Petr Hliněný

MACEK:

Practical computations with represented matroids

Dept. of Computer Science, FEI VŠB – TU Ostrava

17. listopadu 15, 70833 Ostrava

and

Faculty of Informatics, Masaryk University in Brno

Botanická 68a, 602 00 Brno Czech Republic

e-mail: hlineny@fi.muni.cz http://www.fi.muni.cz/~hlineny

MACEK is now supported by Czech research grant GAČR 201/05/0050.

Petr Hliněný, Axiom Workshop RISC 06

MACEK: Practical computations with represented matroids

1 Matroids and MACEK

Question: What really are matroids?

- A common combinatorial generalization of graphs and finite geometries.
- A new look at (some) structural graph properties.

Question: What can matroids bring to us?

- Interesting objects to study (and difficult, indeed!).
- More general view some concepts brings interesting applications (e.g. the greedy algorithm, or recently the graph rank-width).

2

1.1 Definitions

A matroid M on E is a set system $\mathcal{B} \subseteq 2^E$ of *bases*, satisf. the exch. axiom

 $\forall B_1, B_2 \in \mathcal{B} \text{ a } \forall x \in B_1 - B_2, \ \exists y \in B_2 - B_1: \ (B_1 - \{x\}) \cup \{y\} \in \mathcal{B}.$

The subsets of bases are called *independent*.

Matroids coming from graphs and from vectors

Cycle matroid of a graph M(G) – on the edges of G, where acyclic sets are independent.

Vector matroid of a matrix $M(\mathbf{A})$ – on the (column) vectors of \mathbf{A} , with usual linear independence.

Matrix representation A of a matroid M – the vector matroid

• Elements of M are vectors over $\mathbb F$ – the columns of a matrix

$$oldsymbol{A} \in \mathbb{F}^{r imes n}$$

- Matroid independence is usual linear independence.
- Equivalence of representations \simeq row operations on matrices.

Not all matroids have matrix represent. over chosen $\mathbb F$, some even over no $\mathbb F$ at all.

An example – a matrix representation of a rank-3 matroid with 8 elements over GF(3):

1.2 Representing matroids in MACEK

Matrix representation $A' = [I | A] \rightarrow$ the reduced representation A (stripping the unit submatrix).

1/	0	0	1	2	0	0	1		/1	2	0	0	$1 \setminus$
0	1	0	2	0	1	1	1	\rightarrow	2	0	1	1	1
0	0	1	0	1	2	1	$_2$ /		$\langle 0 \rangle$	1	2	1	$_2$ /

- Now matroid elements label both the columns and rows of A.
- The rows display a basis of $M(\mathbf{A})$.
- Pivoting changes to other bases...
- (Matrix equivalence now means a sequence of pivots and non-zero scalings.)

Normally, matrix representations in MACEK are **unlabeled**! (Though some default labels are printed out for readability...)

1.3 Computing matroid properties

- Printing out thorough information about matroids: bases, flats, separations, connectivity, girth, automorphism group, representability over other fields, etc.
- Testing matroid properties (including batch-processing): minors, isomorphism, connectivity, representability, branch-width, etc.
- Some operations over a matroid: deletions/contractions of elements, pivoting, generating other representations of the same matroid, etc.
- A command-line user interface, very suitable for batch-jobs.
- Matroid generation...

2 Exhaustive Generation

A simple approach to combinatorial generation:

- Exhaustively construct all possible "presentations" of the objects.
- Then select one representative of each isomorphism class by means of an isomorphism tester.
- Slow, and problems with ineq. repres. giving different extensions...

The "canonical construction path" technique [McKay]:

- Select a small *base* object.
- Then, out of all ways how to construct our big object by single-element steps from the base object (*construction paths*), define the lexicographically smallest one (the *canonical* construction path).
- During generation, throw immediately away non-canonical extensions at each step.
- A big advantage no explicit pairwise-isomorphism tests are necessary!

2.1 Canonically Generating Matroids

Actually, generating inequivalent matrix representations...

– Base object $\,\sim\,$ a submatrix (minor),

construction path ~ an elimination sequence
 in reverse order, stripping the excess rows and columns one by one,
 canonical ordering ~ *lexic. order* on the excess vectors after unit-scaling,
 in a picture:

8

 \rightarrow an elimination sequence $S = (\mathbf{A}_0, \mathbf{A}, (1101)_2).$

Algorithm 2.1. Recursive generation of (up to) ℓ -step extensions of the matroid generated by a matrix A_0 over \mathbb{F} . $S_0 = (A_0, A_0, \emptyset)$ matroid-generate (S_0) ;

```
procedure matroid-generate(S = (\mathbf{A}_0, \mathbf{A}, q))
output the matroid generated by A;
if length(S) \geq \ell then exit;
s_0 = number of rows of A; s_1 = number of columns of A;
for x \in \{0,1\}, and \vec{z} \in \mathbb{F}^{s_x} do
    q_1 = (q, x);
    A_1 = A with added \vec{z} as the last row (x = 0) or column (x = 1);
    S_1 = (A_0, A_1, q_1);
    if \neg unit-check(S_1) then continue;
    if \neg sequence-check(S_1) then continue;
    if \neg structure-check(S_1) then continue;
    if \neg canonical-check(S_1) then continue;
    matroid-generate(S_1);
done
```

end.

- unit-check: unit-scaling of the vectors.
- sequence-check: user-specified, like connectivity,etc.
- structure-check: user-specified, inherited to all minors.
- canonical-check:

Algorithm 2.2. Testing canonical elimination sequence S with base A_0 . procedure canonical-check($S = (\mathbf{A}_0, \mathbf{A}, q)$) for $q' \leq_{\text{lexicographically } q}$, and all A' equivalent to Asuch that A_0 is a top-left submatrix of A' do $k = \text{length}(S); S' = (A_0, A', q');$ S'_i = the *i*-th step subsequence of S', i = 1, 2, ..., k; if \neg unit-check (S'_i) , $i = 1, \ldots, k$ then continue; if \neg sequence-check (S'_i) , $i = 1, \ldots, k$ then continue; if q' < lexicographically q, or $(\vec{u}'_1,\ldots,\vec{u}'_k)$ of $S' < \text{lex.} (\vec{u}_1,\ldots,\vec{u}_k)$ of S then return false; done return true: end.

10

2.2 Using Generation in MACEK

- Generating all inequivalent (multi-step) extensions of a given matroid over a fixed finite field. (Easy to split for independent parallel generation.)
- Generation can internally maintain additional structural properties (simplicity, 3-connectivity, excluded minors, etc).
- More tools are provided for involved filtering of generated extensions.

How can MACEK help in research?

- Some computer–assisted proofs (e.g. [P. Hliněný, On the Excluded Minors for Matroids of Branch-Width Three, Electronic Journal of Combinatorics 9 (2002), #R32.])
- And a very easy generation of nasty counterexamples...
- Say, want to check whether R_{10} is a splitter for the class of near-regular matroids? (Piece of cake...)

3 Matroid Enumeration Results

Enumeration of binary combinatorial geometries (i.e. simple binary matroids).

- Acketa [1984], by hand.
- Kingan, Kingan, Myrvold [2003], using computer and Oid.
- Our new computer generation [2005] with MACEK (* new entries):

rank∖el.	2	3	4	5	6	7	8	9	10	11	12	13
2	1	1	0	0	0	0	0	0	0	0	0	0
3		1	2	1	1	1	0	0	0	0	0	0
4			1	3	4	5	6	5	4	3	2	1
5				1	4	8	15	29	46	64	89	* 112
6					1	5	14	38	105	273	* 700	* 1794
7						1	6	22	80	312	* 1285	* 5632
8							1	7	32	151	* 821	* 5098
9								1	8	44	266	* 1948
10									1	9	59	* 440
11										1	10	* 76
12											1	11
13												1

12

The numbers of *labeled / unlabeled represented matroids* over small fields.

• The unlabeled case not studied so far to our knowledge.

repr. \setminus matroid	$U_{2,4}$	$U_{2,5}$	$U_{2,6}$	$U_{3,6}$	\mathcal{W}^3	$U_{2,7}$	$U_{3,7}$
GF(5)	3/1	6/1	6/1	6/1	3/2	0/0	0/0
GF(7)	5/2	20/1	60/1	140/3	5/3	120/1	120/1
GF(8)	6/1	30/1	120/1	390/5	6/3	360/1	1200/2
GF(9)	7/2	42/2	210/2	882/7	7/4	840/1	6120/4

13

• A really simple task for MACEK!

The numbers of small 3-connected matroids representable over small fields (generated all as unlabeled represented matroids).

• Computed [2003–4] with MACEK, but no such independent results exist to compare with (to our knowledge).

represent. \setminus elem.	4	5	6	7	8	9	10	11	12	13	14	15
regular:	0	0	1	0	1	4	7	10	33	84	260	908
GF(2), non-reg:	0	0	0	2	2	4	17	70	337	2080	16739	181834
GF(3), non-reg:	1	0	1	6	23	120	1045	14116	330470	?	?	?

(Next we present both the numbers of non-equivalent and of non-isomorphic ones.)

representable \setminus elements	4	5	6	7	8	9	10	11
GF(4), non- $GF(2,3)$:	0	2	2	8	78	1040	26494	1241588
-non-isomorphic:	0	2	2	8	69	748	15305	?
GF(5), non- $GF(2,3,4)$:	0	0	3	16	271	8336	497558	?
-non-isomorphic:	0	0	3	12	192	6590	?	?
GF(7), non- $GF(2, -, 5)$:	0	0	0	18	1922	252438	?	?
-non-isomorphic:	0	0	0	10	277	97106	?	?
GF(8), non- $GF(2, -, 7)$:	0	0	0	0	94	?	?	?
-non-isomorphic:	0	0	0	0	20	?	?	?

4 Conclusions

Want to try? Go to

http://www.cs.vsb.cz/hlineny/MACEK ,

read the manual and find out whether MACEK is useful for you... (Now with a new online interface - TRY IT yourself easily!)

What about correctness?

- Theoretical correctness of MACEK's algorithms.
- Debugging self-tests implemented in the program code.
- Some highly nontrivial self-reducing computations for comparism.

Anyway,		
		what is "MACEK" in Czech?
Petr Hliněný, Axiom Workshop RISC 06	15	MACEK: Practical computations with represented matroids