On decidability of MSO theories of combinatorial structures:

Towards general matroids?

Petr Hliněný

Faculty of Informatics, Masaryk University Botanická 68a, 60200 Brno, Czech Rep.

```
    e-mail: hlineny@fi.muni.cz
http://www.fi.muni.cz/~hlineny
```

(Parts based on joint work with Detlef Seese, University Karlsruhe TH)

1 Motivation

The Graph Minor Project [Robertson and Seymour]

- Proved Wagner's conjecture - WQO property of graph minors.
(Among the partial steps: WQO of graphs of bounded tree-width, excluded grid theorem, description of graphs excluding a complete minor.)
- Testing for an arbitrary fixed graph minor in cubic time.

1 Motivation

The Graph Minor Project [Robertson and Seymour]

- Proved Wagner's conjecture - WQO property of graph minors.
(Among the partial steps: WQO of graphs of bounded tree-width, excluded grid theorem, description of graphs excluding a complete minor.)
- Testing for an arbitrary fixed graph minor in cubic time.

Tree-like Graphs and Logic

- [Seese, 1975] Undecidability of the MSO theory of square grids.
- [Courcelle, 1988] Decidability of the MSO theory of graphs: The class of all (finite) graphs of bounded tree-width has decidable $M S_{2}$ theory.
- [Seese, 1991] Decidability of the $M S_{2}$ theory implies bounded tree-width.
- [Courcelle et al, 1993] The definition of clique-width (constructing a graph using a bounded number of labels). [Courcelle, Makowsky, Rotics, 2000] Decidability of the $M S_{1}$ theory.
- [Oum and Seymour, 2003] Rank-width to approximate clique-width. This notion has a strong matroidal essence!

2 An Automata-based Approach

Separations and parse trees

- Conside "combinatorial" structures with distinguished boundaries.

The boundaries are used to glue two substructures together, such that all "possible interference" between those two happens on their boundaries.

2 An Automata-based Approach

Separations and parse trees

- Conside "combinatorial" structures with distinguished boundaries.

The boundaries are used to glue two substructures together, such that all "possible interference" between those two happens on their boundaries.

- \mapsto leading to separations (of the ground set) and their guts (the common boundary), with natural meaning on graphs (and matroids).

4-separation in a graph

3 -separation in a matroid

2 An Automata-based Approach

Separations and parse trees

- Conside "combinatorial" structures with distinguished boundaries.

The boundaries are used to glue two substructures together, such that all "possible interference" between those two happens on their boundaries.

- \mapsto leading to separations (of the ground set) and their guts (the common boundary), with natural meaning on graphs (and matroids).

4-separation in a graph

3 -separation in a matroid

- Parse trees: The (above) boundary-glue operation is used to "build" a structures from smaller boundaried pieces in a tree-like fashion.

Properties decidable by automata

Question: When a property ϕ can be tested by a finite tree automaton running on the (above) parse trees?

- Using a "localization" of the Myhill-Nerode theorem:
- An approach originally suggested by Abrahamson and Fellows.

Properties decidable by automata

Question: When a property ϕ can be tested by a finite tree automaton running on the (above) parse trees?

- Using a "localization" of the Myhill-Nerode theorem:
- An approach originally suggested by Abrahamson and Fellows.
- Define an equivalence \approx_{ϕ} on the class of boundaried struct. \mathcal{C}_{k}; $A, B \in \mathcal{C}_{k}, A \approx_{\phi} B$ if and only if

$$
\forall D \in \mathcal{C}_{k}: \quad A \oplus D \models \phi \quad \Longleftrightarrow \quad B \oplus D \models \phi .
$$

($A \approx_{\phi} B$ - carrying the same info. about ϕ on their boundaries.)

Properties decidable by automata

Question: When a property ϕ can be tested by a finite tree automaton running on the (above) parse trees?

- Using a "localization" of the Myhill-Nerode theorem:
- An approach originally suggested by Abrahamson and Fellows.
- Define an equivalence \approx_{ϕ} on the class of boundaried struct. \mathcal{C}_{k}; $A, B \in \mathcal{C}_{k}, A \approx_{\phi} B$ if and only if

$$
\forall D \in \mathcal{C}_{k}: \quad A \oplus D \models \phi \quad \Longleftrightarrow \quad B \oplus D \models \phi .
$$

($A \approx_{\phi} B$ - carrying the same info. about ϕ on their boundaries.)

- (Meta)Theorem 1.

For fixed k, there is a finite tree automaton $\mathcal{A}_{\phi, k}$ accepting precisely those parse trees of width k (of structures from \mathfrak{C}_{k}) that posses property ϕ, if and only if the equivalence \approx_{ϕ} has finite index over \mathcal{C}_{k}.

Beware that this meta-statement needs a specific proof in each case(!); for instance, it is not straightforwardly true for graph clique-width.

Straightforward applications

- Graphs $\left(\mathrm{MSO}_{2}\right)$ of bounded branch-width.
(Although Abrahamson and Fellows applied that first to graphs of bounded tree-width, that was quite complicated and unnatural...)
- Matroids (MSO) of bounded branch-width which are represented over a finite field.
- Graphs $\left(\mathrm{MSO}_{1}\right)$ of bounded rank-width.

3 Basics of Matroids

A matroid is a pair $M=(E, \mathcal{B})$ where

- $E=E(M)$ is the ground set of M (elements of M),
- $\mathcal{B} \subseteq 2^{E}$ is a collection of bases of M,
- the bases satisfy the "exchange axiom"
$\forall B_{1}, B_{2} \in \mathcal{B}$ and $\forall x \in B_{1}-B_{2}$,

$$
\exists y \in B_{2}-B_{1} \text { s.t. }\left(B_{1}-\{x\}\right) \cup\{y\} \in \mathcal{B} .
$$

3 Basics of Matroids

A matroid is a pair $M=(E, \mathcal{B})$ where

- $E=E(M)$ is the ground set of M (elements of M),
- $\mathcal{B} \subseteq 2^{E}$ is a collection of bases of M,
- the bases satisfy the "exchange axiom"
$\forall B_{1}, B_{2} \in \mathcal{B}$ and $\forall x \in B_{1}-B_{2}$,

$$
\exists y \in B_{2}-B_{1} \text { s.t. }\left(B_{1}-\{x\}\right) \cup\{y\} \in \mathcal{B} .
$$

Otherwise, a matroid is a pair $M=(E, \mathcal{I})$ where

- $\mathcal{I} \subseteq 2^{E}$ is the collection of independent sets (subsets of bases) of M.

3 Basics of Matroids

A matroid is a pair $M=(E, \mathcal{B})$ where

- $E=E(M)$ is the ground set of M (elements of M),
- $\mathcal{B} \subseteq 2^{E}$ is a collection of bases of M,
- the bases satisfy the "exchange axiom" $\forall B_{1}, B_{2} \in \mathcal{B}$ and $\forall x \in B_{1}-B_{2}$, $\exists y \in B_{2}-B_{1}$ s.t. $\left(B_{1}-\{x\}\right) \cup\{y\} \in \mathcal{B}$.

Otherwise, a matroid is a pair $M=(E, \mathcal{I})$ where

- $\mathcal{I} \subseteq 2^{E}$ is the collection of independent sets (subsets of bases) of M.

The definition was inspired by an abstract view of independence in linear algebra and in combinatorics [Whitney, Birkhoff, Tutte,...].

Notice exponential amount of information carried by a matroid.
Literature: J. Oxley, Matroid Theory, Oxford University Press 1992,1997.

Some elementary matroid terms are

- independent set \approx a subset of some basis, dependent set \approx not independent,
- circuit \approx a minimal dependent set of elements, triangle \approx a circuit on 3 elements,
- hyperplane \approx a maximal set containing no basis, cocircuit \approx the complement of a hyperplane,

Some elementary matroid terms are

- independent set \approx a subset of some basis, dependent set \approx not independent,
- circuit \approx a minimal dependent set of elements, triangle \approx a circuit on 3 elements,
- hyperplane \approx a maximal set containing no basis, cocircuit \approx the complement of a hyperplane,
- rank function \approx "dimension" of X,
$\mathrm{r}_{M}(X)=$ maximal size of an M-independent subset $I_{X} \subseteq X$.

Some elementary matroid terms are

- independent set \approx a subset of some basis, dependent set \approx not independent,
- circuit \approx a minimal dependent set of elements, triangle \approx a circuit on 3 elements,
- hyperplane \approx a maximal set containing no basis, cocircuit \approx the complement of a hyperplane,
- rank function \approx "dimension" of X,
$\mathrm{r}_{M}(X)=$ maximal size of an M-independent subset $I_{X} \subseteq X$.
- connectivity function \approx like "connecting paths" between two sides of a separation (cut) in a graph,

$$
\lambda_{M}(X)=\mathrm{r}_{M}(X)+\mathrm{r}_{M}(E-X)-\mathrm{r}(M)+1(=\text { guts rank }+1)
$$

Notation taken from linear algebra and from graph theory. . .
Axiomatic descriptions of matroids via independent sets, circuits, hyperplanes, or rank function are possible, and often used.

Vector matroid — a straightforward motivation:

- Elements are vectors over \mathbb{F},
- independence is usual linear independence,
- the vectors are considered as columns of a matrix $\boldsymbol{A} \in \mathbb{F}^{r \times n}$. (\boldsymbol{A} is called a representation of the matroid $M(\boldsymbol{A})$ over \mathbb{F}.)

Not all matroids are vector matroids.
An example of a rank-3 vector matroid with 8 elements over $G F(3)$:

Graphic matroid $M(G)$ - the combinatorial link:

- Elements are the edges of a graph,
- independence \sim acyclic edge subsets,
- bases \sim spanning (maximal) forests,
- circuits ~ graph cycles,
- the rank function $\mathrm{r}_{M}(X)=$ the number of vertices minus the number of components induced by X.

Only few matroids are graphic, but all graphic ones are vector matroids over any field. Example:
K_{4}

Branch-width

Graphs or matroids (or arb. sym. submod. λ) \longrightarrow a branch decomposition:

- Decomposed to a sub-cubic tree (degrees ≤ 3), and
- edges / elements mapped one-to-one to the tree leaves (with no reference to graph vertices).

Branch-width

Graphs or matroids (or arb. sym. submod. λ) \longrightarrow a branch decomposition:

- Decomposed to a sub-cubic tree (degrees ≤ 3), and
- edges / elements mapped one-to-one to the tree leaves (with no reference to graph vertices).
- Tree edges have width as follows:

width $(e)=\lambda(X)$ where X is "displayed" by e in the tree.
(Using graph connectivity $\lambda_{G}()$, or matroid connectivity $\lambda_{M}()$, resp.)

Branch-width

Graphs or matroids (or arb. sym. submod. λ) \longrightarrow a branch decomposition:

- Decomposed to a sub-cubic tree (degrees ≤ 3), and
- edges / elements mapped one-to-one to the tree leaves (with no reference to graph vertices).
- Tree edges have width as follows:

width $(e)=\lambda(X)$ where X is "displayed" by e in the tree.
(Using graph connectivity $\lambda_{G}()$, or matroid connectivity $\lambda_{M}()$, resp.)
Branch-width $=$ min. of max. edge widths over all decompositions.
(Branch-width is within a constant factor of tree-width.)

4 Matroidal MSO Theory

A matroid in logic - the ground set $E=E(M)$ with all subsets 2^{E},

- and a predicate indep on 2^{E}, s.t. indep (F) iff $F \subseteq E$ is independent.

The MSO theory of matroids - language of MSOL applied to such matroids.

4 Matroidal MSO Theory

A matroid in logic - the ground set $E=E(M)$ with all subsets 2^{E},

- and a predicate indep on 2^{E}, s.t. indep (F) iff $F \subseteq E$ is independent.

The MSO theory of matroids - language of MSOL applied to such matroids.
Basic expressions:

- $\operatorname{basis}(B) \equiv \operatorname{indep}(B) \wedge \forall D(B \nsubseteq D \vee B=D \vee \neg \operatorname{indep}(D))$

A basis is a maximal independent set.

- $\operatorname{circuit}(C) \equiv \neg \operatorname{indep}(C) \wedge \forall D(D \nsubseteq C \vee D=C \vee \operatorname{indep}(D))$

A circuit C is dependent, but all proper subsets of C are independent.

- $\operatorname{cocircuit}(C) \equiv \forall B[\operatorname{basis}(B) \rightarrow \exists x(x \in B \wedge x \in C)] \wedge$

$$
\wedge \forall X[X \nsubseteq C \vee X=C \vee \exists B(\operatorname{basis}(B) \wedge \forall x(x \notin B \vee x \notin X))]
$$

A cocircuit C (a dual circuit) intersects every basis, but each proper subset of C is disjoint from some basis.

4 Matroidal MSO Theory

A matroid in logic - the ground set $E=E(M)$ with all subsets 2^{E},

- and a predicate indep on 2^{E}, s.t. indep (F) iff $F \subseteq E$ is independent.

The MSO theory of matroids - language of MSOL applied to such matroids.
Basic expressions:

- $\operatorname{basis}(B) \equiv \operatorname{indep}(B) \wedge \forall D(B \nsubseteq D \vee B=D \vee \neg \operatorname{indep}(D))$

A basis is a maximal independent set.

- $\operatorname{circuit}(C) \equiv \neg \operatorname{indep}(C) \wedge \forall D(D \nsubseteq C \vee D=C \vee \operatorname{indep}(D))$

A circuit C is dependent, but all proper subsets of C are independent.

- cocircuit $(C) \equiv \forall B[\operatorname{basis}(B) \rightarrow \exists x(x \in B \wedge x \in C)] \wedge$

$$
\wedge \forall X[X \nsubseteq C \vee X=C \vee \exists B(\operatorname{basis}(B) \wedge \forall x(x \notin B \vee x \notin X))]
$$

A cocircuit C (a dual circuit) intersects every basis, but each proper subset of C is disjoint from some basis.

How strong is the matroidal MSO language?

- neglecting low connectivity, (roughly) on the level of graph MSO_{2}.

Decidability on matroids

Considering matroids represented over a finite field \mathbb{F}.
Transformation: A matroid M over \mathbb{F} and a branch decomposition \mapsto a parse tree \bar{T} for $M=P(\bar{T})$.

Theorem 2. [PH 2005] The parse tree is computable in cubic FPT time for matroids of bounded branch-width over \mathbb{F}.
(No branch decomp. required, approx. factor 3. New [Oum, PH] optimally).

Decidability on matroids

Considering matroids represented over a finite field \mathbb{F}.
Transformation: A matroid M over \mathbb{F} and a branch decomposition \mapsto a parse tree \bar{T} for $M=P(\bar{T})$.

Theorem 2. [PH 2005] The parse tree is computable in cubic FPT time for matroids of bounded branch-width over \mathbb{F}.
(No branch decomp. required, approx. factor 3. New [Oum, PH] optimally).
The idea.
For a represented matroid, we declare a distinguished subspace as a boundary. Bounded width \Rightarrow fixed-rank finite geometry over $\mathbb{F} \Rightarrow$ finite index of \approx_{ϕ} for every MSO sentence ϕ.

Decidability on matroids

Considering matroids represented over a finite field \mathbb{F}.
Transformation: A matroid M over \mathbb{F} and a branch decomposition \mapsto a parse tree \bar{T} for $M=P(\bar{T})$.

Theorem 2. [PH 2005] The parse tree is computable in cubic FPT time for matroids of bounded branch-width over \mathbb{F}.
(No branch decomp. required, approx. factor 3. New [Oum, PH] optimally).
The idea.
For a represented matroid, we declare a distinguished subspace as a boundary. Bounded width \Rightarrow fixed-rank finite geometry over $\mathbb{F} \Rightarrow$ finite index of \approx_{ϕ} for every MSO sentence ϕ.

Theorem 3. [PH 2003] Let $t \geq 1$, and ϕ be a sentence in matr. MSOL. Then there exists a (constructible) finite tree automaton $\mathcal{A}_{\phi, t}$ accepting those parse trees \bar{T} of width $\leq t$ for matroids over \mathbb{F} such that $P(\bar{T}) \models \phi$.

Corollary 4. If \mathcal{B}_{t} is the class of all matroids representable over \mathbb{F} of branchwidth at most t, then the theory $\operatorname{Th}_{M S O}\left(\mathcal{B}_{t}\right)$ is decidable.

Corollary 4. If \mathcal{B}_{t} is the class of all matroids representable over \mathbb{F} of branchwidth at most t, then the theory $\operatorname{Th}_{M S O}\left(\mathcal{B}_{t}\right)$ is decidable.

Complementing this statement, we have:
Theorem 5. [Seese and PH, 2005] Let \mathcal{N} be a class of matroids that are representable over \mathbb{F}. If the monadic second-order theory $\operatorname{Th}_{M S O}(\mathcal{N})$ is decidable, then the class \mathcal{N} has bounded branch-width.

Corollary 4. If \mathcal{B}_{t} is the class of all matroids representable over \mathbb{F} of branchwidth at most t, then the theory $\operatorname{Th}_{M S O}\left(\mathcal{B}_{t}\right)$ is decidable.

Complementing this statement, we have:
Theorem 5. [Seese and PH, 2005] Let \mathcal{N} be a class of matroids that are representable over \mathbb{F}. If the monadic second-order theory $\operatorname{Th}_{M S O}(\mathcal{N})$ is decidable, then the class \mathcal{N} has bounded branch-width.

Why this idea does not generalize to all matroids?
Bounded width \Rightarrow fixed-rank finite geometry \nRightarrow finite index of \approx_{ϕ}.

5 Some Undecidable Theories

- Of course, any class of matroids with unbounded grid minors...

5 Some Undecidable Theories

- Of course, any class of matroids with unbounded grid minors...
- [Seese and PH, 2005] The class of all spikes
- special matroids of branch-width 3.

This class interprets arbitrary grids via an easy encoding in grid spikes.

5 Some Undecidable Theories

- Of course, any class of matroids with unbounded grid minors...
- [Seese and PH, 2005] The class of all spikes
- special matroids of branch-width 3.

This class interprets arbitrary grids via an easy encoding in grid spikes.

- A similar example with swirls...

- A striking example!
(Thanks to a construction by [Mayhew, 2005]...)
The MSO theory of all rational matroids of rank 3 contains MSO_{1} of graphs.
- A striking example!
(Thanks to a construction by [Mayhew, 2005]...)
The MSO theory of all rational matroids of rank 3 contains MSO_{1} of graphs.
Simple idea:
- Interpret graph vertices as double-points in general position,
- and place edges as single-points colinear with their endvertices.

6 Boundaries of MSO Decidability for matroids?

- We see much more strict condition must be imposed on general matroids to obtain decidable MSO theory.

So what is the right matroidal "width" notion for this purpose?

6 Boundaries of MSO Decidability for matroids?

- We see much more strict condition must be imposed on general matroids to obtain decidable MSO theory.
So what is the right matroidal "width" notion for this purpose?
- Possibly easier. . .

What about studying the specific cases / subclasses (the class of spikes, the matroids of rank 3)? Are the presented structures the only "forbidden substructures" for MSO decidability?
What "containment" relation (MSO-definable, of course) should we use here, is the minor relation good enough or shall we look for another one?

6 Boundaries of MSO Decidability for matroids?

- We see much more strict condition must be imposed on general matroids to obtain decidable MSO theory.

So what is the right matroidal "width" notion for this purpose?

- Possibly easier. . .

What about studying the specific cases / subclasses (the class of spikes, the matroids of rank 3)? Are the presented structures the only "forbidden substructures" for MSO decidability?
What "containment" relation (MSO-definable, of course) should we use here, is the minor relation good enough or shall we look for another one?

- These interesting questions are subject of ongoing research...

