

Petr Hliněný

On Matroid Representability and Minor Problems

Faculty of Informatics Masaryk University, Brno

and

Dept. of Computer Science FEI, VŠB – TU Ostrava

e-mail: hlineny@fi.muni.cz http://www.fi.muni.cz/~hlineny

1

1 Introduction

- * What really are matroids?
 - A common combinatorial generalization of graphs and finite geometries.
 - A new look at structural graph properties (cf. Graph Minors, 1985+).

 $^{m{*}}$ And what can matroids bring into theoretical CS?

- Important in combinatorial optimization (MST, or Edmonds 70-80's).
- So far, not of general interest among computer scientists...
- But, some interesting (and even surprising) applications back in graph theory and graph algorithms has been found recently, like in the graph rank-width (Oum and Seymour).

2

Definition

A matroid M on E is a set system $\mathcal{B} \subseteq 2^E$ of *bases*, sat. the exchange axiom

 $\forall B_1, B_2 \in \mathcal{B} \text{ a } \forall x \in B_1 - B_2, \ \exists y \in B_2 - B_1 : \ (B_1 - \{x\}) \cup \{y\} \in \mathcal{B}.$

The subsets of bases are called *independent*.

Representations by graphs and vectors

Cycle matroid of a graph M(G) – on the edges of G, where acyclic sets are independent.

Vector matroid of a matrix $M(\mathbf{A})$ – on the (column) vectors of \mathbf{A} , with usual linear independence. \rightarrow geometric view of matroids:

2 Minor Testing

Theorem 1. (Robertson and Seymour, 1995)

Testing for a fixed minor in a graph can be always done in cubic time.

Actually, the minor notion comes from matroids! (Wagner, 1940's)

Contracting a matroid element is dual to deleting it; a geometric interpretation is in a projection from this element. A *minor* is obtained by a sequence of deletions and contractions, the order of which does not matter.

Matroid minor testing

Fixed minor N in a vector matroid $M = M(\mathbf{A})$ over a field \mathbb{F} :

- \mathbb{F} finite field and the branch-width of M bounded \rightarrow cubic time [PH].
- \mathbb{F} finite field and N a planar graph \rightarrow in cubic time, too [GGW + PH].
- \mathbb{F} finite and N arbitrary \rightarrow interesting **open question** [Geelen et al].
- * [new] For $\mathbb{F} = \mathbb{Q}$, the *N*-minor problem is *NP*-complete, even when the branch-width of $M(\mathbf{A})$ is three and *N* is a planar graph.

([GGW] - assorted works of Geelen, Gerards, and Whittle.)

3 Representability of Matroids

A matroid is \mathbb{F} -representable if it has a vector representation over the field \mathbb{F} (such as, a binary matroid over GF(2)).

It seems that matroids representable over finite fields play similar important role in struct. matroid theory as graphs embeddable on a surface play in struct. graph theory.

Graph embeddability

- Kuratowski theorem and its generalizations,
- efficient algorithms on every (fixed) surface (linear in the plane).

Matroid \mathbb{F} -representability

- For $\mathbb{F} = GF(2)$ it is polynomial, though nontrivial [Seymour 1981].
- For $\mathbb{F} = GF(3)$ still open.
- * [new] For $\mathbb{F} = GF(q)$ where $q \ge 4$, it is *co-NP*-complete (using a nontrvivial *co-NP* membership theorem by [GGW]).

Beware (concerning NP membership), that verifying \mathbb{F} -representability requires evaluation of (all?) subdeterminants of the matrix!

Spikes to hardness of minor testing

Hence we get:

Theorem 2.

Testing for an N_6 -minor in a given \mathbb{Q} -represented spike is NP-complete.

7

Spikes to hardness of representability

Consider a non-prime finite field $\mathbb{F} = GF(p^r)$ now. Claim. The free spikes are always \mathbb{F} -representable.

In the other direction,

Claim. If a \mathbb{Q} -represented non-free spike is also \mathbb{F} -representable, then the associated Knapsack problem has a "small" solution.

$$\begin{vmatrix} x_{i_1} & 1 & \cdots & 1 \\ 1 & x_{i_2} & \cdots & 1 \\ \vdots & & \ddots & \vdots \\ 1 & 1 & \cdots & x_{i_k} \end{vmatrix} = \left(\prod_{j=1}^k (x_{i_j} - 1)\right) \cdot \left(1 + \sum_{j=1}^k \frac{1}{x_{i_j} - 1}\right)$$

and so we could search for such a "small" solution in polynomial time. Hence there is a polynomial reduction from Knapsack to $\mathbb P$ -representability:

Theorem 3. Testing for $GF(p^r)$ -representability of a given \mathbb{Q} -represented spike is co-NP-complete.

For prime finite fields \mathbb{F} we do similarly with so called "swirls"...