Petr Hliněný

Are matroids interesting combinatorial structures?

Department of Computer Science
FEI, VŠB - Technical University of Ostrava and
Institute of Theoretical Computer Science
MFF, Charles University
Czech Republic
e-mail: petr.hlineny@vsb.cz
http://www.cs.vsb.cz/hlineny

1 Motivation

The Graph Minor Project

[Robertson and Seymour, 80's - 90's], [others later. . .]

- Formalized the notions of tree-width and branch-width (similar notions).
- Proved Wagner's conjecture - WQO property of graph minors.
(Among the partial steps: WQO of graphs of bounded tree-width, excluded grid theorem, description of graphs excluding a complete minor.)
- Testing for an arbitrary fixed graph minor in cubic time.

Tree-like Graphs and Logic

- [Seese, 1975] Undecidability of an MSO theory of large grids.
- [Courcelle, 1988] Decidability of an MSO theory of graphs: The class of all (finite) graphs of bounded tree-width has decidable $M S_{2}$ theory. (Independently by [Arnborg, Lagergren, and Seese, 1991].)
- [Seese, 1991] Decidability of the $M S_{2}$ theory implies bounded tree-width.

Results closely related to linear-time algorithms on bounded tree-width graphs.

Current Trends in Matroids

- [Geelen, Gerards, Robertson, Whittle, and ..., late 90's - future] Extending the ideas of graph minors to matroids (over finite fields). (For example: WQO of matroids of bounded branch-width (over finite fields), excluded grid theorem, other technical results...)
- [PH, 2002] Decidability for matroids: The class of all $G F(q)$-representable matroids of bounded branch-width has a decidable MSO theory.
- [Seese and PH, 2004] Decidability of the matroidal MSO theory implies a bounded branch-width.

The new issue - Clique-Width

- [Courcelle et al, 1993] The definition (constructing a graph using a bounded number of labels).
- [Courcelle, Makowsky, Rotics, 2000] Decidability of the $M S_{1}$ theory.
- [Oum and Seymour, 2003] An approximation of graph clique-width via rank-width, which actually is a matroid branch-width.

Hence, we see an influence in both ways: graph \leftrightarrow matroid theories.

2 Basics of Matroids

A matroid is a pair $M=(E, \mathcal{B})$ where

- $E=E(M)$ is the ground set of M (elements of M),
- $\mathcal{B} \subseteq 2^{E}$ is a collection of bases of M,
- the bases satisfy the "exchange axiom"

$$
\begin{aligned}
& \forall B_{1}, B_{2} \in \mathcal{B} \text { and } \forall x \in B_{1}-B_{2}, \\
& \quad \exists y \in B_{2}-B_{1} \text { s.t. }\left(B_{1}-\{x\}\right) \cup\{y\} \in \mathcal{B} .
\end{aligned}
$$

Otherwise, a matroid is a pair $M=(E, \mathcal{I})$ where

- $\mathcal{I} \subseteq 2^{E}$ is the collection of independent sets (subsets of bases) of M.

The definition was inspired by an abstract view of independence in linear algebra and in combinatorics [Whitney, Birkhoff, Tutte,...].

Notice exponential amount of information carried by a matroid.
Literature: J. Oxley, Matroid Theory, Oxford University Press 1992,1997.

Some elementary matroid terms are

- independent set \approx a subset of some basis, dependent set \approx not independent,
- circuit \approx a minimal dependent set of elements, triangle \approx a circuit on 3 elements,
- hyperplane \approx a maximal set containing no basis, cocircuit \approx the complement of a hyperplane,
- rank function \approx "dimension" of X,
$\mathrm{r}_{M}(X)=$ maximal size of an M-independent subset $I_{X} \subseteq X$.
(Notation is taken from linear algebra and from graph theory...)
Axiomatic descriptions of matroids via independent sets, circuits, hyperplanes, or rank function are possible, and often used.

Vector matroid - a straightforward motivation:

- Elements are vectors over \mathbb{F},
- independence is usual linear independence,
- the vectors are considered as columns of a matrix $\boldsymbol{A} \in \mathbb{F}^{r \times n}$. (\boldsymbol{A} is called a representation of the matroid $M(\boldsymbol{A})$ over \mathbb{F}.)

Not all matroids are vector matroids.
An example of a rank-3 vector matroid with 8 elements over $G F(3)$:

Graphic matroid $M(G)$ - the combinatorial link:

- Elements are the edges of a graph,
- independence \sim acyclic edge subsets,
- bases \sim spanning (maximal) forests,
- circuits \sim graph cycles,
- the rank function $\mathrm{r}_{M}(X)=$ the number of vertices minus the number of components induced by X.

Only few matroids are graphic, but all graphic ones are vector matroids over any field.

Example:

K_{4}

3 MSO Theories

MSOL - monadic second-order logic:
propositional + quantification over elements and sets.
MSOL + class of structures \Longrightarrow MSO theory (of the structures).

For graphs

- Adjacency graphs - formed by vertices and an adjacency relation. $\rightarrow M S_{1}$ theory
- Incidence graphs - formed by vertices and edges (two-sorted structure), with an incidence relation.
$\rightarrow M S_{2}$ theory (A stronger language than $M S_{1}$.)
For matroids?
- The ground set $E(M)$, and what relation? No FO predicate is enough to describe all matroids! (An easy counting argument.)
- So using a set predicate to describe matroid structure...

Matroidal MSO Theory

A matroid in logic - the ground set $E=E(M)$ with all subsets 2^{E}, - and a predicate indep on 2^{E}, s.t. indep (F) iff $F \subseteq E$ is independent.

The MSO theory of matroids - language of MSOL applied to such matroids. ($\rightarrow M S_{M}$ theory)

Basic expressions:

- basis $(B) \equiv \operatorname{indep}(B) \wedge \forall D(B \nsubseteq D \vee B=D \vee \neg \operatorname{indep}(D))$

A basis is a maximal independent set.

- $\operatorname{circuit}(C) \equiv \neg \operatorname{indep}(C) \wedge \forall D(D \nsubseteq C \vee D=C \vee \operatorname{indep}(D))$

A circuit C is dependent, but all proper subsets of C are independent.

- cocircuit $(C) \equiv \forall B[$ basis $(B) \rightarrow \exists x(x \in B \wedge x \in C)] \wedge$

$$
\wedge \forall X[X \nsubseteq C \vee X=C \vee \exists B(\operatorname{basis}(B) \wedge \forall x(x \notin B \vee x \notin X))]
$$

A cocircuit C (a dual circuit) intersects every basis, but each proper subset of C is disjoint from some basis.

How strong is the matroidal MSO language?

Expressive Power of Matroid MSO

[PH,2002-2004]

Defining a graph via its cycle matroid:

- The matroids of all trees of the same size are isomorphic.
- Even more troubles with loops.
- A matroidal circuit has no order of elements on it, unlike a graph cycle. (Cf. the dual - a parallel class of graph edges.)
- One has to require 3 -connectivity to fully describe the underlying graph in terms of its cycle matroid!

Defining $M S_{2}$ properties in the corresponding cycle-matroid MSO:

- Any $M S_{2}$ sentence about a loopless 3-connected graph G can be formulated as an $M S_{M}$ sentence about the cycle matroid $M(G)$.
- For less-connected graphs G, use the graph $G \uplus K_{3}$ (adding 3 more vertices connected to everything).
- Conversely, edge-set independence is $M S_{2}$ definable.

4 More on Matroids

Remark. About matroids on an input:
To describe an n-element matroid, one has to specify properties of all 2^{n} subsets. So giving a complete description on the input would ruin any complexity measures.

Solutions:

- Give a matroid via a rank oracle - answering queries about the rank.
- Give a special matroid with a particular small representation. (Likewise a matrix for a vector matroid.)

Matroid duality M^{*} (exchanging bases with their complements) \sim topological duality in planar graphs, or transposition of the standardform (i.e. without some basis) matrices.

Element deletion \sim usual deletion of a graph edge or a vector.
Element contraction (corresponds to deletion in the dual matroid) \sim edge contraction in a graph, or projection of the matroid from a vector (i.e. a linear transformation having a kernel formed by this vector).

Matroid minor - obtained by a sequence of element deletions and contractions, order of which does not matter.

Example - MSO minor testing

Lemma 4.1. For each fixed matroid N; a (computable) MSO sentence ψ_{N} telling us whether there is an N-minor.

Proof: The sentence ψ_{N} over a matroid M :

- identify the elements of the (supposed) $\underline{N \text {-minor in } M}$ by variables x_{1}, \ldots, x_{n} in order, where $n=|E(N)|$,
- assuming the contract-set C (implicit del.-set $D=E(M)-C-\left\{x_{1}, \ldots, x_{n}\right\}$), describe dependency in the minor $M \backslash D / C$:

$$
\begin{gathered}
\operatorname{minor-dep}\left(x_{j}: j \in J ; C\right) \equiv \\
\exists Y\left[\neg \operatorname{indep}(Y) \wedge \forall y \in Y\left(y \in C \vee \bigvee_{j \in J} y=x_{j}\right)\right],
\end{gathered}
$$

- now, $M \backslash D / C$ is isomorphic to N iff dependency in $\left\{x_{1}, \ldots, x_{n}\right\}$ matches dependency in N; hence

$$
\begin{gathered}
\psi_{N} \equiv \exists C \exists x_{1}, \ldots, x_{n} \\
{\left[\bigwedge_{J \in \mathcal{J}_{-}} \operatorname{minor-dep}\left(x_{j}: j \in J ; C\right) \wedge \bigwedge_{J \in \mathcal{J}_{+}} \neg \operatorname{minor-dep}\left(x_{j}: j \in J ; C\right)\right]}
\end{gathered}
$$

where \mathcal{J}_{+}are the independent index-sets in $2^{[1, n]}$ of N, and \mathcal{J}_{-}the complement.

Matroid Connectivity - an alternative view of graph connectivity

Connectivity function $\lambda_{G}(X)=$ number of vertices in G incident both with edges of X and of $E(G)-X$.

A 4-separation in a graph:

A 3-separation in a matroid:
Matroid connectivity $\lambda_{M}(X)=\mathrm{r}_{M}(X)+\mathrm{r}_{M}(E-X)-\mathrm{r}(M)+1$ (geometrically the "rank of spans intersection" $\langle X\rangle \cap\langle E-X\rangle$ plus 1).

A k-separation $(X, E-X): \quad \lambda(X) \leq k$ and $|X|,|E-X| \geq k$.
Then, high connectivity \approx no small separations.

5 Branch-Width

Graphs or matroids (or arb. sym. submod. λ) \longrightarrow a branch decomposition:

- Decomposed to a cubic tree (degrees ≤ 3), and
- edges / elements mapped one-to-one to the tree leaves (with no reference to graph vertices).
- Tree edges have width as follows:

width $(e)=\lambda(X)$ where X is "displayed" by e in the tree.
(Using graph connectivity $\lambda_{G}()$, or matroid connectivity $\lambda_{M}()$, resp.)
Branch-width $=$ min. of max. edge widths over all decompositions.
(Branch-width is within a constant factor of tree-width.)

Branch decompositions of matroids

both of width 3 :

BTW, a Matroid Tree-Width

(First suggestion by [Geelen, unpublished], modified [PH and Whittle, 2003].)
A tree decomposition of a matroid M is (T, τ), where

- T a tree, and $\tau: E(M) \rightarrow V(T)$ an arbitrary mapping (nothing like the "bags" !),
- width of a node x in T is as follows:
let T_{1}, \ldots, T_{d} be the connected components of $T-x$, then

$$
\text { width of } x=\sum_{i=1}^{d} \mathrm{r}_{M}\left(E(M)-\tau^{-1}\left(V\left(T_{i}\right)\right)\right)-(d-1) \cdot \mathrm{r}(M) \text {. }
$$

Tree-width of $M=$ min. of max. node widths over all decompositions.
(This parameter equals usual tree-width on graphic matroids!)

Tree decompositions of matroids

widths: 4,3

6 Computability and decidability on matroids

Considering matroids represented over a finite field \mathbb{F}.
Transformation: A matroid M and a branch decomposition \rightarrow

$$
\text { a parse tree } \bar{T} \text { for } M=P(\bar{T}) \text {. }
$$

[PH,2002] Computable in cubic FPT time for matroids of bounded branchwidth over \mathbb{F} (no branch decomposition required, approx. factor 3).

Theorem 6.1. [PH] Let $t \geq 1$, and ϕ be a sentence in matr. MSOL. Then there exists a (constructible) finite tree automaton \mathcal{A}_{t}^{ϕ} accepting those parse trees for matroids over \mathbb{F} which posses ϕ, i.e. those \bar{T} such that $P(\bar{T}) \models \phi$.

This result, together with an algorithm constructing the parse tree, provides an efficient way to verify MSO-definable properties over matroids of bounded branch-width.

Corollary 6.2. If \mathcal{B}_{t} is the class of all matroids representable over \mathbb{F} of branchwidth at most t, then the theory $\operatorname{Th}_{M S O}\left(\mathcal{B}_{t}\right)$ is decidable.

Sketch: It is enough to verify emptiness of the complementary automaton $\neg \mathcal{A}_{t}^{\phi}$ over all valid parse trees.

A new result, cf. the talk of D. Seese:
Theorem 6.3. [Seese and PH, 2004] Let \mathcal{N} be a class of matroids that are representable by matrices over \mathbb{F}. If the monadic second-order theory $\operatorname{Th}_{\text {MSO }}(\mathcal{N})$ is decidable, then the class \mathcal{N} has bounded branch-width.
(Analogous to a result of [Seese, 1991] on the $M S_{2}$ theory of graphs.)

