Petr Hliněný

Some Recent Additions to Matroid Tree-Width

\author{
Faculty of Informatics,
 Masaryk University in Brno, Botanická 68a, 60200 Brno, Czech Rep.
 ```
e-mail: hlineny@fi.muni.cz
 http://www.fi.muni.cz/~hlineny

```
}

Based on joint work with Geoff Whittle
Victoria University of Wellington

\section*{Contents}

1 TREE-WIDTH - an Overview 3
Traditional definition(s) and history of a tree-decomposition of graphs, and its use mainly in algorithmic problems.

2 "Vertex-free" Tree-Decompositions
A novel promising look at a tree-decomposition, inspired by matroids. Comparing it to a traditional view.

3 From one Decomposition to Another
Proving equality between the two views of graph tree-width-the new hard direction which needs an involved treatment of a decomposition.

4 Conclusions

\section*{1 TREE-WIDTH - an Overview}
- Introduced [Robertson \& Seymour, 80's] — the Graph minors project.

\section*{1 TREE-WIDTH - an Overview}
- Introduced [Robertson \& Seymour, 80's] — the Graph minors project.

Definition: A tree-decomposition of a graph \(G\) is a tree with
- "bags" (subsets) of vertices at the tree nodes,
- each edge of \(G\) belongs to some bag, and
- the bags containing some vertex form a subtree (interpolation).

\section*{1 TREE-WIDTH - an Overview}
- Introduced [Robertson \& Seymour, 80's] - the Graph minors project.

Definition: A tree-decomposition of a graph \(G\) is a tree with
- "bags" (subsets) of vertices at the tree nodes,
- each edge of \(G\) belongs to some bag, and
- the bags containing some vertex form a subtree (interpolation).

Tree-width \(=\min _{\text {decompositions of } G} \max \{|\boldsymbol{B}|-\mathbf{1}: \boldsymbol{B}\) bag in decomp. \(\}\)


\section*{Alternative traditional definition}
- The tree-width of \(G\) equals the smallest possible clique number minus one of a chordal supergraph of \(G\).

\section*{Alternative traditional definition}
- The tree-width of \(G\) equals the smallest possible clique number minus one of a chordal supergraph of \(G\).
- This can be much easier understood via \(k\)-trees, see e.g. a 2 -tree:

[Beineke \& Pippert, 68 - 69], [Rose 74], [Arnborg \& Proskurowski, 86].
- A graph \(G\) has tree-width \(\leq k\) iff \(G\) is a partial (subgraph of a) \(k\)-tree.

\section*{Where is tree-width useful?}
- Already the fact that independent approaches to tree-width evolved in time, suggests that it likely is an interesting and useful notion...

\section*{Where is tree-width useful?}
- Already the fact that independent approaches to tree-width evolved in time, suggests that it likely is an interesting and useful notion...
- The profound Graph minors project makes an essential use of tree-width.

\section*{Where is tree-width useful?}
- Already the fact that independent approaches to tree-width evolved in time, suggests that it likely is an interesting and useful notion...
- The profound Graph minors project makes an essential use of tree-width.
- Parameterized algorithmics:
- Initial algorithmic attempts [Arnborg \& Proskurowski, 86], [Arnborg, Corneil \& Proskurowski, 87], [Bodlaender 88].

\section*{Where is tree-width useful?}
- Already the fact that independent approaches to tree-width evolved in time, suggests that it likely is an interesting and useful notion...
- The profound Graph minors project makes an essential use of tree-width.
- Parameterized algorithmics:
- Initial algorithmic attempts [Arnborg \& Proskurowski, 86], [Arnborg, Corneil \& Proskurowski, 87], [Bodlaender 88].
- All graph properties expressible in MSO logic are efficiently solvable on the graphs of bounded tree-width (incl. many NP-hard ones). [Courcelle 88], [Arnborg, Lagergren \& Seese, 88]

\section*{Where is tree-width useful?}
- Already the fact that independent approaches to tree-width evolved in time, suggests that it likely is an interesting and useful notion...
- The profound Graph minors project makes an essential use of tree-width.
- Parameterized algorithmics:
- Initial algorithmic attempts [Arnborg \& Proskurowski, 86], [Arnborg, Corneil \& Proskurowski, 87], [Bodlaender 88].
- All graph properties expressible in MSO logic are efficiently solvable on the graphs of bounded tree-width (incl. many NP-hard ones). [Courcelle 88], [Arnborg, Lagergren \& Seese, 88]
- Linear-time parameterized algorithm for a tree-decomposition by [Bodlaender 96].

\section*{Where is tree-width useful?}
- Already the fact that independent approaches to tree-width evolved in time, suggests that it likely is an interesting and useful notion...
- The profound Graph minors project makes an essential use of tree-width.
- Parameterized algorithmics:
- Initial algorithmic attempts [Arnborg \& Proskurowski, 86], [Arnborg, Corneil \& Proskurowski, 87], [Bodlaender 88].
- All graph properties expressible in MSO logic are efficiently solvable on the graphs of bounded tree-width (incl. many NP-hard ones). [Courcelle 88], [Arnborg, Lagergren \& Seese, 88]
- Linear-time parameterized algorithm for a tree-decomposition by [Bodlaender 96].
- Logic side:

Decidability of MSO theories of the graphs of bounded tree-width [Courcelle 88]; a converse by [Seese 91].

\section*{2 "Vertex-free" Tree-Decompositions}

Motivation: All the "traditional" definitions of tree-width make an essential use of graph vertices. Is this necessary?

\section*{2 "Vertex-free" Tree-Decompositions}

Motivation: All the "traditional" definitions of tree-width make an essential use of graph vertices. Is this necessary?
- A new (matroidal) approach, proposed by [PH \& Whittle, 03].

Definition: A VF tree-decomposition of a graph \(G\) is a tree \(T\) with
- an arbitrary \(\tau: E(G) \rightarrow V(T)\), without further restrictions.

\section*{2 "Vertex-free" Tree-Decompositions}

Motivation: All the "traditional" definitions of tree-width make an essential use of graph vertices. Is this necessary?
- A new (matroidal) approach, proposed by [PH \& Whittle, 03].

Definition: A VF tree-decomposition of a graph \(G\) is a tree \(T\) with
- an arbitrary \(\tau: E(G) \rightarrow V(T)\), without further restrictions.

- Node with of \(x=|V(G)|+(d-1) \cdot c(G)-\sum_{i=1}^{d} c\left(G-F_{i}\right)\), where \(F_{i}\) are the edges mapped to the subtrees \(T-x\), and \(c()\) denotes the number of components.

\section*{2 "Vertex-free" Tree-Decompositions}

Motivation: All the "traditional" definitions of tree-width make an essential use of graph vertices. Is this necessary?
- A new (matroidal) approach, proposed by [PH \& Whittle, 03].

Definition: A VF tree-decomposition of a graph \(G\) is a tree \(T\) with
- an arbitrary \(\tau: E(G) \rightarrow V(T)\), without further restrictions.

- Node with of \(x=|V(G)|+(d-1) \cdot c(G)-\sum_{i=1}^{d} c\left(G-F_{i}\right)\), where \(F_{i}\) are the edges mapped to the subtrees \(T-x\), and \(c()\) denotes the number of components.

VF Tree-width \(=\min _{\text {decompositions }} \boldsymbol{G} \max \{\) node-width in decomp. \(\}\).

Are these two parameters really the same?

Are these two parameters really the same?
Check the following examples for an illustration...

node-with of \(x=|V(G)|+(d-1) \cdot c(G)-\sum_{i=1}^{d} c\left(G-F_{i}\right)\)


\section*{Where this idea comes from?}
- A general definition of matroid tree-width proposed by [PH \& Whittle, 03], following unpublished [Geelen].

\section*{Where this idea comes from?}
- A general definition of matroid tree-width proposed by [PH \& Whittle, 03], following unpublished [Geelen].

Definition: A tree-decomposition of a matroid \(M\) is a tree \(T\) with
- an arbitrary \(\tau: E(M) \rightarrow V(T)\), without further restrictions.

- Node with of \(x=\sum_{i=1}^{d} \mathrm{r}\left(M \backslash F_{i}\right)-(d-1) \cdot \mathrm{r}(M)\), where r() denotes the matroid rank ("dimension").

\section*{Where this idea comes from?}
- A general definition of matroid tree-width proposed by [PH \& Whittle, 03], following unpublished [Geelen].

Definition: A tree-decomposition of a matroid \(M\) is a tree \(T\) with
- an arbitrary \(\tau: E(M) \rightarrow V(T)\), without further restrictions.

- Node with of \(x=\sum_{i=1}^{d} \mathrm{r}\left(M \backslash F_{i}\right)-(d-1) \cdot \mathrm{r}(M)\), where r() denotes the matroid rank ("dimension").
(M) Tree-width \(=\min _{\text {decomps. of } M} \max \{\) node-width in decomp. \(\}\).

\section*{Where this idea comes from?}
- A general definition of matroid tree-width proposed by [PH \& Whittle, 03], following unpublished [Geelen].

Definition: A tree-decomposition of a matroid \(M\) is a tree \(T\) with
- an arbitrary \(\tau: E(M) \rightarrow V(T)\), without further restrictions.

- Node with of \(x=\sum_{i=1}^{d} \mathrm{r}\left(M \backslash F_{i}\right)-(d-1) \cdot \mathrm{r}(M)\), where r() denotes the matroid rank ("dimension").
(M) Tree-width \(=\min _{\text {decomps. of } M} \max \{\) node-width in decomp. \(\}\).
- BTW, if a matroid \(M\) has tree-width \(k\) and branch-width \(b\) (which readily extends to matroids), then \(b-1 \leq k \leq \max (2 b-1,1)\) - that is nice. . .

\section*{Comparing the tree-width parameters}

Theorem [PH \& Whittle, 03]. Let a graph \(G\) has an edge, and \(M\) be the cycle matroid of \(G\). Then the tree-width of \(G\) equals the tree-width of \(M\).

\section*{Comparing the tree-width parameters}

Theorem [PH \& Whittle, 03]. Let a graph \(G\) has an edge, and \(M\) be the cycle matroid of \(G\). Then the tree-width of \(G\) equals the tree-width of \(M\).

Equivalently:
Theorem [PH \& Whittle, 03]. Let a graph \(G\) has an edge. Then the VF tree-width of \(G\) equals the (ordinary) tree-width of \(G\).

\section*{Comparing the tree-width parameters}

Theorem [PH \& Whittle, 03]. Let a graph \(G\) has an edge, and \(M\) be the cycle matroid of \(G\). Then the tree-width of \(G\) equals the tree-width of \(M\).
Equivalently:
Theorem [PH \& Whittle, 03]. Let a graph \(G\) has an edge. Then the VF tree-width of \(G\) equals the (ordinary) tree-width of \(G\).

Some thoughts on these parameters...
- An equality between the above node-width formulas for graphs and matroids is easy to show.

\section*{Comparing the tree-width parameters}

Theorem [PH \& Whittle, 03]. Let a graph \(G\) has an edge, and \(M\) be the cycle matroid of \(G\). Then the tree-width of \(G\) equals the tree-width of \(M\).
Equivalently:
Theorem [PH \& Whittle, 03]. Let a graph \(G\) has an edge. Then the VF tree-width of \(G\) equals the (ordinary) tree-width of \(G\).

Some thoughts on these parameters...
- An equality between the above node-width formulas for graphs and matroids is easy to show.
- For vector matroids, a tree-decomposition has a nice "visualization" with
- affine subspaces modelling the traditional "bags",
- with dimension in place of bag size, and an interpolation property.

\section*{Comparing the tree-width parameters}

Theorem [PH \& Whittle, 03]. Let a graph \(G\) has an edge, and \(M\) be the cycle matroid of \(G\). Then the tree-width of \(G\) equals the tree-width of \(M\).
Equivalently:
Theorem [PH \& Whittle, 03]. Let a graph \(G\) has an edge. Then the VF tree-width of \(G\) equals the (ordinary) tree-width of \(G\).

Some thoughts on these parameters...
- An equality between the above node-width formulas for graphs and matroids is easy to show.
- For vector matroids, a tree-decomposition has a nice "visualization" with
- affine subspaces modelling the traditional "bags",
- with dimension in place of bag size, and an interpolation property.
- An ordinary tree-decomposition can be readily translated into a VF treedecomposition; just find a bag hosting each edge of \(G\).

\section*{3 From one Decomposition to Another}
- Where we stand?
- The VF tree-width is at most the ordinary tree-width; since an ordinary tree-decomposition naturally translates to a VF tree-decomposition of at most the same width.

\section*{3 From one Decomposition to Another}
- Where we stand?
- The VF tree-width is at most the ordinary tree-width; since an ordinary tree-decomposition naturally translates to a VF tree-decomposition of at most the same width.
- What happens in the converse direction?
- Again, any VF tree-decomposition naturally translates into an ordinary decomposition (just apply the interpolation property to the ends of mapped edges).

\section*{3 From one Decomposition to Another}
- Where we stand?
- The VF tree-width is at most the ordinary tree-width; since an ordinary tree-decomposition naturally translates to a VF tree-decomposition of at most the same width.
- What happens in the converse direction?
- Again, any VF tree-decomposition naturally translates into an ordinary decomposition (just apply the interpolation property to the ends of mapped edges).
- However, the width may increase (dramatically)!

The problem is that edges mapped to a branch in the decomposition may induce a disconnected subgraph, hence further decreasing the node-width in the VF setting. . .

node-with of \(x=\)
\[
|V(G)|+(d-1) \cdot c(G)-\sum_{i=1}^{d} c\left(G-F_{i}\right)
\]

An example of a "disconnected" decomposition

node-with formula \(=|V(G)|+(d-1) \cdot c(G)-\sum_{i=1}^{d} c\left(G-F_{i}\right)\)
Easy to check that all six nodes in this VF tree-decomposition have width 4.

An example of a "disconnected" decomposition

node-with formula \(=|V(G)|+(d-1) \cdot c(G)-\sum_{i=1}^{d} c\left(G-F_{i}\right)\)
Easy to check that all six nodes in this VF tree-decomposition have width 4. However, the central two nodes induce bags of size 9 in an ordinary treedecomposition! (tree-width up to 8)

\section*{Handling a "disconnected" decomposition}
- If we want to get an ordinary tree-decomposition of the same width, we have to alter "disconnected" spots of a VF tree-decomposition. . .
- Actually, the proof complications appear similar to those emerging when proving equality of matroid branch-width to graph branch-width [Hicks \& McMurray, 07], [Mazoit \& Thomassé].
(No short proof of this statement is known so far.)

\section*{Handling a "disconnected" decomposition}
- If we want to get an ordinary tree-decomposition of the same width, we have to alter "disconnected" spots of a VF tree-decomposition. . .
- Actually, the proof complications appear similar to those emerging when proving equality of matroid branch-width to graph branch-width [Hicks \& McMurray, 07], [Mazoit \& Thomassé].
(No short proof of this statement is known so far.)
- The "easy" altering method published as a proof in [PH \& Whittle, EJC 06] was, unfortunately, not correct (it did not cover all the cases); as pointed out by [Adler 07].

\section*{Handling a "disconnected" decomposition}
- If we want to get an ordinary tree-decomposition of the same width, we have to alter "disconnected" spots of a VF tree-decomposition. . .
- Actually, the proof complications appear similar to those emerging when proving equality of matroid branch-width to graph branch-width [Hicks \& McMurray, 07], [Mazoit \& Thomassé].
(No short proof of this statement is known so far.)
- The "easy" altering method published as a proof in [PH \& Whittle, EJC 06] was, unfortunately, not correct (it did not cover all the cases); as pointed out by [Adler 07].
- In response to that, [PH \& Whittle, 08] have got an updated, though longer proof.

We sketch its idea next. . .

Proof (altering a "disconnected" edge of a VF tree-decomposition \(T\) of \(G\) ).
- We assume an edge \(e=u v\) of \(T\) such that the \(G\)-edges mapped to the \(u\)-branch of \(T\) form a disconnected subgraph of \(G\), and that the edges mapped to the branches of \(u\)-neighbours (not \(v\) ) stay connected in \(G\).


Proof (altering a "disconnected" edge of a VF tree-decomposition \(T\) of \(G\) ).
- We assume an edge \(e=u v\) of \(T\) such that the \(G\)-edges mapped to the \(u\)-branch of \(T\) form a disconnected subgraph of \(G\), and that the edges mapped to the branches of \(u\)-neighbours (not \(v\) ) stay connected in \(G\).

- If we find a disconnected partitioning (of the \(G\)-edges mapped to the \(v\)-branch) \(F_{e}^{2}=F_{3} \cup F_{4}\), then we "split" \(T\) as above.

Proof (altering a "disconnected" edge of a VF tree-decomposition \(T\) of \(G\) ).
- We assume an edge \(e=u v\) of \(T\) such that the \(G\)-edges mapped to the \(u\)-branch of \(T\) form a disconnected subgraph of \(G\), and that the edges mapped to the branches of \(u\)-neighbours (not \(v\) ) stay connected in \(G\).

- If we find a disconnected partitioning (of the \(G\)-edges mapped to the \(v\)-branch) \(F_{e}^{2}=F_{3} \cup F_{4}\), then we "split" \(T\) as above.
The hard part is to prove that width does not increase (two subcases).

Proof (altering a "disconnected" edge of a VF tree-decomposition \(T\) of \(G\) ).
- We assume an edge \(e=u v\) of \(T\) such that the \(G\)-edges mapped to the \(u\)-branch of \(T\) form a disconnected subgraph of \(G\), and that the edges mapped to the branches of \(u\)-neighbours (not \(v\) ) stay connected in \(G\).

- If we find a disconnected partitioning (of the \(G\)-edges mapped to the \(v\)-branch) \(F_{e}^{2}=F_{3} \cup F_{4}\), then we "split" \(T\) as above.
The hard part is to prove that width does not increase (two subcases).
- If \(F_{e}^{2}\) is connected in \(G\), then we simply contract \(e\) in \(T\) (an easy case).

Proof (altering a "disconnected" edge of a VF tree-decomposition \(T\) of \(G\) ).
- We assume an edge \(e=u v\) of \(T\) such that the \(G\)-edges mapped to the \(u\)-branch of \(T\) form a disconnected subgraph of \(G\), and that the edges mapped to the branches of \(u\)-neighbours (not \(v\) ) stay connected in \(G\).

- If we find a disconnected partitioning (of the \(G\)-edges mapped to the \(v\)-branch) \(F_{e}^{2}=F_{3} \cup F_{4}\), then we "split" \(T\) as above.
The hard part is to prove that width does not increase (two subcases).
- If \(F_{e}^{2}\) is connected in \(G\), then we simply contract \(e\) in \(T\) (an easy case).
- After all, there is a "strictly decreasing" sequence of alterations, leading to the connected case in which both tree-width measures are equal.

\section*{4 Conclusions}
- Showing that a matroidal (geometric) view can bring new and interesting notions and properties of ordinary graphs - cf. the VF tree-width.
- The proof is now complete...

\section*{4 Conclusions}
- Showing that a matroidal (geometric) view can bring new and interesting notions and properties of ordinary graphs - cf. the VF tree-width.
- The proof is now complete...
- A VF tree-decomposition seems to be a "stronger" notion:
- We have seen that there exist VF tree-decompositions which do not easily translate to ordinary decompositions of the same width...

\section*{4 Conclusions}
- Showing that a matroidal (geometric) view can bring new and interesting notions and properties of ordinary graphs - cf. the VF tree-width.
- The proof is now complete...
- A VF tree-decomposition seems to be a "stronger" notion:
- We have seen that there exist VF tree-decompositions which do not easily translate to ordinary decompositions of the same width...
- Close relations to graph vs. matroid branch-width equality. . . ??

\section*{4 Conclusions}
- Showing that a matroidal (geometric) view can bring new and interesting notions and properties of ordinary graphs - cf. the VF tree-width.
- The proof is now complete...
- A VF tree-decomposition seems to be a "stronger" notion:
- We have seen that there exist VF tree-decompositions which do not easily translate to ordinary decompositions of the same width...
- Close relations to graph vs. matroid branch-width equality. . . ??
- Can VF tree-width notion be used to provide some easier proofs in structural graph theory?

\section*{4 Conclusions}
- Showing that a matroidal (geometric) view can bring new and interesting notions and properties of ordinary graphs - cf. the VF tree-width.
- The proof is now complete...
- A VF tree-decomposition seems to be a "stronger" notion:
- We have seen that there exist VF tree-decompositions which do not easily translate to ordinary decompositions of the same width...
- Close relations to graph vs. matroid branch-width equality. . . ??
- Can VF tree-width notion be used to provide some easier proofs in structural graph theory?
- Bringing more properties of graph tree-width to matroids [Azzato 08]...

\section*{4 Conclusions}
- Showing that a matroidal (geometric) view can bring new and interesting notions and properties of ordinary graphs - cf. the VF tree-width.
- The proof is now complete...
- A VF tree-decomposition seems to be a "stronger" notion:
- We have seen that there exist VF tree-decompositions which do not easily translate to ordinary decompositions of the same width...
- Close relations to graph vs. matroid branch-width equality. . . ??
- Can VF tree-width notion be used to provide some easier proofs in structural graph theory?
- Bringing more properties of graph tree-width to matroids [Azzato 08]...

\section*{THANK YOU FOR ATTENTION}```

