson and Seymour, 80's - 90's], [others later...]

- Formalized the notions of tree-width and branch-width (similar notions).
- Proved *Wagner's conjecture* WQO property of graph minors. (Among the partial steps: WQO of graphs of bounded tree-width, excluded grid theorem, description of graphs excluding a complete minor.)
- Testing for an arbitrary fixed graph *minor in cubic time*.

Tree-like Graphs and Logic

- [Seese, 1975] Undecidability of an MSO theory of large grids.
- [Courcelle, 1988] Decidability of an MSO theory of graphs: The class of all (finite) graphs of bounded tree-width has decidable MS_2 theory. (Independently by [Arnborg, Lagergren, and Seese, 1991].)
- [Seese, 1991] Decidability of the MS_2 theory implies bounded tree-width.

Results closely related to *linear-time algorithms* on bounded tree-width graphs.

Current Trends in Matroids

- [Geelen, Gerards, Robertson, Whittle, and ..., late 90's future] Extending the *ideas of graph minors* to matroids (over finite fields). (For example: WQO of matroids of bounded branch-width (over finite fields), excluded grid theorem, other technical results...)
- [PH, 2002] *Decidability for matroids*: The class of all GF(q)-representable matroids of bounded branch-width has a decidable MSO theory.
- [Seese and PH, 2004] Decidability of the matroidal MSO theory *implies* a bounded branch-width.

The new issue - Clique-Width

- [Courcelle et al, 1993] The definition (constructing a graph using a bounded number of labels).
- [Courcelle, Makowsky, Rotics, 2000] Decidability of the MS_1 theory.
- [Oum and Seymour, 2003] An approximation of graph clique-width via *rank-width*, which actually is a *matroid branch-width*.

Hence, we see an influence in both ways: graph \leftrightarrow matroid theories.

5

2 Basics of Matroids

A matroid is a pair $M = (E, \mathcal{B})$ where

- E = E(M) is the ground set of M (elements of M),
- $\mathcal{B} \subseteq 2^E$ is a collection of *bases* of M,
- the bases satisfy the "exchange axiom" $\forall B_1, B_2 \in \mathcal{B} \text{ and } \forall x \in B_1 - B_2,$ $\exists y \in B_2 - B_1 \text{ s.t. } (B_1 - \{x\}) \cup \{y\} \in \mathcal{B}.$

Otherwise, a *matroid* is a pair $M = (E, \mathcal{I})$ where

• $\mathcal{I} \subseteq 2^E$ is the collection of *independent sets* (subsets of bases) of M.

The definition was inspired by an abstract view of *independence* in linear algebra and in combinatorics [Whitney, Birkhoff, Tutte,...].

Notice exponential amount of information carried by a matroid.

Literature: J. Oxley, Matroid Theory, Oxford University Press 1992,1997.

Some elementary matroid terms are

- *independent set* \approx a subset of some basis, *dependent set* \approx not independent,
- circuit \approx a minimal dependent set of elements, triangle \approx a circuit on 3 elements,
- hyperplane ≈ a maximal set containing no basis, cocircuit ≈ the complement of a hyperplane,
- <u>rank function</u> \approx "dimension" of X, $r_M(X) = maximal size of an M-independent subset <math>I_X \subseteq X$.

(Notation is taken from linear algebra and from graph theory...)

Axiomatic descriptions of matroids via independent sets, circuits, hyperplanes, or rank function are possible, and often used.

Vector matroid — a straightforward motivation:

- Elements are vectors over ${\mathbb F}$,
- independence is usual linear independence,
- the vectors are considered as columns of a matrix A ∈ F^{r×n}.
 (A is called a *representation* of the matroid M(A) over F.)

Not all matroids are vector matroids.

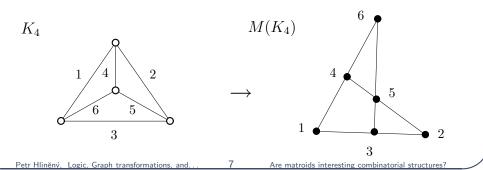
An example of a rank-3 vector matroid with 8 elements over GF(3):



Graphic matroid M(G) — the combinatorial link:

- Elements are the edges of a graph,
- \bullet independence $\ \sim\$ acyclic edge subsets,
- \bullet bases $\,\sim\,$ spanning (maximal) forests,
- $\bullet~{\rm circuits}~\sim~{\rm graph}$ cycles,
- the rank function $r_M(X)$ = the number of vertices minus the number of components induced by X.

Only few matroids are graphic, but all *graphic ones are vector matroids* over any field. **Example:**



3 MSO Theories

For graphs

- Adjacency graphs formed by vertices and an adjacency relation. $\rightarrow MS_1$ theory
- *Incidence graphs* formed by vertices and edges (two-sorted structure), with an incidence relation.

 $\rightarrow MS_2$ theory (A stronger language than MS_1 .)

For matroids?

- The ground set E(M), and what relation? No FO predicate is enough to describe all matroids! (An easy counting argument.)
- So using a set predicate to describe matroid structure...

Matroidal MSO Theory

A matroid in logic – the ground set E = E(M) with all subsets 2^E , – and a predicate indep on 2^E , s.t. indep(F) iff $F \subseteq E$ is independent. The MSO theory of matroids – language of MSOL applied to such matroids. ($\rightarrow MS_M$ theory)

Basic expressions:

- basis(B)≡ indep(B) ∧ ∀D(B ⊈ D ∨ B = D ∨ ¬ indep(D))
 A basis is a maximal independent set.
- $circuit(C) \equiv \neg indep(C) \land \forall D(D \not\subseteq C \lor D = C \lor indep(D))$

A circuit C is dependent, but all proper subsets of C are independent.

• $\operatorname{cocircuit}(C) \equiv \forall B[\operatorname{\textit{basis}}(B) \to \exists x (x \in B \land x \in C)] \land \land \forall X[X \not\subseteq C \lor X = C \lor \exists B(\operatorname{\textit{basis}}(B) \land \forall x (x \notin B \lor x \notin X))]$

A cocircuit C (a dual circuit) intersects every basis, but each proper subset of C is disjoint from some basis.

How strong is the matroidal MSO language?

Expressive Power of Matroid MSO

[PH,2002-2004]

Defining a graph via its cycle matroid:

- The matroids of all trees of the same size are isomorphic.
- Even more troubles with loops.
- A matroidal circuit has no order of elements on it, unlike a graph cycle. (Cf. the dual – a parallel class of graph edges.)
- One has to require 3-connectivity to fully describe the underlying graph in terms of its cycle matroid!

Defining MS_2 properties in the corresponding cycle-matroid MSO:

- Any MS_2 sentence about a loopless 3-connected graph G can be formulated as an MS_M sentence about the cycle matroid M(G).
- For less-connected graphs G, use the graph $G \uplus K_3$ (adding 3 more vertices connected to everything).
- $\bullet\,$ Conversely, edge-set independence is MS_2 definable.

4 More on Matroids

Remark. About matroids on an input:

To describe an *n*-element matroid, one has to specify properties of all 2^n subsets. So giving a complete description on the input would *ruin any* complexity measures.

Solutions:

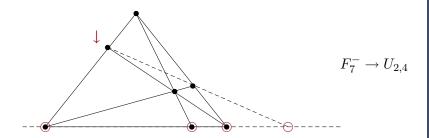
- Give a matroid via a *rank oracle* answering queries about the rank.
- Give a special matroid with a particular *small representation*. (Likewise a matrix for a vector matroid.)

Matroid duality M^* (exchanging bases with their complements) \sim topological duality in planar graphs, or transposition of the standardform (i.e. without some basis) matrices.

Element deletion \sim usual deletion of a graph edge or a vector.

- **Element contraction** (corresponds to deletion in the dual matroid) \sim edge contraction in a graph, or projection of the matroid from a vector (i.e. a linear transformation having a kernel formed by this vector).
- **Matroid minor** obtained by a sequence of element deletions and contractions, order of which does not matter.

12



Example – MSO minor testing

Lemma 4.1. For each fixed matroid N; a (computable) MSO sentence ψ_N telling us whether there is an *N*-minor.

Proof: The sentence ψ_N over a matroid M:

- identify the elements of the (supposed) <u>N-minor in M</u> by variables x_1, \ldots, x_n in order, where n = |E(N)|,
- assuming the contract-set C (implicit del.-set $D = E(M) C \{x_1, \ldots, x_n\}$), describe dependency in the minor $M \setminus D/C$:

$$minor-dep(x_j : j \in J; C) \equiv$$

$$\exists Y \left[\neg \textit{ indep}(Y) \land \forall y \in Y \left(y \in C \lor \bigvee_{j \in J} y = x_j \right) \right],$$

• now, $M \setminus D/C$ is isomorphic to N iff dependency in $\{x_1, \ldots, x_n\}$ matches dependency in N; hence

$$\psi_N \equiv \exists C \exists x_1, \dots, x_n$$

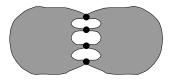
$$\left[\bigwedge_{J\in\mathcal{J}_{-}}\mathsf{minor-dep}(x_{j}:j\in J;C)\land\bigwedge_{J\in\mathcal{J}_{+}}\neg\mathsf{minor-dep}(x_{j}:j\in J;C)\right],$$

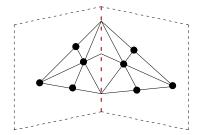
where \mathcal{J}_+ are the independent index-sets in $2^{[1,n]}$ of N, and \mathcal{J}_- the complement.

Matroid Connectivity - an alternative view of graph connectivity

Connectivity function $\lambda_G(X)$ = number of vertices in Gincident both with edges of X and of E(G) - X.

A 4-separation in a graph:





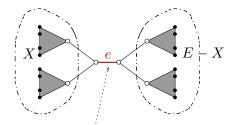
A 3-separation in a matroid:

 $\begin{array}{ll} \mbox{Matroid connectivity} & \underline{\lambda_M(X) = \mathrm{r}_M(X) + \mathrm{r}_M(E-X) - \mathrm{r}(M) + 1} \\ \mbox{(geometrically the "rank of spans intersection" } & \langle X \rangle \cap \langle E-X \rangle \mbox{ plus 1}). \end{array}$ $\mbox{A k-separation} & (X, E-X) : \ \lambda(X) \leq k \ \ \mbox{and} \ \ |X|, |E-X| \geq k. \end{array}$ $\mbox{Then, high connectivity} \approx \mbox{no small separations.}$

5 Branch-Width

Graphs or matroids (or arb. sym. submod. λ) \longrightarrow a branch decomposition:

- Decomposed to a *cubic tree* (degrees \leq 3), and
- edges / elements mapped one-to-one to the tree leaves (with no reference to graph vertices).
- Tree edges have *width* as follows:



width $(e) = \lambda(X)$ where X is "displayed" by e in the tree.

15

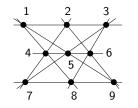
(Using graph connectivity $\lambda_G()$, or matroid connectivity $\lambda_M()$, resp.)

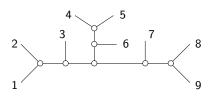
Branch-width = min. of max. edge widths over all decompositions.

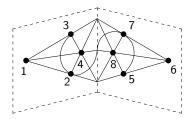
(Branch-width is within a constant factor of tree-width.)

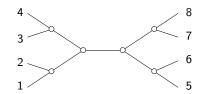
Branch decompositions of matroids

both of width 3:









BTW, a Matroid Tree-Width

(First suggestion by [Geelen, unpublished], modified [PH and Whittle, 2003].)

A tree decomposition of a matroid M is (T, τ) , where

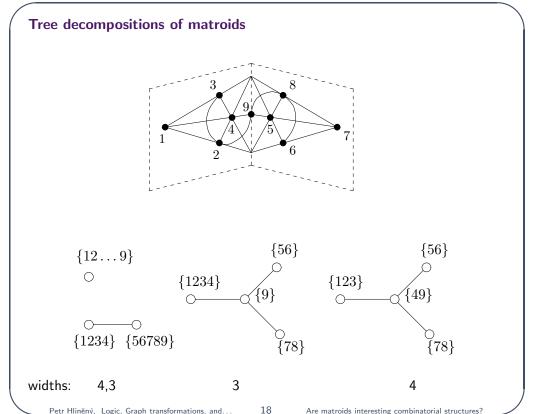
- T a tree, and $\tau : E(M) \to V(T)$ an arbitrary mapping (nothing like the "bags"!),
- width of a node x in T is as follows: let T_1, \ldots, T_d be the connected components of T - x, then

width of
$$x = \sum_{i=1}^{d} \mathbf{r}_M \left(E(M) - \tau^{-1}(V(T_i)) \right) - (d-1) \cdot \mathbf{r}(M)$$
.
$$\tau : E(M) \rightarrow \overbrace{T_1}^{T_2} \overbrace{T_3}^{T_3}$$

Tree-width of $M = \min$. of max. node widths over all decompositions. (This parameter equals usual tree-width on graphic matroids!)

Petr Hliněný, Logic, Graph transformations, and...

17



Petr Hliněný, Logic, Graph transformations, and

6 Computability and decidability on matroids

Considering matroids represented over a finite field \mathbb{F} .

Transformation: A matroid M and a branch decomposition \rightarrow a parse tree \overline{T} for $M = P(\overline{T})$.

[PH,2002] Computable in cubic FPT time for matroids of bounded branchwidth over \mathbb{F} (no branch decomposition required, approx. factor 3).

Theorem 6.1. [PH] Let $t \ge 1$, and ϕ be a sentence in matr. MSOL. Then there exists a (constructible) finite tree automaton \mathcal{A}_t^{ϕ} accepting those parse trees for matroids over \mathbb{F} which posses ϕ , i.e. those \overline{T} such that $P(\overline{T}) \models \phi$.

This result, together with an algorithm constructing the parse tree, provides an efficient way to verify MSO-definable properties over matroids of bounded branch-width.

Corollary 6.2. If \mathcal{B}_t is the class of all matroids representable over \mathbb{F} of branchwidth at most t, then the theory $\mathsf{Th}_{MSO}(\mathcal{B}_t)$ is decidable.

Sketch: It is enough to verify emptiness of the complementary automaton $\neg A_t^{\phi}$ over all valid parse trees.

A new result, cf. the talk of D. Seese:

Theorem 6.3. [Seese and PH, 2004] Let \mathbb{N} be a class of matroids that are representable by matrices over \mathbb{F} . If the monadic second-order theory $\mathsf{Th}_{MSO}(\mathbb{N})$ is decidable, then the class \mathbb{N} has bounded branch-width.

(Analogous to a result of [Seese, 1991] on the MS_2 theory of graphs.)