Petr Hliněný

MACEK:

Practical computations with represented matroids

Dept. of Computer Science, FEI VŠB - TU Ostrava
17. listopadu 15, 70833 Ostrava
and
Faculty of Informatics, Masaryk University in Brno
Botanická 68a, 60200 Brno
Czech Republic

e-mail: hlineny@fi.muni.cz
http://www.fi.muni.cz/~hlineny
MACEK is now supported by Czech research grant GAČR 201/05/0050.

1 Matroids and MACEK

Question: What really are matroids?

- A common combinatorial generalization of graphs and finite geometries.
- A new look at (some) structural graph properties.

Question: What can matroids bring to us?

- Interesting objects to study (and difficult, indeed!).
- More general view some concepts brings interesting applications (e.g. the greedy algorithm, or recently the graph rank-width).

1.1 Definitions

A matroid M on E is a set system $\mathcal{B} \subseteq 2^{E}$ of bases, satisf. the exch. axiom

$$
\forall B_{1}, B_{2} \in \mathcal{B} \text { a } \forall x \in B_{1}-B_{2}, \exists y \in B_{2}-B_{1}:\left(B_{1}-\{x\}\right) \cup\{y\} \in \mathcal{B}
$$

The subsets of bases are called independent.
Matroids coming from graphs and from vectors
Cycle matroid of a graph $M(G)$ - on the edges of G, where acyclic sets are independent.
Vector matroid of a matrix $M(\boldsymbol{A})$ - on the (column) vectors of \boldsymbol{A}, with usual linear independence.

Matrix representation \boldsymbol{A} of a matroid M - the vector matroid

- Elements of M are vectors over \mathbb{F} - the columns of a matrix

$$
\boldsymbol{A} \in \mathbb{F}^{r \times n}
$$

- Matroid independence is usual linear independence.
- Equivalence of representations \simeq row operations on matrices.

Not all matroids have matrix represent. over chosen \mathbb{F}, some even over no \mathbb{F} at all. An example - a matrix representation of a rank-3 matroid with 8 elements over $G F(3)$:

$$
\left(\begin{array}{llllllll}
1 & 0 & 0 & 1 & 2 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 2 & 1 & 2
\end{array}\right)
$$

1.2 Representing matroids in MACEK

Matrix representation $\boldsymbol{A}^{\prime}=[\boldsymbol{I} \mid \boldsymbol{A}] \rightarrow$ the reduced representation \boldsymbol{A} (stripping the unit submatrix).
$\left(\begin{array}{llllllll}1 & 0 & 0 & 1 & 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 2 & 1 & 2\end{array}\right) \rightarrow\left(\begin{array}{lllll}1 & 2 & 0 & 0 & 1 \\ 2 & 0 & 1 & 1 & 1 \\ 0 & 1 & 2 & 1 & 2\end{array}\right)$

- Now matroid elements label both the columns and rows of \boldsymbol{A}.
- The rows display a basis of $M(\boldsymbol{A})$.
- Pivoting changes to other bases...
- (Matrix equivalence now means a sequence of pivots and non-zero scalings.)

Normally, matrix representations in MACEK are unlabeled! (Though some default labels are printed out for readability...)

1.3 Computing matroid properties

- Printing out thorough information about matroids: bases, flats, separations, connectivity, girth, automorphism group, representability over other fields, etc.
- Testing matroid properties (including batch-processing): minors, isomorphism, connectivity, representability, branch-width, etc.
- Some operations over a matroid: deletions/contractions of elements, pivoting, generating other representations of the same matroid, etc.
- A command-line user interface, very suitable for batch-jobs.
- Matroid generation...

2 Exhaustive Generation

A simple approach to combinatorial generation:

- Exhaustively construct all possible "presentations" of the objects.
- Then select one representative of each isomorphism class by means of an isomorphism tester.
- Slow, and problems with ineq. repres. giving different extensions...

The "canonical construction path" technique [McKay]:

- Select a small base object.
- Then, out of all ways how to construct our big object by single-element steps from the base object (construction paths), define the lexicographically smallest one (the canonical construction path).
- During generation, throw immediately away non-canonical extensions at each step.
- A big advantage - no explicit pairwise-isomorphism tests are necessary!

2.1 Canonically Generating Matroids

Actually, generating inequivalent matrix representations...
Matrix representation $\boldsymbol{A}^{\prime}=[\boldsymbol{I} \mid \boldsymbol{A}] \rightarrow$ reduced representation \boldsymbol{A} (stripping the unit submatrix).

- Base object ~ a submatrix (minor),
- construction path \sim an elimination sequence
- in reverse order, stripping the excess rows and columns one by one,
- canonical ordering \sim lexic. order on the excess vectors after unit-scaling,
- in a picture:

\rightarrow an elimination sequence $S=\left(\boldsymbol{A}_{0}, \boldsymbol{A},(1101)_{2}\right)$.

Algorithm 2.1. Recursive generation of (up to) ℓ-step extensions of the matroid generated by a matrix \boldsymbol{A}_{0} over \mathbb{F}.

$$
S_{0}=\left(\boldsymbol{A}_{0}, \boldsymbol{A}_{0}, \emptyset\right)
$$

$$
\text { matroid-generate }\left(S_{0}\right) \text {; }
$$

$$
\text { procedure matroid-generate }\left(S=\left(\boldsymbol{A}_{0}, \boldsymbol{A}, q\right)\right)
$$

output the matroid generated by \boldsymbol{A};
if length $(S) \geq \ell$ then exit;
$s_{0}=$ number of rows of $\boldsymbol{A} ; s_{1}=$ number of columns of \boldsymbol{A};
for $x \in\{0,1\}$, and $\vec{z} \in \mathbb{F}^{s_{x}}$ do

$$
q_{1}=(q, x) ;
$$

$$
\boldsymbol{A}_{1}=\boldsymbol{A} \text { with added } \vec{z} \text { as the last row }(x=0) \text { or column }(x=1) ;
$$

$$
S_{1}=\left(\boldsymbol{A}_{0}, \boldsymbol{A}_{1}, q_{1}\right) ;
$$

$$
\text { if } \neg \text { unit-check }\left(S_{1}\right) \text { then continue; }
$$

$$
\text { if } \neg \text { sequence- } \operatorname{check}\left(S_{1}\right) \text { then continue; }
$$

$$
\text { if } \neg \text { structure-check }\left(S_{1}\right) \text { then continue; }
$$

$$
\text { if } \neg \text { canonical-check }\left(S_{1}\right) \text { then continue; }
$$

$$
\text { matroid-generate(} S_{1} \text {); }
$$

done
end.

- unit-check: unit-scaling of the vectors.
- sequence-check: user-specified, like connectivity,etc.
- structure-check: user-specified, inherited to all minors.
- canonical-check:

Algorithm 2.2. Testing canonical elimination sequence S with base \boldsymbol{A}_{0}. procedure canonical-check $\left(S=\left(\boldsymbol{A}_{0}, \boldsymbol{A}, q\right)\right)$
for $q^{\prime} \leq$ lexicographically q, and all \boldsymbol{A}^{\prime} equivalent to \boldsymbol{A}
such that \boldsymbol{A}_{0} is a top-left submatrix of \boldsymbol{A}^{\prime} do

$$
k=\operatorname{length}(S) ; \quad S^{\prime}=\left(\boldsymbol{A}_{0}, \boldsymbol{A}^{\prime}, q^{\prime}\right) ;
$$

$$
S_{i}^{\prime}=\text { the } i \text {-th step subsequence of } S^{\prime}, i=1,2, \ldots, k \text {; }
$$

$$
\text { if } \neg \text { unit- } \operatorname{check}\left(S_{i}^{\prime}\right), i=1, \ldots, k \text { then continue; }
$$

$$
\text { if } \neg \text { sequence }-\operatorname{check}\left(S_{i}^{\prime}\right), i=1, \ldots, k \text { then continue; }
$$

if $q^{\prime}<$ lexicographically q, or

$$
\left(\vec{u}_{1}^{\prime}, \ldots, \vec{u}_{k}^{\prime}\right) \text { of } S^{\prime}<\text { lex. }\left(\vec{u}_{1}, \ldots, \vec{u}_{k}\right) \text { of } S \text { then }
$$

return false;
done
return true;
end.

2.2 Using Generation in MACEK

- Generating all inequivalent (multi-step) extensions of a given matroid over a fixed finite field. (Easy to split for independent parallel generation.)
- Generation can internally maintain additional structural properties (simplicity, 3 -connectivity, excluded minors, etc).
- More tools are provided for involved filtering of generated extensions.

How can MACEK help in research?

- Some computer-assisted proofs
(e.g. [P. Hliněný, On the Excluded Minors for Matroids of Branch-Width Three, Electronic Journal of Combinatorics 9 (2002), \#R32.])
- And a very easy generation of nasty counterexamples...
- Say, want to check whether R_{10} is a splitter for the class of near-regular matroids? (Piece of cake...)

3 Matroid Enumeration Results

Enumeration of binary combinatorial geometries (i.e. simple binary matroids).

- Acketa [1984], by hand.
- Kingan, Kingan, Myrvold [2003], using computer and Oid.
- Our new computer generation [2005] with MACEK (* new entries):

rank \backslash el.	2	3	4	5	6	7	8	9	10	11	12	13
2	1	1	0	0	0	0	0	0	0	0	0	0
3		1	2	1	1	1	0	0	0	0	0	0
4			1	3	4	5	6	5	4	3	2	1
5				1	4	8	15	29	46	64	89	${ }^{*} \mathbf{1 1 2}$
6					1	5	14	38	105	273	${ }^{*} \mathbf{7 0 0}$	${ }^{*} \mathbf{1 7 9 4}$
7						1	6	22	80	312	${ }^{*} \mathbf{1 2 8 5}$	${ }^{*} \mathbf{5 6 3 2}$
8							1	7	32	151	${ }^{*} \mathbf{8 2 1}$	${ }^{*} \mathbf{5 0 9 8}$
9								1	8	44	266	${ }^{*} \mathbf{1 9 4 8}$
10									1	9	59	${ }^{*} \mathbf{4 4 0}$
11										1	10	${ }^{*} \mathbf{7 6}$
12											1	11
13												1

The numbers of labeled / unlabeled represented matroids over small fields.

- The unlabeled case not studied so far to our knowledge.
- A really simple task for MACEK!

repr. \backslash matroid	$U_{2,4}$	$U_{2,5}$	$U_{2,6}$	$U_{3,6}$	\mathcal{W}^{3}	$U_{2,7}$	$U_{3,7}$
$G F(5)$	$3 / 1$	$6 / 1$	$6 / 1$	$6 / 1$	$3 / 2$	$0 / 0$	$0 / 0$
$G F(7)$	$5 / 2$	$20 / 1$	$60 / 1$	$140 / 3$	$5 / 3$	$120 / 1$	$120 / 1$
$G F(8)$	$6 / 1$	$30 / 1$	$120 / 1$	$390 / 5$	$6 / 3$	$360 / 1$	$1200 / 2$
$G F(9)$	$7 / 2$	$42 / 2$	$210 / 2$	$882 / 7$	$7 / 4$	$840 / 1$	$6120 / 4$

The numbers of small 3 -connected matroids representable over small fields (generated all as unlabeled represented matroids).

- Computed [2003-4] with MACEK, but no such independent results exist to compare with (to our knowledge).

represent. \elem.	4	5	6	7	8	9	10	11	12	13	14	15
regular:	0	0	1	0	1	4	7	10	33	84	260	908
$G F(2)$, non-reg:	0	0	0	2	2	4	17	70	337	2080	16739	181834
$G F(3)$, non-reg:	1	0	1	6	23	120	1045	14116	330470	$?$	$?$	$?$

(Next we present both the numbers of non-equivalent and of non-isomorphic ones.)

representable \backslash elements	4	5	6	7	8	9	10	11
$G F(4)$, non- $G F(2,3):$	0	2	2	8	78	1040	26494	1241588
-non-isomorphic:	0	2	2	8	69	748	15305	$?$
$G F(5)$, non- $G F(2,3,4):$	0	0	3	16	271	8336	497558	$?$
-non-isomorphic:	0	0	3	12	192	6590	$?$	$?$
$G F(7)$, non- $G F(2,-, 5):$	0	0	0	18	1922	252438	$?$	$?$
-non-isomorphic:	0	0	0	10	277	97106	$?$	$?$
$G F(8)$, non- $G F(2,-, 7):$	0	0	0	0	94	$?$	$?$	$?$
-non-isomorphic:	0	0	0	0	20	$?$	$?$	$?$

4 Conclusions

Want to try? Go to
http://www.cs.vsb.cz/hlineny/MACEK,
read the manual and find out whether MACEK is useful for you...
(Now with a new online interface - TRY IT yourself easily!)

What about correctness?

- Theoretical correctness of MACEK's algorithms.
- Debugging self-tests implemented in the program code.
- Some highly nontrivial self-reducing computations for comparism.

Anyway,

