Petr Hliněný

Matroid Tree-Width and Chordality

Faculty of Informatics, Masaryk University in Brno, Botanická 68a, 60200 Brno, Czech Rep.

e-mail: hlineny@fi.muni.cz http://www.cs.vsb.cz/hlineny

Joint work with Geoff Whittle

Victoria University of Wellington

Petr Hliněný, Graph Classes 05

Matroid Tree-Width and Chordality

1 Introduction

A matroid M on E is a set system $\mathcal{B} \subseteq 2^E$ of *bases*, sat. the exchange axiom

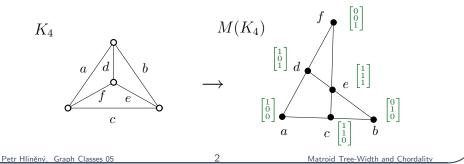
 $\forall B_1, B_2 \in \mathcal{B} \text{ a } \forall x \in B_1 - B_2, \ \exists y \in B_2 - B_1: \ (B_1 - \{x\}) \cup \{y\} \in \mathcal{B}.$

The subsets of bases are called *independent*.

Representations by graphs and vectors

Cycle matroid of a graph M(G) – on the edges of G, where acyclic sets are independent.

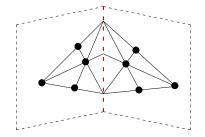
Vector matroid of a matrix $M(\mathbf{A})$ – on the (column) vectors of \mathbf{A} , with usual linear independence.



Matroid rank

The rank function of a matroid M is $\mathbf{r}_M: 2^{E(M)} \to \mathbb{N}$ where

 $r_M(X) = \max \{ |I| : \text{ independent } I \subseteq X \}.$



Connectivity

The connectivity function of M is $\lambda_M: 2^{E(M)} \to \mathbb{N}$ where

$$\lambda_M(X) = \mathbf{r}_M(X) + \mathbf{r}_M(E - X) - \mathbf{r}(M) + 1.$$

Geometrically, $\lambda_M(X)$ is the rank of the intersection of the spans of X and E - X plus 1.

(In graphs, $\lambda_G(X)$ equals the number of vertices shared between X and E-X.)

3

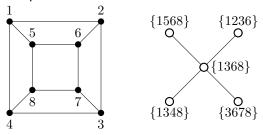
2 Matroid TREE-WIDTH

- Introduced [Robertson + Seymour, 80's] - the "Graph minor" project.

Definition: Tree *decomposition* of a graph G

- "bags" (subsets) of vertices at the tree nodes,
- each edge of ${\boldsymbol{G}}$ belongs to some bag, and
- the bags containing some vertex form a subtree (interpolation).

Tree-width = $\min_{\text{decomposition } G} \max \{|B| - 1 : B \text{ bag in a decomp.}\}.$



– Alternative tree-width definitions; some even before R+S...

(For ex. by linear ordering of vertices, cf. simplicial decomposition.)

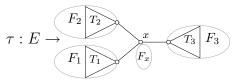
The notion appears in many areas and relations, mainly algorithmic.
 In parametrized computation – linear-time FPT [Bodlaender, 96].

A "vertex-free" definition

- Proposed by [PH + Whittle, 03].

A tree $\mathit{edge}\ \mathit{decomposition}$ of a graph G

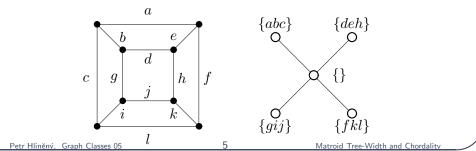
– arbitrary $\tau: E(G) \rightarrow V(T)$, without further restrictions.



Node with of $x = |V(G)| + (d-1) \cdot c(G) - \sum_{i=1}^{d} c(G - F_i)$,

where F_i mapped to the comps. of T - x, and c() the number of comps.

VF Tree-width = $\min_{\text{decomposition } G} \max(\text{node width in a decomp.}).$

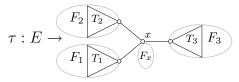


2.1 A Definition on Matroids

- Introduced [PH + Whittle, 03] (following [Geelen, unpublished]).

Tree *decomposition* of a matroid M

– arbitrary $\tau: E(M) \to V(T)$, without further restrictions.



Node width of
$$x = \sum_{i=1}^{d} \mathbf{r}_M \left(E(M) - F_i \right) - (d-1) \cdot \mathbf{r}(M).$$

(M) Tree-width = $\min_{\text{decomposition } M} \max(\text{node width in a decomp.}).$

Theorem [PH + Whittle, 03]. If a matroid M has tree-width k and branchwidth b, then $b - 1 \le k \le \max(2b - 1, 1)$.

Theorem [PH + Whittle, 03]. Let a graph G has an edge, and M = M(G) be the cycle matroid. Then the tree-width of G equals the tree-width of M.

So our VF tree-width definition seems OK...

Computing matroid tree-width

Is tree-width a "good" structural parameter?

(Can we compute the tree-width and a corresponding decomposition if bounded?)

Theorem [PH, 03]. Computing the tree-width of a matroid represented over a finite field is FPT in $O(n^3)$.

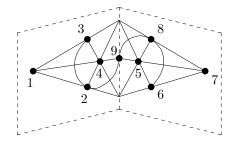
A sketch:

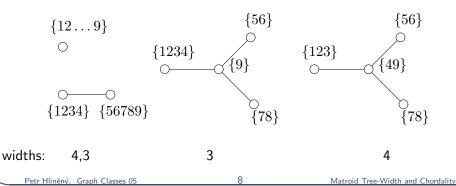
tree-width \rightarrow branch-width of the matroid \rightarrow solved in FPT $O(n^3)$ by [PH, 02]

 \rightarrow test the excluded minors for small tree-width.

(A decomposition is computed only approximately...)

Examples of matroid tree decompositions





3 Matroid CHORDALITY

Simplicial cocircuit ~ simplicial vertex:

 $\begin{array}{l} - B \subseteq E(M) \text{ such that} \\ M \upharpoonright \mathrm{cl}_M(B) \simeq PG(r,q) \text{ (a projective geometry over } GF(q) \text{)} \\ (\text{Cliques } \sim \text{ projective geometries}) \end{array}$

Matroid k-trees

- Defined over a finite field GF(q).
- Formed from
 - rank- $\leq k$ projective geometries over GF(q) by means of
 - direct sums,
 - "adding" simplicial cocircuits of rank $\leq k$.

Theorem 3.1. A simple GF(q)-representable matroid M has tree-width at most k if and only if M is a restriction of a k-tree matroid over GF(q).

(Enough to use: cliques \sim non-vertically-separable sets)

3.1 Defining chordal matroids ???

We want to extend choral graphs to matroids in a nice way that "interplays" with matroid tree-width and k-trees...

- The span of every circuit containing another element?
 - uniform matroids $U_{m,n}$ do not look like "chordal".

3.2 Defining chordal matroids ???

We want to extend choral graphs to matroids in a nice way that "interplays" with matroid tree-width and k-trees...

- The span of every circuit containing another element?
 - uniform matroids $U_{m,n}$ do not look like "chordal".
- The span of every circuit giving a triangle?
 - is the Fano matroid F₇ chordal?
 Yes, over GF(2). But what over larger fields?

3.3 Defining chordal matroids ???

We want to extend choral graphs to matroids in a nice way that "interplays" with matroid tree-width and k-trees...

- The span of every circuit containing another element?
 - uniform matroids $U_{m,n}$ do not look like "chordal".
- The span of every circuit giving a triangle?
 - is the Fano matroid F_7 chordal? Yes, over GF(2). But what over larger fields?
 - however, what about free swirls? No.
- Combining the previous with a "density" condition?

- to obtain simplicial cocircuits over a fixed finite field GF(q).

Proposal – Superchordal Matroids Chordality

(S1) For every circuit C in M; if $e \in C$, then there are two other elements in the closure $f, f' \in cl_M(C)$ such that $\{e, f, f'\}$ is a triangle in M.

Density

(S2) If two elements e, f of M are not vertically separated, then the closure of e, f induces a (q+1)-line; $M \upharpoonright \operatorname{cl}_M(e, f) \simeq PG(1, q) \simeq U_{2,q+1}$.

Conjecture

A simple GF(q)-representable matroid M is superchordal over GF(q) if and only if M is a $\leq k$ -tree matroid over GF(q).

4 Conclusions

- Shown that a matroidal (geometric) view can bring new and interesting notions and properties of ordinary graphs cf. *VF tree-width*.
- Brought up the question of properly defining *matroid chordality*, with "good relations" to tree-width. (If possible...)
- Our research tries to contribute to (nowadays popular) extensions of the Graph-Minor project from graphs to matroids...
- A remark on another interesting question is the branch-width of a graph equal to the branch-width of its matroid?

• And finally – MACEK [PH 01–05],

a software tool for practical structural computations with matroids:

http://www.cs.vsb.cz/hlineny/MACEK

(Now with a new online interface - TRY IT yourself!)