Petr Hliněný

On the Computational Complexity of Matroid Minors

Department of Computer Science
FEI, VŠB - Technical University of Ostrava
and
Institute of Theoretical Computer Science
MFF, Charles University, Czech Republic
e-mail: petr.hlineny@vsb.cz
http://www.cs.vsb.cz/hlineny

2000 Math Subjects Classification: 05B35, 05C83, 68R05

1 Motivation

The Graph Minor Project 80's - 90's
[Robertson and Seymour, others later...]

- Proved Wagner's conjecture - WQO property of graph minors. (Among the partial steps: WQO of graphs of bounded tree-width, excluded grid theorem, description of graphs excluding a complete minor.)
- Testing for an arbitrary fixed graph minor in cubic time.

Extending to Matroids late 90's - future
[Geelen, Gerards, Robertson, Whittle, ...]

- WQO property of minors for matroids of bounded branch-width over a fixed finite field.
- "Excluded grid" theorem for matroid branch-width (without long lines).
- Geelen: Conjectured structure of finite-field representable matroids excluding a projective geometry minor.
- So, what is the complexity of testing for a fixed matroid minor?

2 Basics of Matroids

A matroid is a pair $M=(E, \mathcal{B})$ where

- $E=E(M)$ is the ground set of M (elements of M),
- $\mathcal{B} \subseteq 2^{E}$ is a collection of bases of M,
- the bases satisfy the "exchange axiom"

$$
\begin{aligned}
& \forall B_{1}, B_{2} \in \mathcal{B} \text { and } \forall x \in B_{1}-B_{2}, \\
& \quad \exists y \in B_{2}-B_{1} \text { s.t. }\left(B_{1}-\{x\}\right) \cup\{y\} \in \mathcal{B} .
\end{aligned}
$$

Otherwise, a matroid is a pair $M=(E, \mathcal{I})$ where

- $\mathcal{I} \subseteq 2^{E}$ is the collection of independent sets (subsets of bases) of M.

The definition was inspired by an abstract view of independence in linear algebra and in combinatorics [Whitney, Birkhoff, Tutte,...].

Notice exponential amount of information carried by a matroid.
Literature: J. Oxley, Matroid Theory, Oxford University Press 1992,1997.

Some elementary matroid terms are

- independent set $=$ a subset of some basis, dependent set $=$ not independent,
- circuit $=$ minimal dependent set of elements, triangle $=$ circuit on 3 elements,
- hyperplane $=$ maximal set containing no basis,
- rank function $\mathrm{r}_{M}(X)=$ maximal size of an M-independent subset

$$
I_{X} \subseteq X(\text { "dimension" of } X)
$$

(Notation is taken from linear algebra and from graph theory...)
Axiomatic descriptions of matroids via independent sets, circuits, hyperplanes, or rank function are possible, and often used.

Vector matroid - a straightforward motivation:

- Elements are vectors over \mathbb{F},
- independence is usual linear independence,
- the vectors are considered as columns of a matrix $\boldsymbol{A} \in \mathbb{F}^{r \times n}$. (\boldsymbol{A} is called a representation of the matroid $M(\boldsymbol{A})$ over \mathbb{F}.)

Not all matroids are vector matroids.
An example of a rank-3 vector matroid with 8 elements over $G F(3)$:

Graphic matroid $M(G)$ - the combinatorial link:

- Elements are the edges of a graph,
- independence \sim acyclic edge subsets,
- bases \sim spanning (maximal) forests,
- circuits \sim graph cycles,
- the rank function $\mathrm{r}_{M}(X)=$ the number of vertices minus the number of components induced by X.

Only few matroids are graphic, but all graphic ones are vector matroids over any field.

Example:

K_{4}

Matroid operations

Rank of $X \sim$ matrix rank, or the number of vertices minus the number of components induced by X in graphs.

Matroid duality M^{*} (exchanging bases with their complements) \sim topological duality in planar graphs, or transposition of standard-form matrices (i.e. without some basis).
Matroid element deletion \sim usual deletion of a graph edge or a vector.
Matroid element contraction (corresponds to deletion in the dual matroid) \sim edge contraction in a graph, or projection of the matroid from a vector (i.e. a linear transformation having a kernel formed by this vector).

Matroid minor - obtained by a sequence of element deletions and contractions, order of which does not matter.

3 Importance of Matroid Minors

Usual way to describe (characterize) matroid properties. . .

- [Tutte] Matroid is representable over $G F(2)$ iff it contains no $U_{2,4}$ (4element line) as a minor.
- [Tutte] Matroid is graphic iff it contains no $U_{2,4}$, no F_{7} (Fano plane), no $F_{7}^{*}, M\left(K_{5}\right)^{*}, M\left(K_{3,3}\right)^{*}$ as a minor.
- [Tutte] Matroid is representable over any field iff it contains no $U_{2,4}, F_{7}$, F_{7}^{*} as a minor.
- [Bixby, Seymour] Matroid is representable over $G F(3)$ iff it contains no $U_{2,5}$ (5-element line), no $U_{3,5}=U_{2,5}^{*}, F_{7}, F_{7}^{*}$ as a minor.
- [Geelen, Gerards, Kapoor] The excluded minors for matroid representability over $G F(4)$.
- [Geelen, Gerards, Whittle] Matroid representable over finite field has small branch-width iff it contains no matroid of a large grid graph as a minor. ("Excluded grid" theorem)

4 Complexity of Matroid Minors

We consider the following matroid N-minor problem:
Input. An (\mathbb{F}-represented) matroid M on n-elements.
Parameter. An arbitrary matroid N.
Question. Is N isomorphic to some minor of M ?
(N arbitrary, but fixed, not part of the input!)

Remark. About matroids on an input:
To describe an n-element matroid, one has to specify properties of all 2^{n} subsets. So giving a complete description on the input would ruin any complexity measures.

Solutions:

Give a special matroid with a particular small representation. (Likewise a matrix for a vector matroid.)
Give a matroid via a rank oracle - answering queries about the rank.

Known Results

	N a planar matroid	N an arbitrary matroid
M is a graphic matroid	$O(n)$	$O\left(n^{3}\right)$
M an "abstract" matroid M of bounded branch-width represented over finite field M represented over finite field M of branch-width 3 represented over \mathbb{Q}	$N P H(E X P)$ $\begin{aligned} & O\left(n^{3}\right) \\ & O\left(n^{3}\right) \end{aligned}$ NPC	$N P H(E X P)$ $O\left(n^{3}\right)$?? NPC

Finite field - $G F(q)$.
\mathbb{Q} - rational numbers (holds also for other infinite fields).
Planar matroid - of a planar graph.
Small branch-width \sim structured "almost" like a tree.

References

- About minors in graphic matroids: [Robertson and Seymour: Graph Minors], and [Bodlaender: A linear time algorithm for tree-width].
- About minors of small branch-width matroids: [PH: Recognizability of MSO-definable properties of representable matroids].
- About planar minors in matroids: [Geelen, Gerards, Whittle: An "Excluded grid" theorem for matroid branchwidth].
- The new $N P$-hardness results:

Theorem 4.1. Given an n-element \mathbb{Q}-represented matroid M of branchwidth 3, it is NP-complete to decide whether M has a minor isomorphic to the (planar) cycle matroid $M\left(G_{6}\right)$.

5 Recognizing the Free Spikes

Definition. Let S_{0} be a matroid circuit on $e_{0}, e_{1}, \ldots, e_{n}$, and S_{1} an arbitrary simple matroid obtained from S_{0} by adding n new elements f_{i} such that e_{0}, e_{i}, f_{i} are triangles. Then the matroid $S=S_{1} \backslash e_{0}$ is a rank- n spike.

A typical matrix representation of a spike ($x_{i} \neq 1$):

$$
\begin{aligned}
& \begin{array}{llllllllll}
e_{1} & e_{2} & \ldots & e_{n-1} & e_{n} & f_{1} & f_{2} & \ldots & f_{n-1} & f_{n}
\end{array} \\
& {\left[\begin{array}{cccccccccc}
1 & 0 & \cdots & 0 & 0 & x_{1} & 1 & \cdots & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & x_{2} & 1 & 1 & 1 \\
\vdots & 0 & \ddots & 0 & \vdots & \vdots & 1 & \ddots & 1 & \vdots \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & x_{n-1} & 1 \\
0 & 0 & \cdots & 0 & 1 & 1 & 1 & \cdots & 1 & x_{n}
\end{array}\right]}
\end{aligned}
$$

Sketch of proof of Theorem 4.1:

Lemma 5.1. (folklore) Let S be a rank-n spike where $n \geq 3$. Then
(a). the union of any two legs forms a 4-element circuit in S,
(b). every other circuit intersects all legs of S, and
(c). branch-width of S is 3 .

Definition. The free spike is a spike having no unforced dependencies.
Theorem 5.2. Let $n \geq 5$, and let S be a \mathbb{Q}-represented rank-n spike. Then it is $N P$-hard to recognize that S is not the free spike.

Matroid structure is determined by the subdeterminants of the reduced representation, in this case by subdeterminants of the following kind:

\[

\]

Lemma 5.3. Let S be a rank-n spike for $n \geq 5$ that. Then S is not the free spike iff S has an $M\left(G_{6}\right)$-minor.

Use one of the leg cycles to get the triangle, and one of the extra dependencies to get the quadrangle...

