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Abstract

Tree-like decompositions, and the notions of tree-width and branch-width were
successfully formalized in the deep Graph Minor project by Robertson and Sey-
mour. Since then they have found many interesting applications in combina-
torics, logic, and computer science. Following this success, researchers have
thoroughly consider branch-width of matroids, and extended many of the inter-
esting graph results to matroid theory.

The recent approximation algorithm for clique-width of a graph by Oum and
Seymour, and subsequent (logic-oriented) results by Courcelle and Oum clearly
show how matroidal extensions of graphic results can be useful back in graph
theory and logic. The main goal of our presentation is to introduce matroids,
and to show the traditional tree-width of graphs can be defined in a “vertex-
free” fashion, and hence extended to matroids.

Part of the results in this talk are based on joint works with Detlef Seese, AIFB,
University Karlsruhe, and with Geoff Whittle, Victoria University of Wellington.
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1 Motivation

The Graph Minor Project

[Robertson and Seymour, 80’s – 90’s], [others later. . . ]

• Formalized the notions of tree-width and branch-width (similar notions).

• Proved Wagner’s conjecture – WQO property of graph minors.
(Among the partial steps: WQO of graphs of bounded tree-width, excluded grid

theorem, description of graphs excluding a complete minor.)

• Testing for an arbitrary fixed graph minor in cubic time.

Tree-like Graphs and Logic

• [Seese, 1975] Undecidability of MSO theories of large grids.

• [Courcelle, 1988] Decidability of an MSO theory of graphs: The class of
all (finite) graphs of bounded tree-width has a decidable MS2 theory.
(Also by [Arnborg, Lagergren, and Seese, 1991] via interpretation.)

• [Seese, 1991] Decidability of theMS2 theory implies bounded tree-width.

Seese’s conjecture: Any class of countable structures with a decidable MSO
theory has an MSO interpretation in a class of trees. (C.f. Rabin’s S2S.)
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Matroidal Extensions

• [Geelen, Gerards, Robertson, Whittle, and . . . , late 90’s – future]
Extending the ideas of graph minors to matroids (over finite fields).
(For example: WQO, excluded grid theorem, other technical results. . . )

• [PH, 2002] Decidability for matroids: The class of all GF (q)-represent-
able matroids of bounded branch-width has a decidable MSO theory.

• [Whittle and PH, 2003, (Geelen)] Matroidal (vertex-free, i.e. mapping
only edges) definition of tree-width.

• [Seese and PH, 2004] Decidability of the MSO theory implies a bounded
branch-width. (Hence an interpretation in trees.)

Clique-Width and Rank-Width

• [Courcelle et al, 1993] The definition of a clique-width – constructing a
graph using a bounded number of labels.

• [C., Makowsky, Rotics, 2000] Decidability of theMS1 theory for gr. cl.-w.

• [Oum and Seymour, 2003] An approximation of a graph clique-width via
rank-width, which actually comes from matroidal branch-width.

• [Courcelle and Oum, 2004] Decidability of the C2MS1 theory implies a
bounded clique-width. (Hence an interpretation in trees.)
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We can see above an interesting blend of (deep) ideas from

– structural graph and matroid theories: tree-like decompositions,

– logic: models and decidability, interpretability, and

– computational (parametrized) complexity,

proving often very deep and nice results. . .

Algorithmic Consequences

• Graph Minor project
⇒ every minor-closed graph property can be tested in cubic time!

(For example, also the problem of a “knotless embedding”.)

• Decidability of MS2 + Bodlaender’s algorithm
⇒ every MS2-definable property can be computed in linear time on

graphs of bounded tree-width.

(For example, 3-colourability, hamiltonicity, clique, etc.)

• Similar results for MS1 properties on graphs of bounded clique-width,

• and for MSO properties on GF (q)-r. matroids of bounded branch-width.
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2 Basics of Matroids

A matroid is a pair M = (E,B) where

• E = E(M) is the ground set of M (elements of M),

• B ⊆ 2E is a collection of bases of M ,

• the bases satisfy the “exchange axiom”
∀B1, B2 ∈ B and ∀x ∈ B1 −B2,

∃y ∈ B2 −B1 s.t. (B1 − {x}) ∪ {y} ∈ B.

Otherwise, a matroid is a pair M = (E, I) where

• I ⊆ 2E is the collection of independent sets (subsets of bases) of M .

The definition was inspired by an abstract view of independence in linear algebra and
in combinatorics [Whitney, Birkhoff, Tutte,. . . ].

Notice exponential amount of information carried by a matroid.

Literature: J. Oxley, Matroid Theory, Oxford University Press 1992,1997.
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Some elementary matroid terms are

• independent set ≈ a subset of some basis,
dependent set ≈ not independent,

• circuit ≈ a minimal dependent set of elements,
triangle ≈ a circuit on 3 elements,

• hyperplane ≈ a maximal set containing no basis,
cocircuit ≈ the complement of a hyperplane,

• rank function ≈ “dimension” of X,
rM (X) = maximal size of an M -independent subset IX ⊆ X.

(Notation is taken from linear algebra and from graph theory. . . )

Axiomatic descriptions of matroids via independent sets, circuits, hyperplanes, or rank

function are possible, and often used.
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Vector matroid — a straightforward motivation:

• Elements are vectors over
�

,

• independence is usual linear independence,

• the vectors are considered as columns of a matrix A ∈
�

r×n.
(A is called a representation of the matroid M(A) over

�
.)

Not all matroids are vector matroids.

An example of a rank-3 vector matroid with 8 elements over GF (3):
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Graphic matroid M(G) — the combinatorial link:

• Elements are the edges of a graph,

• independence ∼ acyclic edge subsets,

• bases ∼ spanning (maximal) forests,

• circuits ∼ graph cycles,

• the rank function rM (X) = the number of vertices minus the number
of components induced by X.

Only few matroids are graphic, but all graphic ones are vector matroids over any field.

Example:

K4 M(K4)
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3 Tree-Width and Branch-Width

[Robertson and Seymour]

A tree decomposition of a graph G is a pair (T, β), where T is a tree and
β : V (T ) → 2V (G) is a mapping (to “bags”) satisfying the following:

• For each edge e = uv ∈ E(G) exists x ∈ V (T ) such that {u, v} ⊆ β(x).

• (IP) If x ∈ V (T ), and if y, z ∈ V (T ) are two vertices in distinct compo-
nents of T − x, then β(y) ∩ β(z) ⊆ β(x).

Tree-width = min. of max. “bag” sizes |β(x)| − 1 over all decompositions.
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{3678}{1348}

{1568}
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Matroid Connectivity – an alternative view of graph connectivity

Connectivity function λG(X) = number of vertices in G
incident both with edges of X and of E(G) −X.

A 4-separation in a graph:

A 3-separation in a matroid:

Matroid connectivity λM (X) = rM (X) + rM (E −X) − r(M) + 1

(geometrically the “rank of spans intersection” 〈X〉 ∩ 〈E −X〉 plus 1).

A k-separation (X,E −X) : λ(X) ≤ k and |X|, |E −X| ≥ k.

Then, high connectivity ≈ no small separations.
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The (often better) alternative to a tree decomposition: [Robertson and Seymour again]

Graphs or matroids (or arb. sym. submod. λ) −→ a branch decomposition.

• Decomposed to a cubic tree (degrees ≤ 3), and

• edges / elements mapped one-to-one to the tree leaves
(with no reference to graph vertices).

• Tree edges have the width as follows:

eX E −X

width(e) = λ(X) where X is “displayed” by e in the tree.

(Using graph connectivity λG(), or matroid connectivity λM (), resp.)

Branch-width = min. of max. edge widths over all decompositions.

(Branch-width is within a constant factor of tree-width.)
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Branch decompositions of matroids

both of width 3:
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4 Logic of Matroids to Clique-Width

MSOL – monadic second-order logic:
propositional + quantification over elements and sets.

MSOL + class of structures =⇒ MSO theory (of the structures).

Matroidal MSO Theory

A matroid in logic – the ground set E = E(M) with all subsets 2E ,
– and a predicate indep on 2E , s.t. indep(F ) iff F ⊆ E is independent.

The MSO theory of matroids – language of MSOL applied to such matroids.

Some basic expressions:

• basis(B)≡ indep(B) ∧ ∀D(B 6⊆ D ∨B = D ∨ ¬ indep(D))
A basis is a maximal independent set.

• circuit(C)≡ ¬ indep(C) ∧ ∀D(D 6⊆ C ∨D=C ∨ indep(D))
A circuit C is dependent, but all proper subsets of C are independent.

Expressive Power of Matroidal MSO

– [PH] equivalent to graph MS2, quantification over vertices and edges
(assuming 3-connectivity for technical reasons).
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Clique-Width of a graph G

= the minimal k s.t. there is a k-expression constructing G.

A k-expression over vertex-labeled graphs with k labels:

– Creation of a new vertex of label i,

– disjoint union,

– addition of all edges between the vertices of label i and j, and

– relabeling all vertices of label i to j, where 1 ≤ i, j ≤ k.

(The underlying tree of this definition is the parse tree of the expression.)

Some interesting facts:

• The clique-width of a clique is 2, the clique-width of a large grid is large.

• [Courcelle, Makowsky, Rotics, 2000] The MS1 theory (quantification over
vertices only) of all graphs of bounded clique-width is decidable.

• [Oum, Seymour, 2003] A polynomial approximation algorithm for clique-
width of a graph (between k and 8k) – so no need for an expression on
the input now.
Algorithm uses a factor-3 approximation of rank-width – a symmetric
submodular function, equal to matroid branch-width for bipartite graphs.
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Decidability of Theories

Decidability of a theory T ≈
for every formula ψ one can (algorithmically) decide whether T |= ψ.

For matroids (analogously to an MS2 theory of graphs [Seese, 1991]). . .

Theorem 4.1. [Seese and PH, 2004] Let N be a class of matroids that are

representable by matrices over
�

. If the MSO theory of N is decidable, then

the class N has bounded branch-width.

For a (weaker) MS1 theory of graphs. . .

Theorem 4.2. [Courcelle and Oum, 2004] Assume that a class K of adjacency

graphs has a decidable C2MS1 theory. Then K has bounded clique-width.

A sketch of logic interpretation:

All graphs of K −→ bipartite graphs −→ “bipartite” binary matroids (vectors
over GF (2) ) −→ (large grids) Theorem 4.1.

=⇒ Bounded branch-width of the “bipartite” matroids =
= the rank-width of the bipartite graphs,

=⇒ a bound on the clique-width of K.
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5 Matroid Tree Decompositions

(First suggestion by [Geelen, unpublished], modified [PH and Whittle, 2003].)

A tree decomposition of a matroid M is (T, τ), where

• T a tree, and τ : E(M) → V (T ) an arbitrary mapping
(nothing like the “bags”!),

• the width of a node x in T is as follows:
Let T1, . . . , Td be the connected components of T − x (branches), then

width of x =
d

∑

i=1

rM

(

E(M) − τ−1(V (Ti))
)

− (d− 1) · r(M) .

T1

T2

T3
xτ : E(M) →

Tree-width of M = min. of max. node widths over all decompositions.

(This parameter equals usual tree-width on graphic matroids!)
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Understanding the width of a node I – projective subspaces:

A “bag” at a node x is seen as the affine closure of the elements at x plus the
guts of the separations induced by the (single) branches of x in the tree.
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Understanding the width of a node II – rank “defects”:

We sum together the rank “defects” happening after deleting the elements of
each (single) branch of the node x in the tree.

width of x =
d

∑

i=1

rM

(

E − τ−1(Vi)
)

− (d− 1) · r(M)

= r(M) −
d

∑

i=1

[

r(M) − rM

(

E − τ−1(Vi)
)]

Our results:

Theorem 5.1. (Whittle and PH, 2003) Let M be a matroid of tree-width k

and branch-width b. Then b− 1 ≤ k ≤ max(2b− 2, 1).

Theorem 5.2. (Whittle and PH, 2003) Let G be a graph with at least one

edge, and let M = M(G) be the cycle matroid of G. Then the tree-width of G

equals the tree-width of M .
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Vertex-Free Graph Tree-Width

A V-F tree decomposition of a graph G is (T, τ), where

• T a tree, and τ : E(G) → V (T ) an arbitrary mapping of edges,

• the width of a node x in T is as follows:

T1

T2

T3
xτ : E(G) →

Let T1, . . . , Td be the connected components of T − x (branches) and
Fi = τ−1(V (Ti)), then (likewise the rank “defect” view)

width of x = |V (G)| −
d

∑

i=1

c(G − Fi) + (d− 1)c(G)

= |V (G)| − c(G) −
d

∑

i=1

[

c(G− Fi) − c(G)
]

,

where c(H) denotes the number of components of H.

Tree-width of M = min. of max. node widths over all decompositions.
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An example of a V-F tree decomposition of width 3:

a

c g h f

e

d

j

b

i

l

k

{}

{deh}

{fkl}{gij}

{abc}

Thank You!

And Merry Christmas!
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