
K4,4−e Has No Finite Planar Cover

Petr Hliněný
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Abstract. A graph G has a planar cover if there exists a planar graph H , and a homo-

morphism ϕ : H → G that maps the neighbours of each vertex bijectively. Each graph

that has an embedding in the projective plane also has a finite planar cover. Negami

conjectured the converse in 1988.

This conjecture holds as long as no minor-minimal non-projective graph has a finite planar

cover. From the list there remain only two cases not solved yet—the graphs K 4,4 − e and

K1,2,2,2. We prove the non-existence of a finite planar cover of K4,4−e.

1 Introduction

We consider the following generalization of planarity of graphs: the planar covering of graphs.
A planar graph H covers a graph G if there exists a graph homomorphism ϕ from H to G

such that for each vertex v of H its neighbours are mapped bijectively to the neighbours of
ϕ(v). The set ϕ−1(v) is called the fiber above v. If G is connected (and H is finite), then the
size of each fiber is a constant called the fold number of the covering, and the cover is called
k-fold where k is the fold number.

Every planar graph has a 1-fold planar cover by definition, and every graph has an infinite
planar cover by an infinite tree. As a non-trivial example we mention a 2-fold planar cover of
non-planar K5 (see the right-hand side of Figure 1), obtained from its projective drawing.
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Fig. 1. A 2-fold planar cover of K5, constructed from two copies of its projective drawing

This method can be easily generalized as follows: Suppose a graph G that has an embedding
in the projective plane, realized as a drawing in the normal plane with one cross-cap. Take the
drawing twice, and replace the edges going through the cross-caps by new edges connecting
the vertices of one copy to those of the other copy. Clearly, the result is a planar graph that
double-covers G.

Negami [4] conjectured that this can also be reversed:

Conjecture. (Negami, 1988) A graph has a finite planar cover if and only if it has an embed-
ding in the projective plane.



Since the property of having a planar cover is hereditary under the minor ordering, it is
sufficient to prove that none of the finite list of minor-minimal non-projective-planar graphs [1]
has a planar cover. Some of the cases have been done directly, some reduce to others. Known
results are due to Archdeacon, to Fellows [2] and to Negami [3]. The two remaining cases are
the graphs K4,4−e and K1,2,2,2.

The result of this paper is:

Theorem1. The graph K4,4−e has no finite planar cover.

So to prove the conjecture, it now remains only to solve it for the graph K1,2,2,2.

2 A view of the planar cover

2.1 The triangle cover

We show here how to handle a supposed planar cover of the graph K4,4−e. Let the vertices
of K4,4−e be denoted by s, t, a, b, c, 1, 2, 3 as presented in Figure 2, and H be the finite planar
graph that covers it (for a contradiction). We label each vertex v of H with the name of the
vertex of K4,4−e that v covers. For example, v is labelled 1 iff ϕ(v) = 1. To distinguish labels
from the names of vertices in a picture, we shall draw the labels framed (see also Figure 3).
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Fig. 2. The graph K4,4−e

Realize that H covers K4,4−e if and only if its vertices can be labelled by s, t, a, b, c, 1, 2, 3, so
that the neighbourhood of each vertex with label s contains exactly three vertices labelled a, b, c,
the neighbourhood of each vertex with label t contains exactly three vertices labelled 1, 2, 3, and
each vertex labelled with a, b or c is connected with exactly four vertices labelled s, 1, 2, 3, each
vertex labelled with 1, 2 or 3 is connected with exactly four vertices labelled t, a, b, c.

For the following constructions, H is considered as a plane graph, i.e. including its planar
drawing. In the first approach to handling of H , we replace each vertex of label s or t by a
triangle (called st-triangle) on its three neighbouring vertices. The resulting graph is planar
and will be referred to as the st-triangle cover of K4,4−e, denoted by Hst. See Figure 3 for
an example (a planar cover on the left-hand side, and the resulting st-triangle cover on the
right-hand side).

Observation. The st-triangle cover of K4,4−e is a planar graph obtained from a set of disjoint
face triangles labelled a, b, c, resp. 1, 2, 3, by connecting each vertex of a letter labelled triangle
with exactly three vertices labelled 1, 2 and 3, and each vertex of a number labelled triangle
with exactly three vertices labelled a, b and c.

Corollary 2.1. The existence of a planar cover of K4,4−e is equivalent to the existence of its
st-triangle cover.

As was observed by the referee, the supposed finite triangle cover is a planar cover of the
graph K6 (which has a finite planar cover), too. Of course, this is not right in the reversed
direction; the necessary pairs of face triangles (abc and 123) are not found in existing finite
planar covers of K6.
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Fig. 3. The construction of the st-triangle cover of K4,4−e

2.2 The contraction of the cover

The next approach extracts essential structural information from the st-triangle cover: Each
st-triangle of Hst is contracted to a vertex, preserving the planar drawing. In the construction,
every parallel edges forming faces of size 2 in the planar drawing are replaced by single edges.
Notice that there may be parallel edges not forming a face if there is a vertex between them;
such edges remain untouched. An example of this construction is shown in Figure 4.

�
�

�Q
Q

QQ
�

�
��Z

Z
Z

�
�

�

s

s

s

s

s

s

s

12

2 3 2

1

3
1

QQ

�
��

�
��

�
��

A
A

XX �� ZZ�� JJ

``

""

A
A

�����\
\

\\

Fig. 4. The ∆-contracted cover of the example from Figure 3

The planar multigraph obtained is called the ∆-contracted cover H∆, its vertices the ∆-
vertices and its edges the ∆-edges. For each ∆-edge e its thickness is defined to be the number
of edges of Hst that e represents by collapsing faces of size 2. We transfer these concepts of the
∆-contracted cover back to the st-triangle cover, which allows us to consider an st-triangle as a
∆-vertex and speak about its ∆-degree in the multigraph H∆, or refer to a collection of edges
between two st-triangles as the corresponding ∆-edge. We also introduce the convention that
the triangle represented by a ∆-vertex v has its vertices named v1, v2, v3 in positive orientation.

The above construction was proposed by Kratochv́ıl, who also proved (via personal commu-
nication, never published) that the supposed finite planar cover can be always modified to make
the multigraph H∆ be a simple graph. However, his proof is quite long and our arguments are
composed so that they does not need it.

Observation. The ∆-contracted cover H∆ of K4,4−e is a bipartite plane multigraph without
faces of size 2. The sum of thicknesses of all edges incident with any vertex of H∆ equals 9.

Lemma 2.2. There is no edge of thickness greater than 3 in H∆, and the only possible shapes
for ∆-edges of thickness 1, 2 or 3 are presented in Figure 5.
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Fig. 5. All possible shapes of ∆-edges between two st-triangles

(Note that there may exist more edges between two ∆-triangles, but then they belong to different
∆-edges.)

Proof. The proof of this lemma is simple, but slightly technical.
Suppose st-triangles x1x2x3, y1y2y3 have a common ∆-edge e. If there were three edges

xiy1, xjy2, xky3 belonging to the ∆-edge e, each incident with one vertex of the triangle y, then
they would divide (together with edges of the triangles) the plane into three regions. Since they
form a single ∆-edge, only one of these regions could contain other triangles of the cover. Thus
one vertex, say y2, would not have access to the other triangles, and would be connected with
all three x1, x2, x3, but then one of them, say x2, could not be connected with labels other than
that of y2.

A similar argument applies to a possible four edges (say) x1y1, x1y2, x2y1, x2y2 belonging
to e, joining two vertices of the triangle x with two vertices of y. In that case, the vertices x3,
y3 would be separated by a circle (formed by two of the four edges and an edge of one triangle),
and since only one region of that circle contains other triangles, the other vertex, say x3, could
not be connected with the label of y3.

Finally, any possible ∆-edge other than those shown in Figure 5 would clearly contain one
of the two impossible cases discussed above. 2

Lemma2.3. There is no vertex of degree 1 or 2 in H∆, while it contains a vertex of degree 3.

Proof. The first part is clear by Lemma 2.2, and the second one is an easy consequence of
Euler’s formula for a planar bipartite multigraph without 2-faces. 2

3 The proof of the main theorem

3.1 Basic idea

As was observed above, H∆ must contain a vertex of degree 3. For each face adjacent to such
a vertex we start looking for a “chain” (called a �-chain) of faces of size 4. That chain goes
from the vertex of degree 3 through the graph, ends either at a face of size greater than 4 or
at a vertex of degree at least 5, and two distinct chains can cross but cannot merge together
(see scheme in Figure 6). Finally, a count argument and Euler’s formula show that such chains
cannot exist in a planar bipartite multigraph without 2-faces, which implies Theorem 1.

Remember the close correspondence between the st-triangle and ∆-contracted covers. So
here we speak about the �-chain in H∆ where it is easier to describe its general shape, although
the chain is, in fact, contained in the graph Hst and strongly depends on it.

3.2 One link of the �-chain

We define a basis of the �-chain, show that the neighbourhood of a ∆-vertex of degree 3 forms
such bases, and continue with a lemma proving the existence of a “link” of the chain adjacent
to the basis, under certain conditions.
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Fig. 6. A scheme of �-chains

Definition. We say that two ∆-edges e1 = vu, e2 = uw, in the multigraph H∆ form a �-basis
if they lie on a boundary of one face of H∆, the ∆-vertices u, v, w appear in positive orientation,
the st-triangles v1v2v3, w1w2w3 (corresponding to the ∆-vertices v, w) are both labelled so that
the labels are equal for the pairs v1, w1; v2, w2; v3, w3, and v2u2, w1u2 are edges in Hst. (See
Figure 7; other possible edges between the considered triangles are not important here, but
notice that v1u2, w2u2 are not in E(Hst) unless v = w, from the properties of a planar cover.)

A �-basis is said to be degenerate if v = w.
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Fig. 7. The �-basis and one link of the �-chain
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Fig. 8. The unique neighbourhood of an st-triangle of ∆-degree 3

Our �-chains start at vertices of degree 3 in H∆. From Lemma 2.2, it follows that the ∆-
edges of a cubic vertex have unique structure up to an orientation, and the labelling of the
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neighbouring triangles in Hst is uniquely determined up to a possible renaming of symbols
a, b, c and 1, 2, 3 (Figure 8). So each pair of these edges forms a nondegenerate �-basis.

Lemma3.1. If two ∆-edges vu and uw in H∆ form a nondegenerate �-basis at a vertex u,
and there is a vertex x of degree 4 enclosing a 4-face ϕ = vuwx adjacent to this basis, then
(a) each of the vertices x1, x2, x3 is connected to at most two labels (of the three labels required)

within the two ∆-edges xv, xw lying on boundary of the face ϕ;
(b) the other two ∆-edges xy, xz of the vertex x form a (possibly degenerate) �-basis.

Proof. Let us denote by e1 = uv, e2 = uw, e3 = vx, e4 = wx, e5 = xy, e6 = xz, where e5, e6 are
the other two ∆-edges incident with the vertex x so that e3, e5, e6, e4 are in positive orientation
(see the right-hand side of Figure 7). Note that y, z are possibly not distinct, they even may be
equal to v or w.

The set of all edges of Hst corresponding to some of the ∆-edges e3, e4 is denoted by Ex.
First observe the following facts about these edges:

– None of the edges of Ex is incident with the vertex v3 or with w3. Otherwise, if x1 were
connected with v3, there would be a circle going from x1 through v3v2u2w1 (and possibly
w2 or x3, x2) back to x1, separating v1 from other triangles, so it should be connected to
the vertices x1, x2, x3 within the ∆-edge e3, which is impossible due to Lemma 2.2.

– There are at most 2 edges of Ex incident with x1 (x2, x3) because their other vertices are
among v1, v2, w1, w2 having only two distinct labels a, b. This also proves part (a).

– The edges of Ex are incident with only two vertices, say x1, x3, of the triangle x1x2x3.
Otherwise, one of these vertices would be separated by a circle formed by the other two
and v2, u2, w1, and it could not be connected to a vertex of label c.
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Fig. 9. A new �-basis at the ∆-vertex x

From the above facts, |Ex| ≤ 4, while |Ex| ≥ 3, because there are only two other ∆-edges
incident with x. Moreover, the edges of Ex connect one of the vertices of the triangle x1x2x3

(say x3) with two labels a, b, and the second x1 either with one of these two labels (say a) or with
both of them. Therefore, using Lemma 2.2, there are three possible shapes of a neighbourhood
of the triangle x1x2x3, presented in Figure 9. It is enough to discuss each of these possibilities,
showing that b) holds:

– In the first case (the top figure) the vertex z3 must be labelled c, so y2 or z1 must have
label a, but y2 is connected with x1 which already has a neighbour labelled a. Thus z1 is
labelled by a, z2 by b, and y1 by a, y2 by b. Consequently, e5, e6 form a �-basis.
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– The second case (the bottom left figure) is similar; y3, z3 must be labelled by c, and then
either y1 has label a and y2 label b, so z1 has label a and z2 label b, or the labels a, b are
swapped. Again, we get a �-basis.

– The third case (the bottom right figure) is impossible, because y3 and z3 would be labelled
by c, but they are both connected with x2.

2

Now, if the �-basis formed by e5, e6 at x is nondegenerate, we can repeat our arguments,
continuing the �-chain. In such case we say that the face e1e2e3e4 forms one link of the chain.

3.3 End of the �-chain

The proof of Lemma 3.1 for a �-basis vu, uw was based on these two assumptions: First, v 6= w

and there must be a vertex x such that vuwx form a face of size 4; second, the degree of x

must be 4. It is easy to see that the vertex x (if it exists) can never have degree 3, because the
third of its ∆-edges would have thickness at least 4. So there are three possible reasons why a
�-chain is not continued:

– the face ϕ adjacent to the last �-basis vu, uw has size greater than 4;
– there is a 4-face ϕ = xvuw adjacent to that �-basis, but the degree of x is at least 5; or
– the �-basis is degenerate.

The question now is how many �-chains can end at one “large face” or at one “high-degree
vertex” of H∆. Here we need one more lemma about degree-5 vertices.
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Fig. 10. �-chains ending at a vertex of degree 5

Lemma 3.2. At most 4 �-chains can end at one ∆-vertex f of degree 5, and if exactly 4 �-
chains end at f , then there is one new �-chain starting at f .

Proof. If each vertex of the st-triangle f1f2f3 corresponding to f were connected with three
different st-triangles, the ∆-degree of f would be at least 6. Thus one vertex, say f1, has two
edges connecting it to the vertices g1, g2 of one st-triangle g1g2g3 and the third edge connects
it to the vertex h3 of an other st-triangle h1h2h3, see the scheme in Figure 10 (the st-triangles
i, j, k are only for illustration, and they may be connected to f in a different way). Suppose that
the vertices g1, g2 are labelled a, b, respectively. Then the vertex h3 (also adjacent to f1) must
have label c. By Lemma 3.1(a), there is no �-chain coming into f through the face between g

and h.
Observe that in every �-chain the two side triangles are labelled in the same cyclic order.

So if there are 4 �-chains coming into f through the faces between h and i, i and j, j and k,
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k and g, all the corresponding pairs of st-triangles must have the same cyclic order of labels
a, b, c, therefore h1 must be labelled by a and h2 by b. That means that the ∆-edges fg and fh

form a �-basis for a new �-chain starting at f . 2

Corollary 3.3. At any vertex of degree 5, at most 3 �-chains end, and the possible fourth
incoming �-chain can be continued through this vertex.

Observations. For a vertex x of degree d, d ≥ 6, there are at most d chains ending at it, since
each chain comes to x through a different face.
Similarly, if ϕ is a face of size 2k, k ≥ 3 (remember the multigraph is bipartite), at most 2k
chains can end at ϕ, each one coming to a different vertex.

The last case remaining to discuss is the one of a �-chain ending in a degenerate �-basis
vu, uw where v = w. If there is not a face of size 4 adjacent to that �-basis or not a vertex
x of degree 4, we end the chain as usual. Otherwise (see Figure 11), we find a special way to
terminate the chain so that the validity of the previous observations is not affected.
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s ss
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ϕ

Fig. 11. A degenerate �-basis vu, uw

If the vertex v = w has degree 4, the neighbourhood of v looks exactly as in the picture
and the face ϕ surrounding edges e1, e4 has size greater than 4 (also in the case that u has
degree 3 or 5). Thus we may terminate the chain at vertex u of face ϕ, since there is no chain
normally coming through this face. The same situation occurs when additional edges of v are
only between e2 and e3.

If v has degree 5 and e5, the fifth of its edges, is between e1 and e4, then there can be only
two chains normally coming to v, between e1, e5 and between e4, e5, then the chain is terminated
at v. This is correct even if there is another degenerate basis formed by e2, e3 at x (of a chain
lying “inside” the circle e2e3), since such basis would be counted as in the previous paragraph.

And if v has degree at least 6 (and some of its edges lie between e1, e4), there are no chains
normally ending at v between e1, e2 or between e3, e4. Then the chain is terminated at v again.
Moreover, a possible other chain, ending in a degenerate basis formed by e2, e3 at x, may be
counted by v as well.

Finally, we summarize our knowledge about �-chains: There are three chains starting at
every vertex of degree 3, the chains continue through the graph and end either at a vertex of
degree at least 5 or at a face of size at least 6. The number of chains ending at such vertex or
face is bounded by the above observations. Of course, it may happen that some �-chain has zero
length, for example, if it starts at a vertex of degree 3 which lies on a boundary of a face larger
than 4. It can be easily checked that two distinct �-chains cannot merge together (although
they may cross one another). Two �-chains also cannot collide—if it happened so, they would
continue against each other until one reached the starting vertex of the other. The start is either
at a vertex of degree 3, or it is a special case at degree-5 vertex discussed in Lemma 3.2, but
neither possibility allows an incoming chain, producing a contradiction.
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3.4 Conclusion of the proof

It is now enough to show that the �-chains found above cannot exist. This is the aim of the
next technical lemma, whose proof is, in fact, easier than its formulation.

Lemma 3.4. Let G be a bipartite plane multigraph without faces of size 2, all of whose vertices
have degree at least 3. Let the set of all vertices of G of degree i, i ≥ 3, be denoted by Vi ⊂ V (G),
and the set of all faces of size 2j, j ≥ 2, by F2j.
Then it is impossible to define a directed graph D on the vertex set V (D) = V3 ∪ (

⋃

i≥5
Vi) ∪

(
⋃

j≥3
F2j), so that the outdegree of each of the vertices from V3 is 3 and the indegree is 0, the

indegree of each vertex from V5 is at most 3, the indegree of each vertex from Vi, i ≥ 6 is at
most i, and the indegree of each vertex from F2j, j ≥ 3 is at most 2j.

Realize that the graph D only “counts” the vertices and faces of G. It generally has nothing
in common with the structure of G. (For one thing, it need not be planar.)

Proof. If we denote by v the number of vertices of G, e the number of its edges, f the number
of its faces, and specially vi = |Vi|, fj = |Fj |, we can write e = 1

2
(3v3 + 4v4 + 5v5 + . . .), and

also e = 1

2
(4f4 + 6f6 + 8f8 + . . .). By Euler’s formula,

0 < 2 = v + f − e = v −
1

2
e + f −

1

2
e =

∞
∑

i=3

vi −
1

4

∞
∑

i=3

ivi +

∞
∑

j=2

f2j −
1

4

∞
∑

j=2

2jf2j

=
1

4



v3 − v5 −

∞
∑

i=6

(i − 4)vi −

∞
∑

j=3

(2j − 4)f2j



 . (1)

On the other hand, the existence of the directed graph D would imply

3v3 ≤ 3v5 +
∞
∑

i=6

ivi +
∞
∑

j=3

2jf2j , i.e. v3 − v5 −
∞
∑

i=6

i

3
vi −

∞
∑

j=3

2j

3
f2j ≤ 0 ,

a contradiction to (1), since i
3
≤ i − 4 and 2j

3
≤ 2j − 4 in the above sums. 2

We are ready to prove the main theorem:

Proof of Theorem 1. If K4,4−e had a finite planar cover H , we would use Lemma 3.4 directly
for G = H∆ and D defined by replacing each �-chain in H∆ with a directed edge starting at
its starting vertex of degree 3, and ending at its ending vertex or ending face. Thus the existence
of a finite planar cover of K4,4−e would imply a contradiction. 2
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