On Decidability of MSO Theories of Representable Matroids

Petr Hliněný *

Department of Computer Science FEI, VŠB – Technical University of Ostrava Czech Republic

e-mail: petr.hlineny@vsb.cz

Detlef Seese

Institute AIFB, University Karlsruhe (TH) Germany

e-mail: seese@aifb.uni-karlsruhe.de

1 Motivation

Graph Tree-Width and Logic

- [Seese, 1975] Undecidability of an MSO theory of large grids.
- [Robertson and Seymour, 80's 90's] The *Graph Minor Project*: WQO of (finite) graphs by minors, notion of tree-width, algorithmic consequences.
- [Courcelle, 1988] Decidability of an MSO theory of graphs: The class of all (finite) graphs of bounded tree-width has decidable MS_2 theory. (Independently by [Arnborg, Lagergren, and Seese, 1991].)
- [Seese, 1991] Decidability of the MS_2 theory implies bounded tree-width.

Results closely related to *linear-time algorithms* on bounded tree-width graphs.

Extending to Matroids

- [Geelen, Gerards, Robertson, Whittle, and ..., late 90's future] Extending the *ideas of graph minors* to matroids (over finite fields).
- [PH, 2002] *Decidability for matroids*: The class of all GF(q)-representable matroids of bounded branch-width has a decidable MSO theory.
- [PH, Seese] Decidability of matr. MSO *implies bounded branch-width*.

2 Basics of Matroids

A matroid is a pair $M = (E, \mathcal{B})$ where

- E = E(M) is the ground set of M (elements of M),
- $\mathcal{B} \subseteq 2^E$ is a collection of *bases* of M,
- the bases satisfy the "exchange axiom" $\forall B_1, B_2 \in \mathcal{B} \text{ and } \forall x \in B_1 - B_2,$ $\exists y \in B_2 - B_1 \text{ s.t. } (B_1 - \{x\}) \cup \{y\} \in \mathcal{B}.$

Otherwise, a *matroid* is a pair $M = (E, \mathcal{I})$ where

• $\mathcal{I} \subseteq 2^E$ is the collection of *independent sets* (subsets of bases) of M.

The definition was inspired by an abstract view of *independence* in linear algebra and in combinatorics [Whitney, Birkhoff, Tutte,...].

Notice exponential amount of information carried by a matroid.

Literature: J. Oxley, Matroid Theory, Oxford University Press 1992,1997.

Some elementary matroid terms are

- *independent set* = a subset of some basis, *dependent set* = not independent,
- *circuit* = minimal dependent set of elements, *triangle* = circuit on 3 elements,
- *hyperplane* = maximal set containing no basis,
- <u>rank function</u> $r_M(X)$ = maximal size of an *M*-independent subset $I_X \subseteq X$ ("dimension" of *X*).

(Notation is taken from linear algebra and from graph theory...)

Axiomatic descriptions of matroids via independent sets, circuits, hyperplanes, or rank function are possible, and often used.

4

Vector matroid — a straightforward motivation:

- Elements are vectors over ${\mathbb F}$,
- independence is usual linear independence,
- the vectors are considered as columns of a matrix A ∈ F^{r×n}.
 (A is called a *representation* of the matroid M(A) over F.)

Not all matroids are vector matroids.

An example of a rank-3 vector matroid with 8 elements over GF(3):

Graphic matroid M(G) — the combinatorial link:

- Elements are the edges of a graph,
- \bullet independence $\ \sim\$ acyclic edge subsets,
- \bullet bases $\,\sim\,$ spanning (maximal) forests,
- $\bullet~{\rm circuits}~\sim~{\rm graph}$ cycles,
- the rank function $r_M(X)$ = the number of vertices minus the number of components induced by X.

Only few matroids are graphic, but all *graphic ones are vector matroids* over any field. **Example:**

Matroid operations

Rank of $X \sim \text{matrix rank}$, or the number of vertices minus the number of components induced by X in graphs.

Matroid duality M^* (exchanging bases with their complements) \sim topological duality in planar graphs, or transposition of standard-form matrices (i.e. without some basis).

Matroid element deletion \sim usual deletion of a graph edge or a vector.

Matroid element contraction (corresponds to deletion in the dual matroid) \sim edge contraction in a graph, or projection of the matroid from a vector (i.e. a linear transformation having a kernel formed by this vector).

Matroid minor — obtained by a sequence of element deletions and contractions, order of which does not matter.

7

3 MSO Theories

For graphs

- Adjacency graphs formed by vertices and an adjacency relation. $\rightarrow MS_1$ theory.
- Incidence graphs formed by vertices and edges (two-sorted structure), with an incidence relation. $\rightarrow MS_2$ theory.

Decidability of theories

A theory $Th_L(S)$ – language L (=MSO) applied to a class S of structures.

Input: A sentence $\phi \in L$ (closed formula).

Question: Is $\mathbb{S} \models \phi$? In other words, is ϕ true for all structures $S \in \mathbb{S}$?

This problem algorithmically solvable $\leftrightarrow \operatorname{Th}_L(S)$ decidable.

MSO Theory of Matroids

A matroid in logic – the ground set E = E(M) with all subsets 2^E , – and a predicate indep on 2^E , s.t. indep(F) iff $F \subseteq E$ is independent. The MSO theory of matroids – language of MSOL applied to such matroids. Basic expressions:

- $basis(B) \equiv indep(B) \land \forall D(B \not\subseteq D \lor B = D \lor \neg indep(D))$ A basis is a maximal independent set.
- circuit(C) ≡ ¬ indep(C) ∧ ∀D(D ⊈ C ∨ D = C ∨ indep(D))
 A circuit C is dependent, but all proper subsets of C are independent.
- cocircuit(C) ≡ ∀B[basis(B) → ∃x(x ∈ B ∧ x ∈ C)] ∧ ∧∀X[X ⊈ C ∨ X = C ∨ ∃B(basis(B) ∧ ∀x(x ∉ B ∨ x ∉ X))]
 A cocircuit C (a dual circuit) intersects every basis, but each proper subset of C is disjoint from some basis.

Theorem 3.1. (PH) Any MS_2 sentence about a graph G can be formulated as a (matroidal) MSO sentence about the cycle matroid $M(G \uplus K_3)$.

 $(G \uplus K_3, \text{ adding three vertices adjacent to everything, makes a 3-connected graph.)$

Computability and decidability on matroids

Graph or matroid *branch-width* – like tree-width, being "close to a tree". A matroid M of bounded branch-width \rightarrow a *parse tree* \overline{T} for $M = P(\overline{T})$.

Theorem 3.2. (PH) Let \mathbb{F} be a finite field, $t \geq 1$, and ϕ be a sentence in MSOL of matroids. Then there exists a (constructible) finite tree automaton \mathcal{A}_t^{ϕ} accepting those parse trees for matroids which posses ϕ , i.e. those \overline{T} such that $P(\overline{T}) \models \phi$.

This result, together with an algorithm constructing the parse tree, provides an efficient way to verify MSO-definable properties over matroids of bounded branch-width.

Corollary 3.3. If \mathcal{B}_t is the class of all matroids representable over \mathbb{F} of branchwidth at most t, then the theory $\mathsf{Th}_{MSO}(\mathcal{B}_t)$ is decidable.

Sketch: It is enough to verify emptiness of the complementary automaton $\neg A_t^{\phi}$ over all valid parse trees.

Our main result reads:

Theorem 3.4. Let \mathbb{F} be a finite field, and let \mathbb{N} be a class of matroids that are representable by matrices over \mathbb{F} . If the monadic second-order theory $\operatorname{Th}_{MSO}(\mathbb{N})$ is decidable, then the class \mathbb{N} has bounded branch-width. (Analogous to a result of [Seese, 1991] on the MS_2 theory of graphs.)

4 Interpretation of Theories

... the way to prove (un)decidability of logic theories.

An interpretation I of a theory $\mathsf{Th}_L(\mathcal{K})$ in a theory $\mathsf{Th}_{L'}(\mathcal{K}')$ is as follows:

$\forall \ \varphi \in L$	Ι	$\varphi^I \in L'$
$\forall \ H \in \mathcal{K}$	\longrightarrow	$G\in \mathcal{K}'$
$H \simeq G^I$	I 	$\forall G$

We are using the results of:

Theorem 4.1. (Rabin) If $Th_L(\mathcal{K})$ is interpretable in $Th_{L'}(\mathcal{K}')$, then undecidability of $Th_L(\mathcal{K})$ implies undecidability of $Th_{L'}(\mathcal{K}')$.

Theorem 4.2. (Seese) Let \mathcal{K} be a class of adjacency graphs such that for every integer m > 1 there is a graph $G \in \mathcal{K}$ such that G has the $m \times m$ grid Q_m as an induced subgraph. Then the MS_1 theory of \mathcal{K} is undecidable.

Theorem 4.3. (Geelen, Gerards, Whittle) For every finite field \mathbb{F} ; a class \mathbb{N} of \mathbb{F} -representable matroids has bounded branch-width if and only if there exists a constant m such that no matroid $N \in \mathbb{N}$ has a minor isomorphic to $M(Q_m)$.

Hence, we interpret the MS_1 theory of grids in the matroidal MSO theory of \mathcal{N}_{\cdots}

Sketch of the interpretation proof

The seemingly straightforward way – interpreting graphs (\sim large grids) in their cycle matroids, gets stuck due to technical details. (Definability of the underlying graphs, insufficient connectivity, ...)

Our approach to *Theorem 3.4* ("decidability \Rightarrow bounded branch-width"):

- If the matroid theory $\operatorname{Th}_{MSO}(\mathcal{N})$ is decidable, then so is the theory $\operatorname{Th}_{MSO}(\mathcal{N}_{\min or})$ of all minors of the class \mathcal{N} (i.e. minors are definable in matroid MSOL).
- By Theorem 4.3 [Geelen, Gerards, Whittle], the class $\mathcal{N}_{\rm minor}$ contains arbitrary matroid grids $M(Q_m)$ if \mathcal{N} has unbounded branch-width.

• A 4CC-graph of a matroid M is the graph on the vertex set E(M), with edges joining those pairs of elements which belong to a common 4-element circuit and a 4-element cocircuit (bond) in M.

The 4CC-graph of the grid matroid $M(Q_m)$ ($m \ge 6$ even) has an induced subgraph isomorphic to the grid Q_{m-2} .

- Let $\mathcal{F}_{\mathcal{N}}$ be the class of all 4CC-graphs of matroids in \mathcal{N} . Then the theory $\mathsf{Th}_{MS_1}(\mathcal{F}_{\mathcal{N}})$ is interpretable in the theory $\mathsf{Th}_{MSO}(\mathcal{N})$. Hence by Theorem 4.1 [Rabin], undecidability of $\mathsf{Th}_{MS_1}(\mathcal{F}_{\mathcal{N}})$ implies undecidability of $\mathsf{Th}_{MSO}(\mathcal{N})$.
- Finally, Theorem 4.2 [Seese] states that $\operatorname{Th}_{MS_1}(\mathfrak{F}_N)$ is undecidable if \mathfrak{F}_N , hence also if \mathfrak{N} , contain large grids.

Conversely, if $\text{Th}_{MSO}(\mathcal{N})$ is decidable, then the previous (large grids) cannot be true, and so \mathcal{N} has bounded branch-width.