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1 Introduction

* What really are matroids?

• A common combinatorial generalization of graphs and finite geometries.

• A new look at structural graph properties (cf. Graph Minors, 1985 +).
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* And what can matroids bring into theoretical CS?

• Important in combinatorial optimization (MST, or Edmonds 70–80’s).

• So far, not of general interest among computer scientists. . .

• But, some interesting (and even surprising) applications back in graph
theory and graph algorithms has been found recently, like in the
graph rank-width (Oum and Seymour).
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Definition

A matroid M on E is a set system B ⊆ 2E of bases, sat. the exchange axiom

∀B1, B2 ∈ B a ∀x ∈ B1 − B2, ∃y ∈ B2 − B1 : (B1 − {x}) ∪ {y} ∈ B .

The subsets of bases are called independent.

Representations by graphs and vectors

Cycle matroid of a graph M(G) – on the edges of G, where acyclic sets are
independent.

Vector matroid of a matrix M(A) – on the (column) vectors of A, with usual
linear independence. → geometric view of matroids:
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2 Minor Testing

Theorem 1. (Robertson and Seymour, 1995)
Testing for a fixed minor in a graph can be always done in cubic time.

Actually, the minor notion comes from matroids! (Wagner, 1940’s)

Contracting a matroid element is dual to deleting it; a geometric interpretation
is in a projection from this element. A minor is obtained by a sequence of
deletions and contractions, the order of which does not matter.

Matroid minor testing
Fixed minor N in a vector matroid M = M(A) over a field

�
:

•
�

finite field and the branch-width of M bounded → cubic time [PH].

•
�

finite field and N a planar graph → in cubic time, too [GGW + PH].

•
�

finite and N arbitrary → interesting open question [Geelen et al].

* [new] For
�

= � , the N -minor problem is NP -complete,
even when the branch-width of M(A) is three and N is a planar graph.

([GGW] – assorted works of Geelen, Gerards, and Whittle.)
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3 Representability of Matroids

A matroid is
�

-representable if it has a vector representation over the field
�

(such as, a binary matroid over GF (2)).

It seems that matroids representable over finite fields play similar important role in

struct. matroid theory as graphs embeddable on a surface play in struct. graph theory.

Graph embeddability

• Kuratowski theorem and its generalizations,

• efficient algorithms on every (fixed) surface (linear in the plane).

Matroid � -representability

• For
�

= GF (2) it is polynomial, though nontrivial [Seymour 1981].

• For
�

= GF (3) still open.

* [new] For
�

= GF (q) where q ≥ 4, it is co-NP -complete
(using a nontrvivial co-NP membership theorem by [GGW]).

Beware (concerning NP membership), that verifying � -representability requires

evaluation of (all?) subdeterminants of the matrix!
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4 Some Proof Ideas

Spikes – (vector) matroids of the form:

e1 e2

f1
f2 fn

en
. . .

e1 e2 . . . en−1 en f1 f2 . . . fn−1 fn

1 0 · · · 0 0 x1 1 · · · 1 1
0 1 0 0 0 1 x2 1 1 1
... 0

. . . 0
...

... 1
. . . 1

...
0 0 0 1 0 1 1 1 xn−1 1
0 0 · · · 0 1 1 1 · · · 1 xn

Their structure is determined by all the “diagonal” subdeterminants
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→ a straightforward relation with Partition / Knapsack problems.
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.

Spikes to hardness of minor testing

A free spike ⇐⇒ no zero “diagonal” subdet. ⇐⇒ no solution of Knapsack;

⇐⇒ no minor (planar) N6 =

in our spike

. . .

.

Hence we get:

Theorem 2.
Testing for an N6-minor in a given � -represented spike is NP -complete.
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.

Spikes to hardness of representability

Consider a non-prime finite field
�

= GF (pr) now.

Claim. The free spikes are always
�

-representable.

In the other direction,

Claim. If a � -represented non-free spike is also
�

-representable, then the
associated Knapsack problem has a “small” solution.
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and so we could search for such a “small” solution in polynomial time. Hence
there is a polynomial reduction from Knapsack to

�
-representability:

Theorem 3. Testing for GF (pr)-representability of a given � -represented

spike is co-NP -complete.

For prime finite fields
�

we do similarly with so called “swirls”. . .
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