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1 Dept. of Computer Science, VŠB – Technical University of Ostrava,
17. listopadu 15, 70833 Ostrava, Czech Republic

petr.hlineny@vsb.cz

2 Institute AIFB, University Karlsruhe (TH),
D-76128 Karlsruhe, Germany

seese@aifb.uni-karlsruhe.de

Abstract. Monadic second order (MSO) logic proved to be a useful tool
in many areas of application, reaching from decidability and complexity
to picture processing, correctness of programs and parallel processes. To
characterize the structural borderline between decidability and undecid-
ability is a classical research problem here. This problem is related to
questions in computational complexity, especially to the model check-
ing problem, for which many tools developed in the area of decidability
proved to be useful. For more than two decades it was conjectured in
[76] that decidability of monadic theories of countable structures implies
that the theory can be reduced via interpretability to a theory of trees.

It is one of the main goals of this article to prove a variant of this con-
jecture for matroids representable over a finite field. (Matroids can be
viewed as a wide generalization of graphs, and they seem to capture some
second order properties in a more suitable way than graphs themselves,
c.f. the recent development in matroid structure theory [39, 41].) More ex-
actly we prove, for every finite field

�
, that any class of

�
-representable

matroids with a decidable MSO theory must have uniformly bounded
branch-width. Moreover we show that bounding the branch-width of all
matroids in general is not sufficient to obtain a decidable MSO theory.

Our paper gives a (rather detailed) introduction into these different sub-
jects, and shows that a blend of ideas and methods from logic together
with structural matroid theory can lead to new tools and algorithms,
and can shed light into some old open problems.
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1 Introduction

Trying to understand the complexity of decision problems from a descriptional
and parametric point of view leads to the impression that on one side, almost
all uniform approaches for low complexity, i.e. descriptions for classes of prob-
lems solvable in polynomial or even linear time, are related to a similarity of
the input structures to trees, measured e.g. by the tree-width, branch-width or
clique-width, and on the other side, high complexity is related to containment
or definability of large grids inside the input structures.

Of course this is not an exact mathematical correlation, since there are ex-
amples of NP -hard problems for trees (e.g. bandwidth) as well as linear time
solvable problems for large grids (e.g. planarity). The problem to study the
trade-off between the expressive power of the language, the structure of the in-
put objects and the complexity of the algorithmic solution becomes a bit more
tractable in case one fixes the language. One of the languages for which many
suitable and promising results are known is monadic second order logic (MSO
logic), which extends first order logic by allowing quantification over monadic
predicates. This logic is famous for its high expressive power in combination
with a manageable model theory (see e.g. [42] and [35]), and it has found many
applications in different areas, as decidability, model checking, data bases, and
computational complexity.

Of special importance in this area are classes of graphs (or other structures) of
bounded tree-width, branch-width, or clique-width, since for these classes MSO
logic poses besides the good model theory also very good algorithmic properties.
For instance, for MSO logic and several of its extensions one can show that all
problems expressible in it can be solved in polynomial or even in linear time if
they are restricted to classes of structures of bounded tree-width (see e.g. [3]
or [31]), or of bounded clique-width (see [30]).

There are two basic principles in the proofs of those results.
The first one reduces the original problem P to a related problem P ′ for

binary trees (e.g. via interpretability [3], or via transductions [20]), and then
it solves the equivalent problem P ′ for binary trees, which are related to the
original input structure, via standard equivalences of MSO-formulas to tree au-
tomata. This reduction opens a way to solve the problems via usual dynamic
programming techniques, starting the computation in the leaves of the tree which
represent the input structure, and following then all the branches till the root is
reached, performimg only local computations.

The second one uses the idea underlying the Feferman-Vaught theorem [36]
and [78] to reduce the original structure to an equivalent but more simple one, i.e.
the problem is solved via decomposition to smaller structures (see [30] and [56]).
Basically all ideas used here have their historical origin in investigations of de-
cidability of theories.

On the other hand, if classes of structures of unbounded tree-width are re-
garded, then it is often easy to find a reduction of the square tiling problem
(see [37]) to the original problem P and thus showing that it is NP -hard. Here
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one often uses the existence of large grid substructures in the input structures
to encode the tiling area, while monadic predicates are used to code the tiles.
Also this technique is a basic technique developed and used for proofs of the
undecidability of theories, e.g. of planar graphs [46, 38] (see also [71, 72]).

Looking more closely to algorithmic complexity of decision problems as well
as to the decidability of theories, one can observe many similarities. Large grids
can often be used to show high complexity of decision problems as well as unde-
cidability of theories and the similarity to trees of the regarded input structures
or the structure of the models often leads to efficient solution algorithms of the
regarded problems or to decision procedures of the corresponding theories. A
certain explanation of the structural gap between graphs containing grids on
one side and graphs of bounded tree-width on the other is given by the land-
mark result of Robertson and Seymour – that graphs without large grids as
minors have a universally bounded tree-width [65]. This result is a part of their
famous Graph Minor project [64] which, besides many deep theoretical results,
also revolutionized the area of algorithm design in computer science.

It is interesting to observe that, for the decidability/undecidability question,
the structural borderline between easy (i.e. decidable) and difficult (i.e. unde-
cidable) appears in a more clear way than for the P vs. NP problem. This is
not surprising since the decidability of a theory is a very strong assumption –
there has to be an algorithm solving satisfiability for all formulas of the language
restricted to all structures of the class of models. Moreover, to show that a the-
ory is undecidable it is often not very difficult to find a formula in the language
defining an arbitrarily given tiling problem inside the models containing suit-
able large grids. It was one of the fundamental observations since the start of
investigation of decidability of MSO theories in the 60’s (see e.g. [13]); that all
decidable MSO theories found could be reduced via interpretability to Rabin’s
landmark result on the decidability of S2S [61], the MSO theory of two successor
functions, in other words the MSO theory of the infinite binary tree. This was
observed in [72] (see also [70, 71]), and led in [76] (see also [77]) to the conjecture
that all decidable MSO theories of arbitrary classes of countable structures are
interpretable into a certain class of trees via interpretability. Several success-
ful attempts to prove special cases of this conjecture were made in [27, 33] (see
also [19, 22, 26]), but the full general case is still open (cf. the last section).

One of the goals of this article is to show that the conjecture holds true for
matroids representable over finite fields.

Matroids are of special interest here because they present a strong combi-
natorial generalization of graphs. Nowadays, one can witness in the matroid
community a great effort to extend the above mentioned Robertson-Seymour’s
Graph Minor project as far as possible to matroids, followed by important new
structural results about representable matroids, e.g. [39–41]. Building on those
structural advances, and on our recent results [47, 48] , we work on extending
the above mentioned decidability results for MSO theories from graphs to ma-
troids as more general combinatorial structures. We note that these extensions
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are interesting not only to matroid theory – they can bring new advances also
for graph theories, for example [33] (see also in Section 3).

This paper, which is the extended full version of [52], is organized as follows:
Since the paper is intended for general computer-science and logic audiences,

we provide basic definitions and facts concerning matroid structure and branch-
width from combinatorics, and decidability and interpretability of theories from
mathematical logic, in the next three sections. We then bring up the MSO logic
of matroids in Section 5, and present some related recent results there; like we
show [47] that the MSO theory of the class of all matroids of bounded branch-
width over a finite field is decidable.

We present our main result in Section 6 (Theorem 6.2), which extends the
results from [76]: We prove that, for every finite field, a class of matroids repre-
sentable over it and with a decidable MSO theory must have uniformly bounded
branch-width. These results for matroids asre of special interest since, on one
side, matroids naturally include the set concept in their structure, and allow in
spite of this decidable MSO theories with high expressive power. On the other
side, matroids have a rich structure theory, allowing to code graphs in a natural
way (and the conjecture is still open for arbitrary graphs). In contrast to ma-
troids, the other class of structures including the set concept in a natural way –
Boolean algebras, lead immediately to undecidable MSO theories if their size is
not bounded. Yet in Section 7 we exhibit undecidability of the MSO theory for
matroid classes of bounded branch-width, but not restricted by representability
(specifically, for the spikes of branch-width three, Theorem 7.2).

Finally, regarding current work in progress (e.g. [53]), we present some in-
formal thoughts and questions about decidable MSO theories of matroids in
general (not restricted by the representability assumption). In particular, we ask
about other, structurally different, matroidal obstructions to MSO decidability
than traditional grids (c.f. Corollary 7.8). We relate those interesting questions
to the conjecture about interpretability of all decidable MSO theories in trees.
In connection with the mentioned work [33] of Courcelle and Oum on the C2MS
theory of graphs of bounded clique-width, we remark on an example of a theory
which is undecidable in C2MS but decidable in pure MSO logic. (So proving
the conjecture for C2MS does not imply a proof of the complete conjecture for
MSO.)

2 Basics of Matroids

We assume that the reader is familiar with graph theory. Since our paper gen-
eralizes graph results to matroids, which are far less known than graphs, we
include a brief introduction to necessary matroidal concepts here. We refer to
Oxley [57] for our matroid terminology.

A matroid is a pair M = (E,B) where E = E(M) is the ground set of M
(elements of M), and B ⊆ 2E is a nonempty collection of bases of M . Moreover,
matroid bases satisfy the “exchange axiom”; if B1, B2 ∈ B and x ∈ B1 − B2,
then there is y ∈ B2 − B1 such that (B1 − {x}) ∪ {y} ∈ B. We consider only
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finite matroids. Subsets of bases are called independent sets, and the remaining
sets are dependent. Minimal dependent sets are called circuits. All bases have the
same cardinality called the rank r(M) of the matroid. The rank function rM (X)
in M is the maximal cardinality of an independent subset of a set X ⊆ E(M).
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Fig. 1. An example of a vector representation of the cycle matroid M(K4). The matroid
elements are depicted by dots, and their (linear) dependency is shown using lines.

If G is a (multi)graph, then its cycle matroid on the ground set E(G) is
denoted by M(G). The independent sets of M(G) are acyclic subsets (forests) in
G, and the circuits of M(G) are the cycles in G. Another example of a matroid
is a finite set of vectors with usual linear dependency. If A is a matrix, then
the matroid formed by the column vectors of A is called the vector matroid
of A, and denoted by M(A). The matrix A is a representation of a matroid
M 'M(A). We say that the matroidM(A) is � -represented if A is a matrix over
a field � . (Fig. 1.) A graphic matroid, i.e. a cycle matroid of some multigraph,
is representable over any field.

An interesting question about matroids arises in connection with computa-
tional complexity: What is the input size of an n-element matroid? Truth saying,
it is Θ(2n) since a matroid carries information about all subsets of its ground
set, but acceptance of that would ruin any reasonable algorithmic complexity
measures. That is why matroids are considered with particular representations of
polynomial size, like the above mentioned graphic or vector matroids over finite
fields, or as an abstract matroid given by an oracle (answering queries about the
rank function). In general it is hard (exponential) to tell whether an abstract
matroid is representable by a matrix, but one can test whether a matroid is
graphic in polynomial time, both in [79].

The dual matroid M∗ of M is defined on the same ground set E, and the
bases of M∗ are the set-complements of the bases of M . A set X is coindependent
in M if it is independent in M ∗. An element e of M is called a loop (a coloop), if
{e} is dependent in M (in M∗). The matroid M \ e obtained by deleting a non-
coloop element e is defined as (E − {e},B−) where B− = {B : B ∈ B, e 6∈ B}.
The matroid M/e obtained by contracting a non-loop element e is defined using
duality M/e = (M∗ \ e)∗. (This corresponds to contracting an edge in a graph.)
A minor of a matroid is obtained by a sequence of deletions and contractions of
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elements. Since these operations naturally commute, a minor M ′ of a matroid
M can be uniquely expressed as M ′ = M \D/C where D are the coindependent
deleted elements and C are the independent contracted elements. The following
claim is folklore in matroid theory:

Lemma 2.1. Let N = M \ D/C. Then a set X ⊆ E(N) is dependent in N if
and only if there is a dependent set Y ⊆ E(M) in M such that Y −X ⊆ C.

The notion of a matroid minor directly extends minors in graphs. (In fact
it was matroid theory which inspired this notion.) Unlike for graphs, which are
well-quasi-ordered with respect to minors (the Graph Minor project [66]), no
such result is true for all matroids, but important restricted cases of the WQO
property are known true, e.g. [39]. Another consequence of the Graph Minor
project is that one can test for an arbitrary fixed minor in a graph in cubic time.
Again, no such general result extends to all matroids, not even to matroids
representable by rational matrices [51].

Fig. 2. An illustration to a 4-separation in a graph, and to a 3-separation in a matroid.

Another important concept is matroid connectivity, which is close, but some-
how different, to traditional graph connectivity. The connectivity function λM

of a matroid M is defined for all subsets A ⊆ E by

λM (A) = rM (A) + rM (E −A)− r(M) + 1 .

Here r(M) = rM (E). A subset A ⊆ E is k-separating if λM (A) ≤ k. A partition
(A,E−A) is called a k-separation if A is k-separating and both |A|, |E−A| ≥ k.
Geometrically, the spans of the two sides of a k-separation intersect in a subspace
of rank less than k. See in Fig. 2. In a corresponding graph view, the connectivity
function λG(F ) of an edge subset F ⊆ E(G) equals the number of vertices of G
incident both with F and with E(G) − F . (Then λG(F ) = λM(G)(F ) provided
both sides of the separation are connected in G.)

3 Tree-Width and Branch-Width

Again, we assume that the reader is familiar with tree-width of graphs. (Though
we shall mostly work with branch-width instead.) Just for a quick reference we
review a few important results concerning graph tree-width here.
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Fig. 3. An illustration to a 4 × 4 grid.

Let Qn denote the n×n-grid graph, i.e. the graph on V (Qn) = {1, 2, . . . , n}2

and E(Qn) =
{

{(i, j)(i′ , j′)} : 1 ≤ i, j, i′, j′ ≤ n, {|i − i′|, |j − j′|} = {0, 1}
}

.
We say that a class G of graphs has bounded tree-width if there is a constant k
such that any graph G ∈ G has tree-width at most k. A basic structural result
on tree-width is given in [65]:

Theorem 3.1. (Robertson, Seymour) A graph class G has bounded tree-width
if and only if there exists a constant m such that no graph G ∈ G has a minor
isomorphic to Qm.

On the algorithmic side, the best known result is a linear time “FPT” algo-
rithm for graph tree-width [11]:

Theorem 3.2. (Bodlaender) For every fixed t > 0, it can be decided in linear
time whether a given graph G has tree-width at most t or not. Moreover, an
optimal tree decomposition for G can be constructed as well in the “yes” case.

Unfortunately, this is not a truly polynomial algorithm since the running time
depends on t exponentially. In general the problem to determine tree-width of a
given graph is NP -complete [1].

Besides tree-width, Robertson and Seymour also introduced [65] a similar,
but less known, parameter called branch-width, and they proved that branch-
width is within a constant factor of tree-width on graphs. We think it is unfor-
tunate that branch-width is not used as much as tree-width since branch-width
is often technically easier to handle and more suitable for applications, both on
theoretical and algorithmic sides.

In matroid theory the situation is quite different – the notion of branch-
width took over tree-width completely, since a branch decomposition routinely
extends from graphs to matroids, while a tree decomposition (in the traditional
sense) is impossible to define. However, we just remark that it is possible to
define a matroid tree-width parameter [54] which is within a constant factor of
branch-width and exactly equal to graph tree-width on graphs, but that is not
a straightforward extension of traditional graph tree-width.

To demonstrate the close relation between graph and matroid “width” pa-
rameters, we provide a common definition of a branch-width for any symmetric
connectivity function:

Assume that λ is a symmetric function on the subsets of a ground set E.
(Here λ ≡ λG is the connectivity function of a graph, or λ ≡ λM of a matroid.) A
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branch decomposition of λ is a pair (T, τ) where T is a sub-cubic tree (∆(T ) ≤ 3),
and τ is a bijection of E into the leaves of T . For e being an edge of T , the width
of e in (T, τ) equals λ(A) = λ(E − A), where A ⊆ E are the elements mapped
by τ to leaves of one of the two connected components of T − e. (We say that e
displays the separation (A,E−A) of E.) The width of the branch decomposition
(T, τ) is maximum of the widths of all edges of T , and branch-width of λ is the
minimal width over all branch decompositions of λ.
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Fig. 4. Two examples of width-3 branch decompositions of the Pappus matroid (top
left, in rank 3) and of the binary affine cube (bottom left, in rank 4). The lines in
matroid pictures show dependencies among elements.

Recall the definitions of the graph and matroid connectivity functions λG

and λM on the ground sets E(G) and E(M), respectively, from Section 2. Then
branch-width of λ ≡ λG is called branch-width of a graph G, and that of λ ≡ λM

is called branch-width of a matroid M . (See examples in Fig. 4.) Considering
branch-width on matroids, the following recent result [41] analogous to Theo-
rem 3.1 is crucial for our paper:

Theorem 3.3. (Geelen, Gerards, Whittle) For every finite field � ; a class N

of � -representable matroids has bounded branch-width if and only if there exists
a constant m such that no matroid N ∈ N has a minor isomorphic to M(Qm).

An algorithm analogous to that in Theorem 3.2 is given in [50].

Theorem 3.4. (Hliněný) For every fixed t > 0 and a finite field � , it can
be decided in cubic time whether a given matroid M represented by a matrix
over � has branch-width at most t or not. Moreover, a near-optimal branch
decomposition for M can be constructed in the “yes” case.

Lastly in this section we note another interesting measure of “tree-likeness”
of graphs - called clique-width [28]. The clique-width of a graph G is defined
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as the minimum k such that there is a k-expression constructing G; where a
k-expression is an expression using the following four operations over vertex-
labeled graphs with k labels: Creation of a new vertex of label i, disjoint union,
addition of all edges between the vertices of label i and j, and relabeling all
vertices of label i to j, where 1 ≤ i, j ≤ k. (The underlying tree of this definition
is the parse tree of the expression.)

A surprising connection between graph clique-width and matroid branch-
width – the notion of rank-width, is exhibited in the approximation algorithm
for clique-width [58] of Oum and Seymour, and in the subsequent structural
work [59]. This clearly shows that matroid branch-width is not only of interest
in matroid theory, since its investigation led to exciting new results in the area
of graph theory and in computational complexity as well. Furthermore we men-
tion here some of the recent results of Courcelle and Oum [33]: They showed
that, from our main result – Theorem 6.2, it follows that the decidability of
monadic theories of arbitrary classes of countable graphs in a monadic logic al-
lowing counting modulo 2 implies that all models of such a theory have bounded
clique-width, hence proving such a weaker version of the nearly 25 year old Con-
jecture 4.12 of the next section in case of this monadic second order logic with
counting modulo 2 instead of pure monadic second order logic.

4 Decidability of Theories

In this section we will review some basic notions on the decidability of theories
from mathematical logic, and give some motivation to the main result we prove
by adding a detailed historical survey on results related to the main problem for
which we present a partial solution in the area of matroids. This survey includes
some material from articles written in German, which were never published in
English (see [68–72]) or appeared only in a preprint form as [74, 75].

In this section we allow also infinite structures. We will use the following
notion of a theory. Let K be a class of structures and let L be a suitable logic
for K. A sentence is a set of well-formed L-formulas without free variables. The
set of all L-sentences true in K is denoted as L-theory of K. We use ThL(K)
as a short notation for this theory. Hence, a theory can be viewed as the set of
all properties, expressible in L, which all structures of K posses. In case that
K = {G} we write ThL(G) instead of ThL(K). Using this definition we obtain
ThL(K) =

⋂

{ThL(G) : G ∈ K}. We write Th(K), ThMSO(K) if L is first order
logic, or monadic second order logic (abbreviated as MSO logic), respectively.

For graphs there are actually two variants of MSO logic, commonly denoted
by MSO1 and MSO2. In MSO1, set variables only denote sets of vertices. In
MSO2, set variables can also denote sets of edges of the considered graph. In
other words the difference between both logics is that in MSO1 the domain of
the graph consists of the vertices only and the relation is just the usual adja-
cency between vertices, while in MSO2 the domain is two-sorted and contains
vertices as well as edges and the relation is the incidence relation. To distinguish
these two different classes of structures we will speak about adjacency and inci-
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dence graphs, respectively. The expressive power of both logics was studied by
Courcelle in [19].

The weak monadic second order logic (WMSO logic) results from MSO by
restricting the interpretation of the set variables to finite sets only. The corre-
sponding theory is denoted as ThWMSO(K).

A theory is said to be decidable if there is an algorithm deciding, for an
arbitrary sentence ϕ ∈ L, whether ϕ ∈ ThL(K) or not, i.e. whether ϕ is true
in all structures of K. Otherwise this theory is said to be undecidable. More
information concerning the terminology from logic needed in this section can be
found in classical textbooks as [34]. A good introduction into the decidability of
theories can be found in [62] (see also [42] for a survey on monadic theories).

One of the strongest results on decidability is the following theorem of Ra-
bin [61].

Theorem 4.1. (Rabin) Let S2S be the MSO theory of the following structure
({0, 1}∗ , sc1, sc2), where {0, 1}∗ denotes the set of all finite sequences over the
alphabet {0, 1} and sci for i ∈ {0, 1} denotes the function {(x, xi) : x ∈ {0, 1}∗}.
Then S2S is decidable.

The decidability of many MSO theories can be reduced to this result by the
classical method of model interpretability, introduced in [60], which is often the
best tool of choice to prove the decidability of theories. To describe the idea of
the method assume that two classes of structures K and K′ are given, and that
L and L′, respectively, are corresponding languages for the structures of these
classes. The basic idea of the interpretability of theory ThL(K) into ThL′(K′)
is to transform formulas of L into formulas of L′, by translating the nonlogical
symbols of L by formulas of L′, in such a way that truth is preserved in a certain
way. Here we assume that the logics underlying both languages are the same.
Otherwise, one has to translate also the logical symbols.

We explain this translation in a simple case of relational structures. First one
chooses an L′-formula α(x) intended to define in each L′-structure G ∈ K′ a set
of individuals G[α] := {a : a ∈ dom(G) and G |= α(a)}, where dom(G) denotes
the domain (set of individuals) of G. Then one chooses for each s-ary relational
sign R from L an L′-formula βR(x1, . . . , xs), with the intended meaning to define
a corresponding relation G[βR] := {(a1, . . . , as) : a1, . . . , as ∈ dom(G) and G |=
βR(a1, . . . , as)}. All these formulas build the formulas of the interpretation I =
(

α(x), βR(x1, . . . , xs), . . .
)

.

With the help of these formulas one can define for each L′-structure G a
structure GI :=

(

G[α], G[βR], . . .
)

, which is just the structure defined by the
chosen formulas in G. Sometimes GI is also denoted as I(G) and I is called an
(L,L′)-interpretation of GI in G. In case that both L and L′ are MSO languages,
this interpretation is also denoted as MSO-interpretation. Using these formulas
there is also a natural way to translate each L-formula ϕ into an L′-formula ϕI .
This is done by induction on the structure of formulas. The atomic formulas are
simply substituted by the corresponding chosen formulas with the corresponding

10



substituted variables. Then one may proceed via induction as follows:

(¬χ)I := ¬(χI), (χ1 ∧ χ2)
I := (χ1)

I ∧ (χ2)
I ,

(

∃x χ(x)
)I

:= ∃x
(

α(x) ∧ χI(x)
)

,

(x ∈ X)I := x ∈ X,
(

∃X χ(X)
)I

:= ∃X χI(X).

The resulting translation is called an interpretation with respect to L and L′.
Its concept could be briefly illustrated with a picture:

ϕ ∈ L

H ∈ K

I
−−−−−→

ϕI ∈ L′

G ∈ K′

GI ' H
I

←−−−−− G

Fig. 5. The concept of an (L, L′)-interpretation I.

For theories, interpretability is now defined as follows. Let K and K′ be classes
of structures and L and L′ be corresponding languages. Theory ThL(K) is said
to be interpretable in ThL′(K′) if there is an (L,L′)-interpretation I translating
each L-formula ϕ into an L′-formula ϕI , and each L′-structure G ∈ K′ into an
L-structure GI as above, such that the following two conditions are satisfied:

(i) For every structure H ∈ K, there is a structure G ∈ K′ such that GI ∼= H,
(ii) for every G ∈ K′, the structure GI is isomorphic to some structure of K.

It is easy to see that interpretability is transitive. The key result for interpretabil-
ity of theories is the following theorem [60]:

Theorem 4.2. (Rabin) Let K and K′ be classes of structures, and L and L′ be
suitable languages. If ThL(K) is interpretable in ThL′(K′), then undecidability
of ThL(K) implies undecidability of ThL′(K′).

This interpretability technique is a natural and very powerful tool to show
the decidability or the undecidability of other theories (see e.g. [60, 61, 63, 6, 7]).
Analysing the structure of decidable and undecidable MSO theories with this
tool, one gets the following results.

Theorem 4.3. (Rabin, Shelah, Stupp) The MSO1-theory of the class of all
trees is decidable.

The monadic theory of countable trees can easily be shown to be inter-
pretable into S2S [61]. The uncountable case follows from a result of Shelah
and Stupp [67].

The MSO-theories of many other classes of graphs were shown to be decidable
via reduction (using interpretability) to the MSO1-theory of trees (see e.g. [44]
and [70]). Most of them had bounded tree-width.
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Theorem 4.4. (Courcelle, Arnborg, Lagergren, Seese) For each positive integer
m, the MSO2 theory of the class of all incidence graphs of tree-width < m is
interpretable in the MSO1-theory of all trees, and hence it is decidable.

This result was explicitly stated in [17] and proved via MSO transductions, a
notion equivalent to interpretability. In [2] the result is contained implicitly by
giving an explicit interpretation into the class of binary trees. The result was
generalized to clique-width by Courcelle [25] (see also [28, 32, 9, 10]):

Theorem 4.5. (Courcelle) For each positive integer m, the MSO1 theory of the
class of all adjacency graphs of clique-width < m is interpretable in the theory
of all trees, and hence it is decidable.

Clique-width is of special interest in our context since there is a close relation
between interpretability and clique-width (see [20, 29, 23, 33]):

Theorem 4.6. (Courcelle, Engelfriet) A set K of adjacency graphs has bounded
clique-width if and only if there is a class T of trees such that ThMSO1

(K) is
interpretable in ThMSO1

(T).

This result is important because it is a complete combinatorial characterization
of interpretabality into trees. The relation of bounded tree-width to clique-width
is given in the following result (see [4, 21, 8]):

Theorem 4.7. (Barthelmann) Let G be a graph of bounded clique-width. The
following statements are equivalent:
(i) G has finite tree-width,
(ii) G does not contain Kn,n as a subgraph for some positive integer n.

Till now no decidable MSO theories could be found which are not inter-
pretable into a class of trees. A reason might appear in the ideas which led to
the following result from [71] (see also [72, 76]):

Theorem 4.8. (Seese) Let K be a class of graphs such that each planar graph
H is a minor of some planar graph G ∈ K. Then ThMSO1

(K) is undecidable.

The way to prove this result is to use the high expressive power of MSO logic to
show that some large grids are definable inside the structures, and can be used
to define the tiling or domino problems (see e.g. [12]), which are undecidable
by [80].

From this result one gets via Theorem 3.1 the following result of [76]:

Theorem 4.9. (Seese) If K is a class of planar graphs such that ThMSO1
(K)

is decidable, then there is an n such that each G ∈ K has tree-width ≤ n.

Hence there is a class T of trees such that ThMSO1
(K) is interpretable in

ThMSO1
(T). Courcelle extended this result in [18, 19, 21, 24, 26, 27] (see also [76,

77]) to many other structures:
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Theorem 4.10. (Courcelle) If K is a class of graphs of bounded degree, bounded
genus, graphs without a fixed graph H as minor, uniformly k-sparse graphs,
interval graphs, line graphs or a class of partial orders of dimension 2, such that
ThMSO1

(K) is decidable, then there is a class T of trees such that ThMSO1
(K)

is interpretable in ThMSO1
(T).

This results holds also for WMSO logic.
Looking to other classes of structures one can observe that there are almost

no interesting decidable MSO theories. A basic result in this area was proved
by [38] and in a slightly more general form by [72]. A special case for groups was
proved by [5]: A structure (A, ◦) is a groupoid if A is a nonempty set and ◦ is an
arbitrary binary operation defined on A. A cancellative groupoid is a groupoid
satisfying both left and right cancellation laws ∀x∀y∀z(x ◦ y = x ◦ z ⇒ y = z)
and ∀x∀y∀z(y ◦ x = z ◦ x⇒ y = z).

Theorem 4.11. (Garfunkel, Schmerl) If a class of structures K with one binary
operation ◦ contains, for each natural number n, a cancellative groupoid of size
≥ n as substructure, then ThMSO∀1

(K), and hence ThMSO(K) are undecidable.
The same holds for the weak MSO theories.

Here ThMSO∀1
(K) :=

{

ϕ : ϕ ∈ ThMSO∀1
(K) and ϕ has the form ∀Xψ(X),

where ψ(X) does not contain quantifiers over sets
}

.
As a corollary one gets that all (weak) MSO theories of classes of groups,

Abelian groups, rings, fields and vector spaces are undecidable if the sizes of the
models can not be bounded by a positive integer. This and related ideas led in
[76] and [77] to the following conjecture:

Conjecture 4.12. (Seese) Assume that K is a class of countable structures (of
arbitrary finite signature) with ThMSO(K) decidable. Then there exists a class
T of trees such that ThMSO(K) is interpretable into ThMSO1

(T).

For classes K of countable adjacency graphs, this is equivalent to the state-
ment that the decidability of ThMSO1

(K) implies that K has bounded clique-
width (via Theorem 4.7). In a stronger form of the general conjecture one could
even ask for a class T having the additional property that ThMSO1

(T) is de-
cidable). Courcelle proved in [27] that the conjecture for classes of graphs is
equivalent to analogous conjectures for bipartite graphs, directed graphs, com-
parability graphs and partial orders.

When the expressive power of MSO logic on graphs is made higher by al-
lowing quantification on sets of edges in addition to quantification on sets of
vertices, i.e. by considering MSO2 instead of MSO1, or formally considering an
incidence relation instead of the usual adjacency relation, then the conjecture
can be proved [76] (see also [77]).

Theorem 4.13. (Seese) Let K be a class of graphs considered in the logic MSO2

with sets of edges, i.e. formalized using incidence relations. If each planar graph
H is a minor of some graph G ∈ K, then ThMSO2

(K) is undecidable. Hence
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if the tree-width of K is unbounded, then ThMSO2
(K) is undecidable. The same

holds for the corresponding weak monadic theory.

Corollary 4.14. (Seese) Let K be a class of graphs considered in the logic
MSO2 with sets of edges. Then the decidability of ThMSO2

(K) implies that the
tree-width of K is bounded, and there is a class T of trees such that ThMSO2

(K) is
interpretable in ThMSO1

(T). The same holds for the corresponding weak monadic
theory.

Using the following result of Lapoire [55] it is even possible to prove the
strong conjecture in this case.

Theorem 4.15. (Lapoire) For every finite graph of tree width k, a tree decom-
position of width k is MSO1-definable inside the graph.

Using this definable tree-decompositions one can construct easily a class of trees
T with a decidable MSO theory such that the original theory is interpretable in
it. Via the definability one finds an interpretation of ThMSO2

(T) in ThMSO2
(K)

and hence ThMSO2
(T) is decidable. Moreover it is easy to show that ThMSO2

(T)
is interpretable in ThMSO1

(T). This gives:

Corollary 4.16. Assume that ThMSO2
(K) is decidable for a class K of fi-

nite graphs. Then the tree-width of K is bounded. Moreover, there is a class T

of trees such that ThMSO1
(T) is decidable and ThMSO2

(K) is interpretable in
ThMSO1

(T).

Related results have been proved by Courcelle for many other classes of
graphs. Of special interest is the following equivalence (see [27]).

Theorem 4.17. (Courcelle) Conjecture 4.12 is valid for graphs iff it is valid for
bipartite graphs, iff it is valid for directed graphs, iff it is valid for comparability
graphs, iff it is valid for partial orders.

One of the latest results with respect to Conjecture 4.12 is the result from [33],
that the conjecture holds for counting monadic second order logic on adjacency
graphs. Counting monadic second order logic (CMS) was introduced by Courcelle
in [18]. It results as an extension of MSO-logic by allowing counting modulo k,
i.e. one adds a predicate Cardk(X), expressing that the cardinality of X is a
multiple of k for an arbitrary integer k > 0. The logic C2MS results by allowing
only counting modulo 2, i.e. only the additional predicate Card2(X) is allowed.
Card2(X) will be donted here as Even(X).

Theorem 4.18. (Courcelle, Oum) Assume that a class K of adjacency graphs
has a decidable C2MS theory. Then there is a class T of trees such that the
C2MS theory of K is interpretable in the MSO1-theory of T, or equivalently K

has bounded clique-width.
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With respect to Conjecture 4.12 this is at the moment the strongest result known.
Moreover as we have noted in Section 3, it is closely related to our results here;
since as it is shown in [33], it can be easily deduced from our main Theorem 6.2.
However, one can find a class T of trees with an undecidable C2MS theory and
a decidable MSO-theory (see in last section and [53]).

Regarding Conjecture 4.12 one can ask, why is it stated for classes of count-
able structures only? One of the essential results which indicate that for uncount-
able structures the situation could be more difficult is the following theorem
from [43].

Theorem 4.19. (Gurevic, Magidor, Shelah) Decidability of the MSO-theory of
ω2, the ordering of the second uncountable ordinal, depends from axioms of set
theory.

Nevertheless, so far even for uncountable structures, there could be found no
counterexample to the conjecture. But for some classes of uncountable structures
it is open whether there is an interpretation into a class of trees. One of the
prominent examples is the following result of Büchi and Siefkes [14, 16, 15].

Theorem 4.20. (Büchi, Siefkes) The MSO-theory of ω1, the ordering of the
first uncountable ordinal is decidable.

A short proof following the line of the Feferman-Vaught theorem (see [36])
can be found in [42] (see also [78] and [56]). Beside this result there are many
other classes of structures with a decidable MSO-theory. We will mention here
only finite or countable linear orderings [61], countable ordered trees [74, 75] and
countable well-founded trees [73] and [74]. But there are many others. Among
undecidable MSO-theories of partial orderings one can find the classes of all
partial orderings (obvious via interpretability of all graphs), of all linear orderings
and the ordering of the real line [78]. A good survey on decidability of MSO-
theories with a detailed section on linear orderings can be found in [42].

5 MSO Theory of Matroids

Unlike MSO theories of trees, graphs, algebraic and other structures, MSO theory
of matroids has not been considered before. We present it here in the setting
introduced in [47]. Working with matroids in logic is a bit tricky since one has
to use a second order predicate to fully describe a matroid. (That is due to a
simple counting argument considering the numbers of non-isomorphic matroids
on n elements.)

¿From a logic point of view, a matroid M on a finite ground set E is the
collection of all subsets 2E together with a unary predicate indep such that
indep(F ) if and only if F ⊆ E is independent in M . (One may equivalently con-
sider a matroid with a unary predicate for bases or for circuits, see a discussion
in [47].) We shortly write MSOM to say that the language of MSO logic is applied
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to (independence) matroids. If N is a class of independence matroids, then the
MSOM theory of N is denoted by ThMSOM

(N).
To give readers a better feeling for the expressive power of MSOM on a

matroid, we write down a few basic matroid predicates now.

– We write basis(B) ≡ indep(B) ∧ ∀D
(

B 6⊆ D ∨ B = D ∨ ¬ indep(D)
)

to
express the fact that a basis is a maximal independent set.

– Similarly, we write circuit(C) ≡ ¬ indep(C)∧∀D
(

D 6⊆ C∨D=C∨indep(D)
)

,
saying that C is dependent, but all proper subsets of C are independent.

– A cocircuit is a dual circuit in a matroid (i.e. a bond in a graph). We write
cocircuit(C) ≡ ∀B

[

basis(B) → ∃x(x ∈ B ∧ x ∈ C)
]

∧ ∀X
[

X 6⊆ C ∨ X =

C ∨∃B
(

basis(B)∧∀x(x 6∈ B ∨x 6∈ X)
)]

saying that a cocircuit C intersects
every basis, but each proper subset of C is disjoint from some basis.

More examples could be found in [48].

It can be shown that the language of MSOM is (at least) as powerful as
that of MSO2 on (incidence) graphs. Specifically, we have proved [47] that any
MSO2 sentence φ about a 3-connected simple graph G can be translated into
an equivalent MSOM sentence about the cycle matroid M(G). (The need to
require 3-connectivity follows not from logic, but from the simple fact that non-
isomorphic graphs may have isomorphic cycle matroids unless they are simple 3-
connected. In particular, possible loops in a graph are pairwise indistinguishable
in its cycle matroid.) Let G]H denote the graph obtained from disjoint copies of
G and H by adding all edges between them. The following extended statement
is also proved in [47]:

Theorem 5.1. (Hliněný) Let G be a loopless multigraph, and let M be the
cycle matroid of G ]K3. Then any MSO2 about the incidence graph G can be
expressed as a sentence about the matroid M in MSOM .

In other words, the MSO2 theory of all loopless multigraphs is interpretable in
the MSOM theory of a certain subclass of 3-connected graphic matroids.

The next result we are going to mention speaks about (restricted) recogniz-
ability of MSOM -definable matroid properties via tree automata. To formulate
this, we have to introduce briefly the concept of parse trees for representable
matroids of bounded branch-width, which has been first defined in [47]. For a
finite field � , an integer t ≥ 1, and an arbitrary � -represented matroid M of
branch-width at most t + 1; a t-boundaried parse tree T̄ over � is a rooted
ordered binary tree, whose leaves are labeled with elements of M , and the in-
ner nodes are labeled with symbols of a certain finite alphabet (depending on

� and t). Saying roughly, symbols of the alphabet are “small configurations”
in the projective geometry over � . The parse tree T̄ uniquely determines an

� -representation (up to projective transformations) of the matroid P (T̄ ) ' M .
See [47] for more details and the result:

Theorem 5.2. (Hliněný) Let � be a finite field, t ≥ 1, and let φ be a sentence

in the language of MSOM . Then there exists a finite tree automaton Aφ
t such
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that the following is true: A t-boundaried parse tree T̄ over � is accepted by
Aφ

t if and only if P (T̄ ) |= φ. Moreover, the automaton Aφ
t can be constructed

(algorithmically) from given � , t, and φ.

In connection with Theorem 3.4 the theorem implies [47] polynomial algo-
rithms for testing MSO-definable properties over � -represented matroids of fixed
branch-width. (A direct analogue of the situation with incidence graphs, The-
orems 3.2 and 4.4.) Although the statement was originally formulated in the
setting of computational complexity, it implicitly applies also to logic decidabil-
ity, as we make explicit here.

Corollary 5.3. Let � be a finite field, t ≥ 1, and let Bt be the class of all
matroids representable over � of branch-width at most t + 1. Then the theory
ThMSOM

(Bt) is decidable.

Proof. Assume we are given an MSOM -sentence φ. We construct the automaton
Aφ

t from Theorem 5.2. Moreover, there is an (easily constructible [47]) automaton
Vt accepting valid t-boundaried parse trees over � . Then Bt 6|= φ if and only if

there is a parse tree accepted by Vt, but not accepted by Aφ
t . We thus, denoting

by −Aφ
t the complement of Aφ

t , construct the cartesian product automaton A =

(−Aφ
t )×Vt accepting the intersection of the languages of −Aφ

t and of Vt. Then
we check for emptiness of A using standard tools of automata theory. 2

The corollary suggests that branch-width could be the right measure of MSO
decidability for matroids representable over finite fields, as it is for graphs. (Re-
call that branch-width is always within a constant factor of tree-width, and so
branch-width is bounded in a class iff tree-width is.) We prove that in the next
section, and thus support Conjecture 4.12, in Theorem 6.2 and Corollary 6.7.

Remark. We add a short remark about a possibility of considering infinite
(countable) matroids. Yes, one could simply extend the above definition of a
matroid to infinite sets, and say, to restrict independent sets and circuits to a
finite size only, to allow for their handling within WMSO logic. However, then
matroid duality, and likely also most interesting structural connections to graph
theory would be lost. Thus we choose to stay within the boundary of finite
matroids in this paper.

6 Matroid Grids and Undecidability

We need the following special form of Theorem 4.8, which was proved first in a
more general form in [71] (see also [76]).

Theorem 6.1. (Seese) Let K be a class of adjacency graphs such that for every
integer k > 1 there is a graph G ∈ K such that G has the k × k grid Qk as an
induced subgraph. Then the MSO1 theory of K is undecidable.
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Here we remark that the troubles with MSO1 logic of graphs – which lacks
expressive power to handle arbitrary subgraphs or minors, do not occur at all
for matroids since by Theorem 5.1 we have an expressive power equivalent to
graph MSO2 logic. That is why we can extend Theorem 4.13 in the strong form
as follows:

Theorem 6.2. Let � be a finite field, and let N be a class of matroids that are
representable by matrices over � . If the class N has unbounded branch-width,
then the (monadic second-order) MSOM theory ThMSOM

(N) is undecidable.

The key to the presented extension is given in Theorem 3.3, which basi-
cally states that the obstructions to small branch-width on matroids are the
same as on graphs, namely large matroid grids. Unfortunately, the seemingly
straightforward way to prove Theorem 6.2 — via the direct interpretation of
graphs (Theorems 4.13 and 4.9) in the class of graphic minors of matroids in
N, is not so simple due to technical problems with low connectivity and with
non-graphic matroids. That is why we give here a variant of this idea bypassing
Theorems 4.13 and 4.9, and using an indirect interpretation of (graph) grids in
matroid grid minors.

Remark. A restriction to � -representable matroids in Theorem 6.2 is not re-
ally necessary; it comes more from the context of the related matroid structure
research. According to [41], it is enough to assume that no member of N has
a U2,m- or U∗

2,m-minor (i.e. an m-point line or an m-point dual line) for some
constant m.

We begin the proof of Theorem 6.2 with an interpretation of the MSOM

theory of all minors of the class N. To achieve this goal, we use a little technical
trick first. Let a DC-equipped matroid be a matroid M with two distinguished
unary predicates D and C on E(M) (with intended meaning as a pair of sets
D,C ⊆ E(M) defining a minor N = M \D/C).

Lemma 6.3. Let N be a class of matroids, and let NDC denote the class of all
DC-equipped matroids induced by members of N. If ThMSOM

(N) is decidable,
then so is ThMSOM

(NDC).

Proof. We may equivalently view the distinguished predicates D,C as free set
variables in MSOM . Let φ(D,C) be an MSOM formula, and N ∈ N. Then, by
standard logic arguments, NDC |= φ(D,C) for all DC-equipped matroids NDC

induced by N if and only if N |= ∀D,C φ(D,C). Hence NDC |= φ(D,C) if and
only if N |= ∀D,C φ(D,C). Since ∀D,C φ(D,C) is an MSO formula if φ is such,
the statement follows. 2

Lemma 6.4. Let N be a class of matroids, and Nm be the class of all minors
of members of N. Then ThMSOM

(Nm) is interpretable in ThMSOM
(NDC).

Proof. We again regard the distinguished predicates D,C of NDC as free set
variables in MSOM . Let us consider a matroid N1 ∈ Nm such that N1 = N \
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D1/C1 for N ∈ N. We are going to use a “natural” interpretation of N1 in the
DC-equipped matroid NDC which results from N with a particular equipment
D = D1, C = C1. (Notice that both theories use the same language of MSO
logic, and the individuals of N1 form a subset of the individuals of N .) Let ψ be
an MSOM formula. The translation ψI of ψ is obtained inductively:

– For each (bound) element variable x in ψ; it is replaced with

∃x θ(x) −→ ∃x
(

x 6∈ C ∧ x 6∈ D ∧ θ(x)
)

.

– For each (bound) set variable X in ψ; it is replaced with

∃Xθ(X) −→ ∃X∀z
(

(z 6∈ X ∨ z 6∈ C) ∧ (z 6∈ X ∨ z 6∈ D) ∧ θ(X)
)

.

– Every occurrence of the indep predicate in ψ is rewritten as (cf. Lemma 2.1)

indep
I(X) ≡ ∀Y

(

indep(Y ) ∨ ∃z(z ∈ Y ∧ z 6∈ X ∧ z 6∈ C)
)

,

saying that there is no dependent set Y such that Y ⊆ X ∪ C.

Consider now the structure N I defined by indep
I in NDC ∈ NDC . By

Lemma 2.1, a set X ⊆ E(N I ) = E(N1) is independent in N I if and only if X is
independent in N1, and hence N I is a matroid isomorphic to N1 = N \D/C ∈
Nm. Moreover, it is immediate from the construction of ψI that N1 |= ψ iff
NDC |= ψI . Thus, I is an interpretation of ThMSOM

(Nm) in ThMSOM
(NDC ). 2

Next, we define, for a matroid M , a 4CC-graph of M as the graph G on the
vertex set E(M), and edges of G connecting those pairs of elements e, f ∈ E(M),
such that there are a 4-element circuit C and a 4-element cocircuit C ′ in M
containing both e, f ∈ C ∩ C ′. (This is not the usual way of interpretation in
which the ground set of a matroid is formed by graph edges.) The importance
of our definition is in that 4CC-graphs “preserve” large grids:

Lemma 6.5. Let m ≥ 6 be even, and M = M(Qm). Denote by G the 4CC-graph
of M . Then G has an induced subgraph isomorphic to Qm−2.

Proof. Recall that circuits in a cycle matroid of a graph correspond to graph
cycles, and cocircuits to graph bonds (minimal edge cuts). The only 4-element
cycles in a grid clearly are the face-cycles in the natural planar drawing of Qm.
The only edge cuts with at most 4 edges in Qm are formed by the sets of edges
incident with a single vertex in Qm, or possibly by edges that are “close to the
corners”.

Let E′ ⊆ E(Qm) denote the edge set of the subgraph induced on the vertices
(i, j) where 1 < i, j < m. Let G′ denotes the corresponding subgraph of G
induced on E′. Choose x ∈ E′, and assume up to symmetry x = {(i, j), (i′ , j′)}
where i′ = i+1 and j′ = j. According to the above arguments, the only neighbors
of x in G′ are in the set

E
′ ∩

{

{(i, j − 1), (i, j)}, {(i, j), (i, j + 1)}, {(i′, j′ − 1), (i′, j′)}, {(i′, j′), (i′, j′ + 1)}
}

.
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Fig. 6. An illustration to a 4CC-graph of a grid matroid (a fragment).

We now define “coordinates” for the elements x ∈ E ′ as follows

x = {(i, j), (i′ , j′)}, i ≤ i′, j ≤ j′ : kx = i+ j, `x = i+ j′ − 2j .

As one may easily check from the above description of neighbors, two elements
x, y ∈ E′ are adjacent in G′ if and only if {|kx − ky|, |`x − `y|} = {0, 1}. Hence
the elements x ∈ E′ such that m

2 + 1 < kx, `x <
m
2 +m− 1 induce in G′ a grid

isomorphic to Qm−2. 2

Now we are to finish a chain of interpretations from Theorem 6.1 to a proof
of our Theorem 6.2.

Lemma 6.6. Let M be a matroid family, and let F4 denote the class of all
adjacency graphs which are 4CC-graphs of the members of M. Then the MSO1

theory of F4 is interpretable in the theory ThMSOM
(M).

Proof. Let us take a graph G ∈ F4 which is a 4CC-graph of a matroid M ∈M.
Now G is regarded as an adjacency graph structure, and so the individuals (the
domain) of G are the vertices V (G). These are to be interpreted in the ground
set E(M), the domain of M . Let ψ be an MSO1 formula. The translation ψI in
MSOM of ψ is obtained simply by replacing every occurrence of the adj predicate
in ψ with

adj
I(x, y) ≡ ∃C,C ′

(

|C| = |C ′| = 4 ∧ circuit(C) ∧ cocircuit(C ′) ∧ x, y ∈ C ∧ x, y ∈ C ′
)

,

where the matroid MSOM predicates circuit and cocircuit are defined in Sec-
tion 5, and |X| = 4 has an obvious interpretation in FO logic.

Consider the adjacency structure GI defined by the predicate adjI on the
domain E(M) of the matroid M . It is GI ' G by definition, for all pairs G,M
as above. Moreover, adj

I is defined in MSO logic. Hence we have got an inter-
pretation I of ThMSO1

(F4) in ThMSOM
(M). 2

Proof of Theorem 6.2. Assume that a matroid class N does not have bounded
branch-width, and denote by Nm the class of all matroids which are minors
of some member of N. By Theorem 3.3, for every integer m > 1, there is a
matroid N ∈ Nm isomorphic to the cycle matroid of the grid N 'M(Qm). Now
denote by F4 the class of all graphs which are 4CC-graphs of members of Nm.
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Then, using Lemma 6.5, there exist members of F4 having induced subgraphs
isomorphic to the grid Qk, for every integer k > 1.

Hence the class K = F4 satisfies the assumptions of Theorem 6.1, and so
the MSO1 theory of F4 is undecidable. So is the theory ThMSOM

(Nm) using the
interpretation in Lemma 6.6, and Theorem 4.2. We analogously apply the inter-
pretation in Lemma 6.4 to ThMSOM

(Nm), and conclude that also ThMSOM
(NDC)

is undecidable, where NDC is the class of all DC-equipped matroids induced by
N as above. Finally, Lemma 6.3 implies that the theory ThMSOM

(N) is undecid-
able, as needed. 2

Conversely, we may easily derive this conclusion:

Corollary 6.7. Let � be a finite field, and let N be a class of matroids
that are representable by matrices over � . If the monadic second-order theory
ThMSOM

(N) is decidable, then the class N has bounded branch-width. Moreover,
there is a class T of trees such that ThMSOM

(N) is interpretable in ThMSO1
(T).

Sketch of proof. The first claim is just an easy reformulation of Theorem 6.2.
To show that the second part holds, we recall the definition of matroid parse

trees from Section 5. Let t bound the branch-width of N. We claim that it is
enough to consider the class T of all (t−1)-boundaried parse trees of the matroids
in N. (Here we have to assume � -representability of our matroids since parse
trees could not be defined otherwise. See also in the next section.) Indeed, the
claim follows from the construction leading to Theorem 5.2 by transforming the
t-boundaried parse tree representations of these matroids into representations
suitable for classical MSO-interpretability, as used e.g. in [2, 3]. 2

Hence we have verified Conjecture 4.12 for (finite) matroids representable
over finite fields.

7 Undecidability for Matroid Spikes

Although branch-width is the right measure of decidability of MSO theories of
matroids representable over finite fields, the situation is quite different when
considering all matroids. Here we show that matroidal obstructions to MSO
decidability can be structurally very different from usual grids. For that we look
at an interesting class of matroids called “spikes”, which have already shown
to be a good source for hardness examples in computational complexity [49] of
matroids.

We start with a formal definition of spikes. We recall that a circuit in a
matroid is a minimal dependent set. Let n ≥ 3 and S0 be a matroid circuit on
the ground set e0, e1, . . . , en. Denote by S1 an arbitrary simple matroid obtained
from S0 by adding n new elements fi for i ∈ [1, n] such that e0, ei, fi are triangles
(i.e. lie on a common line). Then the matroid S = S1 \ e0 obtained by deleting
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e0

e1 e2

f1

f2 fn

en

. . .

Fig. 7. An illustration to the definition of a rank-n spike. (A picture similar to the
skeleton of an “(n − 1)-dimensional umbrella”.)

the central element e0 is called a rank-n spike. The pairs {ei, fi}, i ∈ [1, n] are
called the legs of the spike. (Fig. 7.)

Spikes more or less explicitly appear in several research papers in structural
matroid theory, first implicitly in [79] and recently, say, in [39, 49]. There seems
to be no “usual definition” of a spike; the above definition was suggested by
Whittle. The following simple properties of spikes are folklore in the matroid
structure community.

Proposition 7.1. Let S be a rank-n spike where n ≥ 3. Then

a) the union of any two legs forms a 4-element circuit in S,
b) every other circuit intersects all legs of S, and
c) branch-width of S is 3.

We are going to prove in this section that having a bounded branch-width is
not a sufficient condition for a matroid class to have decidable MSO theory in
general. It is even that branch-width three does not suffice.

Theorem 7.2. Let P be a matroid class containing all the spikes (of any fi-
nite rank). Then the monadic second-order theory ThMSOM

(P) is undecidable.
(Though the branch-width of all spikes is bounded by 3.)

This result is the best possible, since having branch-width ≤ 2 immediately
implies representability over any field.

We need one technical claim about great variability of spikes for the proof.

Lemma 7.3. Let Z = {e1, . . . , en, f1, . . . , fn} be a set of 2n elements, n > 4.

– Let L denote the family of all the sets {ei, fi, ej , fj} ⊂ Z for 1 ≤ i < j ≤ n.
– Let A be an arbitrary set family which satisfies: |{ei, fi}4A| = 1 for every
A ∈ A and all i = 1, . . . , n (hence |A| = n), and |A4B| ≥ 4 for every
distinct A,B ∈ A.

– Let D denote the family of all the sets D ⊂ Z such that |D| = n+ 1 and D
contains no subset from A∪ L.

Then A∪D∪L is the collection of all circuits of some rank-n spike on the ground
set Z.

22



Proof. A set family C is the collection of all circuits of a matroid if and only if
the following two properties are satisfied (see for example in [57]):

– No two distinct sets in C are in inclusion.
– For any two distinct intersecting X,Y ∈ C and each x ∈ X ∩ Y , the set

(X ∪ Y )− {x} contains another set from C.

The first condition is clearly true for C = A ∪ D ∪ L, and so we have to verify
the second one.

For simplicity, we call the pairs {ei, fi} the legs. Then every set in A ∪ D
intersects all the legs, and every set in D contains some leg. Conversely, if a set
Q, |Q| = n+ 1, intersects all the legs, then either Q ∈ D or Q contains a subset
from A by the assumptions. So if any set Q, |Q| ≥ n+ 1, intersects all the legs,
then Q contains a subset from A∪D. We solve all the possibilities as follows:

– If X,Y ∈ L and x = ei ∈ X ∩ Y , then (X ∪ Y )− {ei, fi} ∈ L.
– Suppose, up to symmetry, that X ∈ L, Y ∈ A ∪ D, and x = ei ∈ X ∩ Y .

Then (X ∪ Y )− {ei} intersects all the legs and has at least n+ 1 elements.
– Suppose now that X,Y ∈ D. Then either x ∈ X ∩ Y belongs to none of the

legs contained in X and in Y , and so (X ∪ Y )− {x} contains a set from L,
or (X ∪ Y )− {x} intersects all the legs again.

– The case X ∈ A and Y ∈ D, up to symmetry, can be reduced to the previous
one since X 6⊆ Y .

– Finally, suppose that X,Y ∈ A. Then |X4Y | ≥ 4 and those four elements
form a set from L.

Hence the family A ∪ D ∪ L forms the collection of circuits of some ma-
troid M on Z. It now easily follows from the definition of the sets A,D,L and
Proposition 7.1 that M is isomorphic to a spike of rank n. 2

Lemma 7.3 is needed to argue that the following definition is correct. For a
simple graph G on n > 4 vertices numbered 1, 2, . . . n, we denote by SR(G) the
rank-n spike on the ground set Z = {e1, . . . , en, f1, . . . , fn} which is defined by
Lemma 7.3 for A = AG, where

AG =
{

{e1, . . . , en}
}

∪
{

{e1, . . . , en}4{ei, fi, ej , fj} : ij ∈ E(G)
}

.

We call SR(G) the spike representation of G.

Lemma 7.4. Let M = SR(H) be the spike defined as above for a simple
graph H such that no edge of H is incident with all other edges. Assume that C0

is a circuit of M such that |C0| > 4, and that no basis of M is contained in C0.
If every other circuit C in M contains a basis or satisfies |C − C0| ≤ 2, then
C0 = {e1, . . . , en}.

Proof. A circuit in a rank-r matroid having r + 1 elements (called a spanning
circuit) must contain a basis. So one simply has to check that the required
property holds for none of the circuits Cij = {e1, . . . , en}4{ei, fi, ej , fj} of AG

for ij ∈ E(G). By the assumption, there are i′, j′ distinct from each i, j such
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that i′j′ ∈ E(G). However, then Ci′j′ ∈ AG is a circuit containing no basis, and
|Ci′j′ − Cij | = 4. 2

Let us, for an arbitrary matroid M , call a circuit C0 satisfying all the as-
sumptions in Lemma 7.4 the base circuit of M . (Not all matroids contain a base
circuit, and some may contain more than one.) The lemma then says that SR(H)
has a unique base circuit.

Using the notion of a base circuit, we define a base-circuit graphH = BG(M)
of any matroid M as follows: The vertices of H are those x ∈ E(M) such that
x 6∈ C0 ⊂ E(M) for some base circuit C0 of M , and the edges are those pairs
{x, y} such that there exist a base circuit C0 and another circuit C in M for
which C−C0 = {x, y}. Notice that the graphH is empty ifM has no base circuit,
and H is well-defined even when M has more than one base circuit. Then the
definition of a spike representation and Lemma 7.4 immediately imply:

Corollary 7.5. Let a simple graph H be such that no edge of H is incident with
all other edges. Then BG(SR(H)) ' H.

2

Now we move to the core result of this section – an interpretation of the MSO
logic of adjacency graphs in the MSO logic of their spike representations, where
the notion of base-circuit graphs provides the backward translation of structures
(as in Figure 5).

Lemma 7.6. Let P be a matroid family, and let B denote the class of all adja-
cency graphs which are base-circuit graphs of the members of P. Then the MSO1

theory of B is interpretable in the MSOM theory of P.

Proof. We first express the predicate base-circuit in the MSOM logic

base-circuit(C0) ≡ |C0| > 4 ∧ ∀B
(

B ⊆ C0 → ¬basis(B)
)

∧

∧∀C
[

¬ circuit(C) ∨ ∃B
(

basis(B) ∧B ⊆ C
)

∨ |C − C0| ≤ 2
]

.

(Here |C0| > 4 and |C − C0| ≤ 2 have obvious FO interpretations.)
Let us now consider a matroid M ∈ P and the corresponding graph

H = BG(M). Notice that the individuals–vertices of H form a subset of the
individuals–elements of M . The MSO translation ψI of a formula ψ in MSO1 of
H is obtained as follows:

– Each (bound) individual variable x in ψ is replaced with

∃x θ(x) −→ ∃x∃C0

(

x 6∈ C0 ∧ base-circuit(C0) ∧ θ(x)
)

.

– Set variables in ψ are replaced correspondingly.
– Every occurrence of the adj predicate in ψ is rewritten as

adj
I(x, y) ≡ ∃C,C0

[

circuit(C) ∧ base-circuit(C0)∧

∧ x, y ∈ C ∧ x, y 6∈ C0 ∧ ∀z
(

z 6∈ C ∨ z ∈ C0

)

]

.
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By definition, the structure M I defined by the above interpretation I is isomor-
phic to the adjacency graph H = BG(M). Moreover, it is clear that H |= ψ iff
M |= ψI . Thus, I is an interpretation of ThMSO1

(B) in ThMSOM
(P). 2

Theorem 7.7. Let P be a matroid family such that, for every planar graph F ,
there is a planar graph G containing F as a minor, and the spike representation
SR(G) is isomorphic to some member of P. Then the monadic second-order
theory ThMSOM

(P) is undecidable.

Proof. Let B denote the class of all adjacency graphs which are base-circuit
graphs of the members of P. Then, by Corollary 7.5 and the assumption, every
planar graph F is isomorphic to a minor of some planar graph G ∈ B. So we may
apply Theorem 4.8 to show that ThMSO1

(B) is undecidable. Hence ThMSOM
(P)

is undecidable by Lemma 7.6 via Theorem 4.2. 2

Since the assumption of Theorem 7.7 is clearly satisfied for the class P of all
spikes, this is actually a stronger version of Theorem 7.2. In particular, the class
P may contain all matroids of branch-width three.

Moreover, we may now easily identify the other particular obstructions to
decidability of the MSOM theory of arbitrary (non-representable) matroids: We
call grid spikes the spike representations SR(Qm) of graph grids.

Corollary 7.8. Let P be a matroid family such that, for every m > 0, the grid
spike SR(Qm) is isomorphic to a minor of some matroid in P. Then the theory
ThMSOM

(P) is undecidable.

Proof. Let Pm denote the class of all minors of members of P. Since every planar
graph is a minor of a sufficiently large grid, the assumptions of Theorem 7.7 are
satisfied for Pm. Hence the theory ThMSOM

(Pm) is undecidable. Now it is enough
to recall Lemmas 6.3 and 6.4 to argue that also ThMSOM

(P) is undecidable. 2

8 Conclusions and remarks

Using our main result, Theorem 6.2, it is not difficult to deduce the above dis-
cussed recent Theorem 4.18 ([33]) of Courcelle and Oum. The basic idea to do this
was developed in [33]: First arbitrary graphs were reduced to bipartite graphs
using interpretability, and then bipartite graphs were reduced via a C2MS inter-
pretation to binary matroids, i.e. matroids represented by vectors over GF (2).
The point of this reduction is in that the starting graphs have bounded clique-
width if and only if the resulting binary matroids have bounded branch-width.
Now the ingenious step here is the observation that for binary matroids, having
a representation by {0, 1} vectors, linear independence can be reduced to a check
of the parity of the coordinates, which can be easily described via the predicate
Even(X) in MSO-logic. So Conjecture 4.12 is proved for C2MS-logic instead of
MSO-logic. Unfortunately this result does not imply the whole conjecture, as
the next theorem shows.
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Theorem 8.1. There exists a class T of trees with ThC2MS(T) undecidable but
ThMSO(T) decidable.

This is interesting, since for binary trees the predicate Even(X) is definable in
MSO-logic, what follows from the observation of Courcelle [22], that Even(X) is
definable for each structure for which a linear ordering of the domain is definable.

The idea of the proof is to code the Halting set for a universal Turing machine
into the structure of the members of a class of countable trees in such a way
that the set can be recognized via a simple sentence in C2MS-logic. This makes
the C2MS-theory of this class undecidable. On the other hand this set of trees
can be constructed in such a way that it has a decidable MSO-theory. Here the
idea is to reduce this structures via Ehrenfeucht-Fraisse-games to very simple
periodic structures with a decidable theory (see [53] for details).

From the previous section we see that bounding the branch-width is not
sufficient to get a decidable MSOM theory of all matroids. The above presented
results naturally lead to the following important questions.

Question 8.2. Regarding Corollary 7.8:

– What is a structural description of the classes of all matroids excluding big
grids and big grid spikes as minors?

– What can be said about the decidability of the MSOM for such classes?
– Alternatively, what other obstructions should be excluded to get a decidable

MSOM theory of a matroid class including also non-representable ones?
– Is such a theory interpretable in a class of trees (c.f. Conjecture 4.12)?

We do not have any good answer to these questions, not even a plausible con-
jecture, since we are only at the start of a new and exciting research area. Indeed
we do not expect easy answers here since the questions combine the (difficult)
area of structural matroid theory with fundamental problems of logic. However,
a possible way to the right answers may be shown via a suitable combination
of the notions of a matroid “monarchy” (suggested by Edmonds [2002, private
communication]), and a “shadow” of a separation in a matroid. We try to briefly
outline our ideas here.

A matroid family M is called a monarchy if, for each r > 0, there is a unique
(up to isomorphism) maximal matroid of rank r in M. For example, in the
class of all simple graphs the monarch of rank r is the complete graph Kr+1.
For simple GF (q)-representable matroids of rank r the monarch is the rank-r
projective geometry over GF (q). On the other hand, all simple matroids do not
form a monarchy since already the n-element lines U2,n do not have a maximal
one.

To sketch the notion of a shadow, let us consider a partition (L,R) (a sep-
aration) of the ground set of a matroid M . We define on the family of all sub-
sets 2L ∪ 2R an equivalence relation ∼ as follows. Let us shortly denote by
i(X,Y ) = rM (X) + rM (Y )− rM (X ∪ Y ).

– X ∼ Y for X,Y ⊆ L iff i(X,R) = i(Y,R) = i(X ∪ Y,R), and analogously
for X,Y ⊆ R.
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– X ∼ Y for X ⊆ L and Y ⊆ R iff i(X,R) = i(X,Y ) = i(Y,L).

Then it can be shown that the equivalence classes of ∼ determine the collection
of flats of a certain matroid M(L,R) of rank λM (L) = λM (R) that we call the
matroid shadow of the separation (L,R) in M . (Geometrically, the flats of the
shadow M(L,R) are determined by intersections of the spans 〈F 〉 of all flats F of
M with the guts – the subspace 〈L〉 ∩ 〈R〉, of the separation (L,R).)

For an integer t and a matroid monarchy M, we say that the branch-width of
a matroid N is bounded by t and M if there exist a branch decomposition (T, τ)
of width ≤ t such that the shadows of all separations displayed in the tree T
belong to the monarchy M. (For M being the class of all GF (q)-representable
matroids, and N also GF (q)-representable, this definition reduces to ordinary
branch-width. On the other hand, there are spikes whose branch-width is not
bounded by any monarchy.) We shortly say that the branch-width of a matroid
class N is bounded with respect to a monarchy M if there is a t such that the
branch-width of each matroid in N is bounded by t and M.

A direct extension of the ideas from [47] leads to a possible definition of
parse trees for all matroids of branch-width bounded by t and a monarchy M,
and to a corresponding extension of Theorem 5.2. Hence we can prove that the
MSOM of the classes of all matroids of branch-width bounded with respect to a
monarchy M are decidable.

Unfortunately, one of the problems with the above sketched ideas is that the
class of all free spikes (i.e. the spikes defined by Lemma 7.3 with A = ∅) has
unbounded branch-width with respect to any monarchy, but the MSOM theory
of the free spikes is decidable since it is quite trivial. Hence our notion of branch-
width bounded with respect to a monarchy seems to be too restrictive if we want
to find the right borderline between decidable and undecidable matroid MSOM

theories. We neverthless continue our research in this direction.

Altogether, with the above mentioned results of Courcelle and Oum from [33],
our main result looks like a significant step toward a solution of Conjecture 4.12,
but to substitute C2MS by MSO in Theorem 4.18 and to prove it for countable
structures of arbitrary finite signature is still open. To prove the conjecture
for arbitrary structures it could be of interest to show that for each class K of
countable structures there is a class C(K) of simple graphs such that ThMSO(K)
is interpretable in ThMSO

(

C(K)
)

and ThMSO(K) is decidable if and only if

ThMSO

(

C(K)
)

is decidable, i.e. graphs are universal with respect to MSO logic
and decidability (see [45] for a related notion of universality for elementary
theories).

With respect to the general conjecture for graphs it could be of interest to
show the following. Assume that the tree-width of a class K of countable graphs is
unbounded. Show that then also ThMSO∀1

(K) and ThMSO∃1
(K), i.e. the theories

of all formulas satisfied in K with only one universal or only one existential set
quantifier in a prenex form, are undecidable. Such a result could give an essential
strengthening of Theorem 4.8.
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