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Abstract. Hliněný and Whittle have shown that the traditional tree-
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nately their original paper Matroid tree-width, European J. Combin. 27
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the affected proofs. (All the theorems and results of the original paper
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1 Introduction

In their fundamental work on graph minors, Robertson and Seymour introduced
two notions of width for graphs [3], namely tree-width and branch-width. While
the two are qualitatively the same in that a class of graphs has bounded tree-
width if and only if it has bounded branch-width, it is undoubtedly tree-width
that has proved to be a more popular notion. On the other hand, for matroid
theorists, branch-width is the notion since it extends directly from graphs to
matroids.

Given this, it is natural to ask if tree-width can also be extended to matroids.
It is by no means immediately obvious that this can be done as the definition
of graph tree-width makes considerable use of the vertices of a graph. However,
Jim Geelen [unpublished] observed that such an extension could be possible.
Hliněný and Whittle then proposed in [2] an alternative “matroidal” definition
of tree-width. We set forth both these approaches in the next definitions.
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Definition (“Traditional tree-width” [3]).
A tree-decomposition of a graph G is a pair (T, β), where T is a tree and β :
V (T ) → 2V (G) is a mapping (the “bags”) that satisfies the following:

– For each edge e = uv ∈ E(G), there is x ∈ V (T ) such that {u, v} ⊆ β(x).
– If x ∈ V (T ), and if y, z ∈ V (T ) are two nodes in distinct components of

T − x, then β(y) ∩ β(z) ⊆ β(x) (“interpolation”).
–

⋃

x∈V (T ) β(x) = V (G).

The width of (T, β) is the maximal value of |β(x)| − 1 over all x ∈ V (T ). The
smallest width over all tree-decompositions of the graph G is the tree-width of G.
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τ : E →

FxF1

F2

F3

Fig. 1. An illustration of the definition of a matroid tree-decomposition.

Definition (“Matroid tree-width”).

(a) A VF-tree-decomposition of a graph G is a pair (T, τ), where T is a tree, and
τ : E(G) → V (T ) is an arbitrary mapping of edges to the tree nodes. (VF
refers to “vertex-free”, for a distinction from traditional tree-width.) For a
node x of T , denote the connected components of T − x by T1, . . . , Td and
set Fi = τ−1

(

V (Ti)
)

. (See in Fig. 1.) The node-width of x is defined by

|V (G)| + (d − 1) · c(G) −
d

∑

i=1

c(G − Fi) , (1)

where c(H) denotes the number of connected components of a graph H.

(b) A tree-decomposition of a matroid M on the ground set E = E(M) is a pair
(T, τ) where T is a tree and τ : E → V (T ) is an arbitrary mapping. For a
node x of T , denote the connected components of T − x by T1, . . . , Td and
set Fi = τ−1

(

V (Ti)
)

⊆ E. The node-width of x is given by

d
∑

i=1

rM (E − Fi) − (d − 1) · r(M) . (2)

The width of the decomposition (T, τ) is the maximal node-width over all the
nodes of T , and the smallest width over all tree-decompositions of G or M is the
VF-tree-width of G or the tree-width of M , respectively. The width of an empty
tree T is 0.
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A straightforward argument shows equivalence between (a) and (b).

Proposition 1.1 ([2, Proposition 3.3]). Let G be a graph and M(G) be the
cycle matroid of G. For any F1, . . . , Fd ⊆ E(G) 6= ∅, the values of (1) and (2)
are equal, and hence the VF-tree-width of G equals the tree-width of M(G).

One of the main results of our paper [2] asserts that “matroidal” VF-tree-
width is the same as traditional tree-width on graphs.

Theorem 1.2. The tree-width of a graph G equals the VF-tree-width of G.

Regarding this statement, we note that there is a natural way of transforming
a traditional tree-decomposition into a VF-tree-decomposition, and vice versa:
For each edge e of G we may pick as τ(e) any of the nodes whose bag contains e,
and conversely, we may form bags of the traditional definition from the ends
of the mapped edges and some additional vertices to satisfy the interpolation
property. The widths of these decomposition, however, are generally different,
and hence this theorem requires a nontrivial proof.

Unfortunately, as pointed out [1] by Isolde Adler in 2007, our original pa-
per [2] used some incorrect arguments supporting Theorem 1.2, namely wrong
[2, Claim 5.5] (cf. Section 2). It is the purpose of this addendum to provide
alternative correct arguments proving our theorems.

2 Correction of Lemma 5.4

The proof of Theorem 1.2 has two directions in view of Proposition 1.1. The
easier direction, that the traditional tree-width of a graph G is not smaller than
the tree-width of the cycle matroid M(G) of G, has been rigorously proved in
[2, Lemmas 5.1 and 5.2]. For the other direction, that the tree-width of a graph
G is not bigger than the tree-width of M(G), arguments have been provided in
[2, Lemma 5.4]. Unfortunately, there in the proof a wrong intermediate claim
appeared, as has been discovered and pointed to us by Adler [1].

To be specific; starting from a tree-decomposition of M(G) or equivalently
from a VF-tree-decomposition of G, there is the above sketched obvious transla-
tion of it into a traditional tree-decomposition of G. The question is whether the
bag at each node of the latter decomposition is not bigger than the respective
node-width of the former decomposition plus one. That (false in general) is true
if we start from a decomposition possessing certain additional connectivity prop-
erties, as proved in [2, Claim 5.6], but preceding [2, Claim 5.5] which originally
established the existence of such a decomposition, unfortunately does not hold.

We present an alternative proof for the above assertion in Theorem 2.5 along
ideas similar to the original (flawed) one. The new proof is longer, though.

We start first with useful technical results about handling matroid tree-
decompositions which did not explicitly appear in [2]. For F ⊆ E(G) we denote
by G ↾ F the subgraph of G with edge set F and those vertices incident with
edges from F (hence ignoring isolated vertices). To simplify our arguments, we
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introduce the following notation with respect to a tree-decomposition (T, τ): If
e is an edge of T , then let T 1

e , T 2
e denote the components of T − e. Analogously

let T i
v, i = 1, . . . , d denote the components of T − v where v is a node of T

of degree d. Let moreover F i
v = τ−1

(

V (T i
v)

)

and F j
e = τ−1

(

V (T j
e )

)

, referring
implicitly to the decomposition (T, τ) in consideration.

Proposition 2.1. Consider a tree-decomposition (T, τ) of a matroid M .
(a) If a tree T ′ is obtained by splitting a node x into two nodes x, x′ (i.e. con-
tracting xx′ in T ′ gives T ), then the width of (T ′, τ) is not larger than the width
of (T, τ).
(b) Assume e is an edge of T , and C ( F 2

e is a union of connected components of
the matroid restriction M \F 1

e . If τ ′ is obtained from τ by arbitrarily re-mapping
the elements of C into the nodes of T 1

e , then the node-width of each node of T 2
e

in (T, τ ′) is not larger than its width in (T, τ).

Notice that, according to Proposition 1.1, we may also write this proposition in
a special form suited for our later application to graphs.

Proposition 2.1′. Consider a VF-tree-decomposition (T, τ) of a graph G.
(a) If a tree T ′ is obtained by splitting a node x into two nodes x, x′, then the
width of (T ′, τ) is not larger than the width of (T, τ).
(b) Assume e is an edge of T , and C ( F 2

e is a union of edge sets of some
connected components of the graph G ↾F 2

e . If τ ′ is obtained from τ by arbitrarily
re-mapping the elements of C into the nodes of T 1

e , then the node-width of each
node of T 2

e in (T, τ ′) is not larger than its width in (T, τ).

It is, however, more natural to prove Proposition 2.1 in matroidal terms.
For a matroid M and arbitrary subsets F1, . . . , Fd, d ≥ 2 of its elements, let
ηM (F1, . . . , Fd) =

∑d

i=1 rM (E(M) − Fi) − (d − 1) r(M), cf. the node-width for-
mula (2). Proposition 2.1 (a) follows by repeated application of the following:

Lemma 2.3. ηM (F1, F2, F3, . . . , Fd) ≥ ηM (F1 ∪ F2, F3, . . . , Fd)

Proof. By submodularity of the matroid rank function,

ηM (F1, F2, . . . , Fd) =
d

∑

i=1

rM (E(M) − Fi) − (d − 1) r(M) ≥

≥ rM

(

E(M) − (F1 ∪ F2)
)

+ r(M) +

d
∑

i=3

rM (E(M) − Fi) − (d − 1) r(M) =

= ηM (F1 ∪ F2, F3, . . . , Fd) .

Proposition 2.1 (b), on the other hand, follows by an application of the next
claim to each node of T 2

e separately. Recall that F1, . . . , Fd, d ≥ 2 are arbitrary
subsets of elements of a matroid M .
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Lemma 2.4. Assume C ⊂ E(M) − F1 is such that rM (C) + rM (E − (F1 ∪
C)) = rM (E − F1), i.e. C is “disconnected” in the matroid M \ F1. Then
ηM (F1, F2, . . . , Fd) ≥ ηM (F1 ∪ C,F2 − C, . . . , Fd − C).

Proof. Let E = E(M). By the exchange axiom of matroids there exist
independent sets Xi ⊆ C ∩ Fi such that it holds rM

(

(E − Fi) ∪ Xi

)

= rM

(

E −

(Fi − C)
)

= rM (E − Fi) + rM (Xi), for i = 2, . . . , d. Now we can write

ηM (F1, F2, . . . , Fd) − ηM (F1 ∪ C,F2 − C, . . . , Fd − C) =

= rM (E − F1) − rM

(

E − (F1 ∪ C)
)

+

d
∑

i=2

[

rM (E − Fi) − rM

(

E − (Fi − C)
)]

=

= rM (C) +
d

∑

i=2

[

rM (E − Fi) − rM (E − Fi) − rM (Xi)
]

= rM (C) −
d

∑

i=2

rM (Xi) .

Hence it remains to argue that rM (X2) + · · · + rM (Xd) ≤ rM (C), which
immediately follows if X2 ∪ · · · ∪ Xd is independent. The latter is a conse-
quence of our assumption rM

(

(E − Fi) ∪ Xi

)

= rM (E − Fi) + rM (Xi) since
E − Fi ⊇ X2 ∪ · · · ∪ Xi−1 ∪ Xi+1 ∪ · · · ∪ Xd.

Now we are ready for the main task—to repair the proof of [2, Lemma 5.4].

Theorem 2.5 ([2, Lemma 5.4]). Let G be a graph with at least one edge.
Then the tree-width of G is not larger than the VF-tree-width of G.

Proof. Let (T, τ) be a VF-tree-decomposition of G. Without loss of gen-
erality, we may assume that G is a connected simple graph. We also recall the
notation F i

v and F j
e with respect to (now fixed) (T, τ) from the beginning of this

section.

F
1

e
F

2

eK

L

M

Y

X

Z

A
1

e
A

2

e

K

L

M

Y

Z

X

Fig. 2. An illustration of a bipartite component incidence graph (the connected com-
ponents of G ↾F 1

e are K,L, M , and the components of G ↾F 2
e are X,Y,Z).

For any edge e = v2v2 of T we define a bipartite component incidence graph
Je at e (Fig. 2): The parts A1

e, A2
e of vertices of Je are the connected components

5



of G ↾F 1
e and of G ↾ F 2

e , respectively, and the edges of Je are formed by those
pairs of components sharing a vertex. Since G is connected, so is the graph Je for
every e ∈ E(T ). If the part A1

e has more than one vertex, then we say that the
edge e of the decomposition disconnects the graph G as from v2 – the other end
of e. We denote by kj the number of edges e of T such that |V (Je)| = j, and by
s the largest index such that ks 6= 0. Among all optimal VF-tree-decompositions
of G we assume the one with the lexicographically smallest possible component
vector (s, ks, ks−1, . . . , k3).

Our aim is to show that the selected decomposition (T, τ) must be connected,
i.e. that no edge of T disconnects G as from either end. In other words, we aim
at showing s = 2. Then, as straightforwardly proved in [2, Claim 5.6], there
is a derived ordinary tree-decomposition of G of width equal to that of (T, τ).
(Though [2, Claim 5.6] spoke about matroid connectivity, graph connectivity is
enough in the proof.)

So, seeking a contradiction, we assume that s > 2. Since T is a tree, there
is an edge e = uv ∈ E(T ) disconnecting G as from v, such that all other edges
incident with node u in T do not disconnect G as from u. Let (up to symmetry)
F 1

e be the part of E(G) mapped to the subtree of T − e with root u, and denote
by d the degree of u in T . Recall that F 1

u , . . . , F d
u denote the parts of E(G)

mapped into the components of T −u. We claim that, without loss of generality,
one can assume the following:

(i) No element is mapped to u in (T, τ), i.e. τ−1(u) = ∅.
(ii) The connected components of G ↾ F 1

e coincide with F 1
u , . . . , F d−1

u . (Notice
that also F d

u = F 2
e , not necessarily connected.)

To show (i), see in the definition that creating a new leaf adjacent to u for each
element in τ−1(u) does not change the with of u and of the whole decomposition.
Ad (ii), notice that no F j

u may intersect two of the components of G ↾F 1
e since

the edges from u other than e do not disconnect G. Hence each component is
a union of some F j

u’s, and via applying Proposition 2.1 (a) we may assume that
each component of G ↾F 1

e actually is a single part among (F 1
u , . . . , F d−1

u ).

As noted above, the bipartite component incidence graph Je at e is con-
nected. Recall that A1

e ∪ A2
e = V (Je) are the vertex parts of Je where A1

e is in
correspondence with the u-end of e.

If A2
e has only one vertex, i.e. G ↾ F 2

e is connected, then we make a new
VF-tree-decomposition by contracting e in T . Denoting by h the degree of v in
T , we can simply estimate the node-width of v in the new decomposition as

|V (G)| + (h + d − 2) − 1 −
d−1
∑

i=1

c(G − F i
u) −

h−1
∑

i=1

c(G − F i
v) =

= |V (G)| + h + d − 3 −
[

d − 2 + c
(

G − (F 1
u ∪ · · · ∪ F d−1

u )
)]

−
h−1
∑

i=1

c(G − F i
v) =
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= |V (G)| + h − 1 − c
(

G − F h
v

)

−
h−1
∑

i=1

c(G − F i
v) , (3)

which is the node-width of v in the former decomposition (T, τ). Hence we have
found a new optimal VF-tree-decomposition of G having strictly smaller com-
ponent vector. This contradiction to our least choice of (T, τ) finishes the proof
in the particular case.

Hence A2
e has more than one vertex. We first consider the case that

(iii) no vertex of A1
e is a cutvertex of Je.

See that |A1
e| ≥ 2. Since G ↾F 2

e is not connected in this case, we find an arbitrary
nontrivial partition F 2

e = F3 ∪ F4 such that G ↾ F3 is disjoint from G ↾ F4, i.e.
that F3 is a union of some components of G ↾F 2

e .

F 1
u

F 2
u

F d−2
u

F d−1
u

u2

u

F 1
u

F 2
u

F d−2
u

F d−1
u

u1
u2

ud−2
ud−1

v
F 2

e

u1

ud−1

ud−2

v′

vw1

w2

wd−2

wd−1

F3

F4

Fig. 3. How to modify a decomposition (T, τ) into new (T ′, τ ′) on the right.

Let u1, u2, . . . , ud−1, ud = v denote the neighbours of u in T . For T3 = T 2
e

in T , we make T4 a disjoint copy of T3. Then we delete u from T , and for
i = 1, . . . , d − 1 we add a new vertex wi adjacent to ui. We add an edge w1v,
edges wiwi+1 for i = 1, . . . , d − 2, and an edge wd−1v

′ where v′ is the copy
of v in T4. This results in a tree T ′, see Fig. 3. We define τ ′ as follows: If
x ∈ E(G) − F4, then τ ′(x) = τ(x). For x ∈ F4, we set τ ′(x) = t′ where t′ is the
copy of t = τ(x) ∈ V (T3) in the subtree T4.

We again aim for a contradiction, showing that the width of (T ′, τ ′) is not
larger than the width of (T, τ), and that the component vector decreases.

Claim 2.6. The width of (T ′, τ ′) is at most the width of (T, τ).

Proof. First of all, notice that Proposition 2.1 (b) is applicable to both sub-
trees T3 and T4 (as “copies of” T 2

e , for C = F4 and C = F3, respectively). So
the node-widths of nodes of T3 ∪T4 in (T ′, τ ′) do not exceed the width of (T, τ).

It remains to argue about the node-width of wj where j = 1, 2, . . . , d−1. We
denote by U ⊆ V (G) the set of those vertices that are incident both with an edge
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of F 1
e and an edge of F 2

e . Notice that by (ii) above, every vertex in V (G) − U

is counted exactly once in
∑d

i=1 c(G − F i
u) (as an “isolated” component). If we

denote by G ÷ F = G ↾
(

E(G) − F
)

, then we can write in (T, τ) by (1),

node-width(u) = |V (G)| + d − 1 −
d

∑

i=1

c(G − F i
u) =

= d − 1 + |U | −
d

∑

i=1

c(G ÷ F i
u) = d − 1 + |U | −

d−1
∑

i=1

1 − (d − 1) = |U | − d + 1 .

The previous equality is the only(!) place where we use the assumption (iii), to
argue that c(G ÷ F i

u) = 1 for 1 ≤ i < d.
To compare the previous with the node-width of new wj , 1 ≤ j < d, we have

to introduce some notation: Let Ha,b = F a
u ∪ F a+1

u ∪ · · · ∪ F b
u, and for k = 3, 4,

let ℓk
a,b ( ℓ−k

a,b ) denote the number of those connected components of G ↾F 1
e that

intersect (are disjoint from, respectively) G ↾Fk. Then, by (1) in (T ′, τ ′),

node-width(wj) =

= |V (G)| + 2 − c(G − F j
u) − c

(

G − (F3 ∪ H1,j−1)
)

− c
(

G − (F4 ∪ Hj+1,d−1)
)

≤

≤ 2−1+ |U |−ℓ31,j−1−c
(

G÷(F3∪H1,j−1)
)

−ℓ4j+1,d−1−c
(

G÷(F4∪Hj+1,d−1)
)

=

= 1 + |U | − ℓ31,j−1 − (ℓ−4
j,d−1 + 1) − ℓ4j+1,d−1 − (ℓ−3

1,j + 1) =

= −1 + |U | − (ℓ31,j−1 + ℓ−3
1,j) − (ℓ4j+1,d−1 + ℓ−4

j,d−1) ≤

≤ −1 + |U | − (j − 1) − (d − 1 − j) = |U | − d + 1 .

Hence also the node-widths of new w1, . . . , wd−1 in (T ′, τ ′) are not larger than
the node-width of former u in (T, τ). 2

Claim 2.7. The component vector of (T ′, τ ′) is strictly lexicographically smaller
than that of (T, τ).

Proof. Recall that Je denotes the component incidence graph at an edge e

of (T, τ). For distinction, we analogously denote by J ′

e the component incidence
graph at e of (T ′, τ ′). If f is an edge of the subtree T 1

e (the component of T − e),
explicitly including also the case of f incident with u in T 1

e , then clearly J ′

f = Jf .

Suppose an edge f of the subtree T3 = T 2
e , and denote by f ′ the corresponding

copy in T4 (of T ′). Since we have “split” the τ ′-mapping of elements of E(G) into
T3 and T4 in a way that G ↾F3 is disjoint from G ↾F4, it holds |V (J ′

f )|, |V (J ′

f ′ )| <

|V (Jf )|, unless J ′

f = Jf and J ′

f ′ is trivial K1, or vice versa. The same argument
applies with strict inequality also to e = uv: |V (J ′

f )|, |V (J ′

f ′ )| < |V (Je)| where
f = w1v and f ′ = wd−1v

′ correspond to e in T ′.
Finally, since the order of u1, u2, . . . , ud−1 has been irrelevant so far, we may

assume without loss of generality that G ↾ F 1
u is incident with G ↾ F3 and

that G ↾ F d−1
u is incident with G ↾ F4. Then particularly, for 1 ≤ i ≤ d − 2,
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G ↾F 1
u (the component representing a vertex of Je) is not a separate component

of G ↾(F3 ∪ H1,i). Therefore, it again holds |V (J ′

f )| < |V (Je)| where f = wiwi+1.
Altogether, we see that the first changed entry of the component vector gets

decreased, at least due to edge e which is in T ′ replaced by edges of strictly
smaller numbers of components, and so the component vector of (T ′, τ ′) is
strictly lexicographically smaller than that of (T, τ). 2

We are left with the case:

¬(iii) There exists a cutvertex r ∈ A1
e, representing a component R of G ↾F 1

e .

In this case we partition F 2
e = F3 ∪ F4 such that G ↾F3 is disjoint from G ↾F4,

and moreover, R is the only connected component of G ↾F 1
e incident both with

G ↾F3 and G ↾F4. We again consider the decomposition (T ′, τ ′) defined above,
see Fig. 3. Then Claim 2.7 applies here, too, since it does not rely on (iii).
Unfortunately, Claim 2.6 cannot be used now, and we have to argue differently
that the width of (T ′, τ ′) is at most the width of (T, τ).

We make a tree T ′′ from T ′ by contracting all w1, . . . , wd−1 into a single ver-
tex w. Analogously to (3) we show that the node-width of w in the decomposition
(T ′′, τ ′) equals the node-width of former u in (T, τ):

|V (G)| + d + 1 − 1 −
d−1
∑

i=1

c(G − F i
u) − c(G − F3) − c(G − F4) =

= |V (G)|+d−
d−1
∑

i=1

c(G−F i
u)−c

(

G−(F3∪F4)
)

−1 = |V (G)|+d−1−
d

∑

i=1

c(G−F i
u)

For all other nodes of T ′′ we argue analogously to Claim 2.6, i.e. referring Propo-
sition 2.1 (b), that their node-widths do not exceed the width of (T, τ). See that
Proposition 2.1 (a) is now enough to show that also all w1, . . . , wd−1 in (T ′, τ ′)
resulting by splitting of w have node-widths at most the width of (T, τ), and so
we are done here.

Once again, we have got to a contradiction of the new optimal decomposition
(T ′, τ ′) of G with the former least choice of (T, τ). The whole proof is now
finished.

3 Correction of Claim 4.3

There is yet another unfortunate small bug in our original paper [2] that has
gone unnoticed so far: In the proof of [2, Claim 4.3], an “obvious” inequality
was used in the wrong direction. Although this is not a serious problem, and a
reader familiar with matroid theory could easily find the correct argument, we
take an opportunity to clear out every detail in the addendum. We restate the
affected statement and its complete proof now.1

1 Although the correction is added in short Claim 3.3, we have to repeat the preceding
arguments here because of their specific context and notation.
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Theorem 3.1 ([2, Theorem 4.2]). Let M be a matroid of tree-width k and
branch-width b. Then b − 1 ≤ k ≤ max (2b − 2, 1) .

Proof. The (easier) right-hand inequality is proved as in [2].
To prove the left-hand inequality, we have to modify the tree of an optimal

tree-decomposition (T, τ) of M , so that elements of M are mapped to leaves of
a new subcubic tree. Let T ′ be obtained from T by subdividing each edge with
a new node. We construct a branch-decomposition (W,ω) of M from T ′ using
the following local modifications at each node x ∈ V (T ) of degree d:

– Let Y = {y1, . . . , yd} be the set of neighbours of x in T ′ (yes, not in T ), and
let F0 = τ−1(x). We define Ux to be a cubic tree with a set L of d + |F0|
leaves, such that Y ⊆ L and Ux−Y is disjoint from all other Uy for y ∈ V (T ).

– We define a restriction of a mapping ω onto F0 as an arbitrary bijection from
F0 to L − Y .

– Altogether, we take the tree W ′ =
⋃

y∈V (T ) Uy, and denote by W the cubic

tree obtained from W ′ by contracting the degree-2 vertices of T ′.

Claim 3.2. The pair (W,ω) defined above is a branch-decomposition of M of
width at most k + 1.

Proof. Let f be an edge of W incident with V (Ux) for some x ∈ V (T ).
Moreover, let T1, . . . , Td be the connected components of T − x, and let Wi =
⋃

y∈V (Ti)
Uy for i = 1, . . . d. (Hence Wi, i = 1, . . . d are the connected components

of W ′ − V (Ux).) We denote by W 1,W 2 the connected components of W ′ − f .
Notice that, without loss of generality, we may write W 1−V (Ux) = W1∪· · ·∪Wc

and W 2 − V (Ux) = Wc+1 ∪ · · · ∪ Wd for some 1 ≤ c < d.
We denote by F i = ω−1

(

V (W i)
)

and F i
0 = F i ∩ ω−1

(

V (Ux)
)

for i = 1, 2

(see that F 1
0 ∪ F 2

0 = F0 above), and by Fi = ω−1
(

V (Wi)
)

for i = 1, . . . , d. Then
F 1∪F 2 = E = E(M), and F 1 = F 1

0 ∪F1∪· · ·∪Fc and F 2 = F 2
0 ∪Fc+1∪· · ·∪Fd.

So the width of the edge f in the branch-decomposition (W,ω) is

λM (F 1) = rM (F 1) + rM (F 2) − r(M) + 1 =

= rM

(

E − F 2
0 −

⋃ d

i=c+1
Fi

)

+ rM

(

E − F 1
0 −

⋃ c

i=1
Fi

)

− r(M) + 1 ≤

≤ rM

`

E − F
2
0

´

+

d
X

i=c+1

rM(E−Fi)+rM

`

E − F
1
0

´

+

c
X

i=1

rM (E−Fi)−d r(M)−r(M)+1 ≤

≤
d

∑

i=1

rM (E − Fi) − (d − 1) r(M) + 1 ≤ k + 1 ,

where the second step holds by the next claim.

Claim 3.3. Let X1, . . . ,Xm ⊂ E = E(M) be pairwise disjoint subsets of elements
of a matroid M . Then

rM

(

E − (X1 ∪ · · · ∪ Xm)
)

≤
m

∑

i=1

rM (E − Xi) − (m − 1) r(M) .
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Proof. We proceed by induction on m, the case of m = 1 being trivial. Using
submodularity of rank,

rM

(

E−(X1∪· · ·∪Xm+1)
)

≤ rM

(

E−(X1∪· · ·∪Xm)
)

+rM

(

E−Xm+1

)

−r(M) ≤

≤
m

∑

i=1

rM (E − Xi) − (m − 1) r(M) + rM

(

E − Xm+1

)

− r(M) .
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