On Hardness of the Joint Crossing Number

Petr Hliněný*

Faculty of Informatics, Masaryk University Brno, Czech Republic
joint work with Gelasio Salazar
Instituto de Fisica, Universidad Autonoma de San Luis Potosi, Mexico

1 Two Planar Graphs in the Plane

- The crossing number problem: to minimize the number of pairwise edge crossings over (feasible) drawings.

1 Two Planar Graphs in the Plane

- The crossing number problem: to minimize the number of pairwise edge crossings over (feasible) drawings.
- Joint embedding of two plane graphs (together) - what can happen?

1 Two Planar Graphs in the Plane

- The crossing number problem: to minimize the number of pairwise edge crossings over (feasible) drawings.
- Joint embedding of two plane graphs (together) - what can happen?

1 Two Planar Graphs in the Plane

- The crossing number problem: to minimize the number of pairwise edge crossings over (feasible) drawings.
- Joint embedding of two plane graphs (together) - what can happen?

- Silly question \rightarrow of course, no crossings are needed!

Two Embedded Graphs in one Surface

- Well, on a higher surface one usually cannot pull the two graphs apart. . .

Two Embedded Graphs in one Surface

- Well, on a higher surface one usually cannot pull the two graphs apart. . .

Two Embedded Graphs in one Surface

- Well, on a higher surface one usually cannot pull the two graphs apart. . .

\rightarrow Hence, indeed, some mutual crossings are needed even if each one of the two graphs (itself) embeds there.

Two Graphs in one Surface

An easy solution?

- Actually, why should these two graphs be entwined on the torus? We can perhaps do better using just one (good) face of each map...

Two Graphs in one Surface

An easy solution?

- Actually, why should these two graphs be entwined on the torus? We can perhaps do better using just one (good) face of each map...

- NO; this tempting toroidal example is very misleading!

2 Joint Embedding: a Brief History

To minimize the number of mutual edge crossings in a joint embedding of two graphs (say, red and blue) in one common surface.

- [Negami, 2001]: Introduction of the concept, in a connection with diagonal flips in surface triangulations. A general upper bound of $<4 g \cdot \beta\left(G_{1}\right) \beta\left(G_{2}\right)$.

2 Joint Embedding: a Brief History

To minimize the number of mutual edge crossings in a joint embedding of two graphs (say, red and blue) in one common surface.

- [Negami, 2001]: Introduction of the concept, in a connection with diagonal flips in surface triangulations.
A general upper bound of $<4 g \cdot \beta\left(G_{1}\right) \beta\left(G_{2}\right)$.
- [Archdeacon-Bonnington, 2001]:

An exact answer for the projective plane $=e w\left(G_{1}^{*}\right) \cdot e w\left(G_{2}^{*}\right)$.

2 Joint Embedding: a Brief History

To minimize the number of mutual edge crossings in a joint embedding of two graphs (say, red and blue) in one common surface.

- [Negami, 2001]: Introduction of the concept, in a connection with diagonal flips in surface triangulations.
A general upper bound of $<4 g \cdot \beta\left(G_{1}\right) \beta\left(G_{2}\right)$.
- [Archdeacon-Bonnington, 2001]:

An exact answer for the projective plane $=e w\left(G_{1}^{*}\right) \cdot e w\left(G_{2}^{*}\right)$.
Refined bounds for the torus - a constant factor (8) estimate, etc. . .

2 Joint Embedding: a Brief History

To minimize the number of mutual edge crossings in a joint embedding of two graphs (say, red and blue) in one common surface.

- [Negami, 2001]: Introduction of the concept, in a connection with diagonal flips in surface triangulations.
A general upper bound of $<4 g \cdot \beta\left(G_{1}\right) \beta\left(G_{2}\right)$.
- [Archdeacon-Bonnington, 2001]:

An exact answer for the projective plane $=e w\left(G_{1}^{*}\right) \cdot e w\left(G_{2}^{*}\right)$.
Refined bounds for the torus - a constant factor (8) estimate, etc. . .
Conjectured a spec. ("one-face") form of an opt. solution in any surf.

2 Joint Embedding: a Brief History

To minimize the number of mutual edge crossings in a joint embedding of two graphs (say, red and blue) in one common surface.

- [Negami, 2001]: Introduction of the concept, in a connection with diagonal flips in surface triangulations.
A general upper bound of $<4 g \cdot \beta\left(G_{1}\right) \beta\left(G_{2}\right)$.
- [Archdeacon-Bonnington, 2001]:

An exact answer for the projective plane $=e w\left(G_{1}^{*}\right) \cdot e w\left(G_{2}^{*}\right)$.
Refined bounds for the torus - a constant factor (8) estimate, etc. . .
Conjectured a spec. ("one-face") form of an opt. solution in any surf.

- [Richter-Salazar, 2005]: Disproving the A.-B. conjecture in the doubletorus, a replacement conjecture given.

2 Joint Embedding: a Brief History

To minimize the number of mutual edge crossings in a joint embedding of two graphs (say, red and blue) in one common surface.

- [Negami, 2001]: Introduction of the concept, in a connection with diagonal flips in surface triangulations.
A general upper bound of $<4 g \cdot \beta\left(G_{1}\right) \beta\left(G_{2}\right)$.
- [Archdeacon-Bonnington, 2001]:

An exact answer for the projective plane $=e w\left(G_{1}^{*}\right) \cdot e w\left(G_{2}^{*}\right)$.
Refined bounds for the torus - a constant factor (8) estimate, etc. . .
Conjectured a spec. ("one-face") form of an opt. solution in any surf.

- [Richter-Salazar, 2005]: Disproving the A.-B. conjecture in the doubletorus, a replacement conjecture given. Improved Negami's upper bound wrt. representativity.
- And more...?

Joint Embedding: Formal Definitions

- Let G_{1}, G_{2} be two (disjoint) graphs embeddable/-ed in a surface Σ.

Joint Embedding: Formal Definitions

- Let G_{1}, G_{2} be two (disjoint) graphs embeddable/-ed in a surface Σ.
- A drawing G^{0} of $G_{1}+G_{2}$ in Σ is a joint embedding of $\left(G_{1}, G_{2}\right)$ if the restriction of G^{0} to G_{i}, for each $i=1,2$, is an embedding in Σ.

Joint Embedding: Formal Definitions

- Let G_{1}, G_{2} be two (disjoint) graphs embeddable/-ed in a surface Σ.
- A drawing G^{0} of $G_{1}+G_{2}$ in Σ is a joint embedding of $\left(G_{1}, G_{2}\right)$ if the restriction of G^{0} to G_{i}, for each $i=1,2$, is an embedding in Σ.
- The joint crossing number of $\left(G_{1}, G_{2}\right)$ in Σ is the minimum number of edge crossings over all joint embeddings of $\left(G_{1}, G_{2}\right)$ in Σ.

Joint Embedding: Formal Definitions

- Let G_{1}, G_{2} be two (disjoint) graphs embeddable/-ed in a surface Σ.
- A drawing G^{0} of $G_{1}+G_{2}$ in Σ is a joint embedding of $\left(G_{1}, G_{2}\right)$ if the restriction of G^{0} to G_{i}, for each $i=1,2$, is an embedding in Σ.
- The joint crossing number of $\left(G_{1}, G_{2}\right)$ in Σ is the minimum number of edge crossings over all joint embeddings of $\left(G_{1}, G_{2}\right)$ in Σ. Note that crossings are only between an edge of G_{1} and an edge of G_{2}.

Joint Embedding: Formal Definitions

- Let G_{1}, G_{2} be two (disjoint) graphs embeddable/-ed in a surface Σ.
- A drawing G^{0} of $G_{1}+G_{2}$ in Σ is a joint embedding of $\left(G_{1}, G_{2}\right)$ if the restriction of G^{0} to G_{i}, for each $i=1,2$, is an embedding in Σ.
- The joint crossing number of $\left(G_{1}, G_{2}\right)$ in Σ is the minimum number of edge crossings over all joint embeddings of $\left(G_{1}, G_{2}\right)$ in Σ. Note that crossings are only between an edge of G_{1} and an edge of G_{2}.
- Further variants of the joint embedding/crossing problem:
- joint homeomorphic \sim must keep a homeom. class of G_{1} and G_{2};

Joint Embedding: Formal Definitions

- Let G_{1}, G_{2} be two (disjoint) graphs embeddable/-ed in a surface Σ.
- A drawing G^{0} of $G_{1}+G_{2}$ in Σ is a joint embedding of $\left(G_{1}, G_{2}\right)$ if the restriction of G^{0} to G_{i}, for each $i=1,2$, is an embedding in Σ.
- The joint crossing number of $\left(G_{1}, G_{2}\right)$ in Σ is the minimum number of edge crossings over all joint embeddings of $\left(G_{1}, G_{2}\right)$ in Σ. Note that crossings are only between an edge of G_{1} and an edge of G_{2}.
- Further variants of the joint embedding/crossing problem:
- joint homeomorphic \sim must keep a homeom. class of G_{1} and G_{2};
- +orientation-preserving \sim no mirror image of G_{1}, G_{2} allowed.

Joint Embedding: Formal Definitions

- Let $\boldsymbol{G}_{\boldsymbol{1}}, \boldsymbol{G}_{\mathbf{2}}$ be two (disjoint) graphs embeddable/-ed in a surface Σ.
- A drawing G^{0} of $G_{1}+G_{2}$ in Σ is a joint embedding of $\left(G_{1}, G_{2}\right)$ if the restriction of G^{0} to G_{i}, for each $i=1,2$, is an embedding in Σ.
- The joint crossing number of $\left(G_{1}, G_{2}\right)$ in Σ is the minimum number of edge crossings over all joint embeddings of $\left(G_{1}, G_{2}\right)$ in Σ.
Note that crossings are only between an edge of G_{1} and an edge of G_{2}.
- Further variants of the joint embedding/crossing problem:
- joint homeomorphic \sim must keep a homeom. class of G_{1} and G_{2};
- +orientation-preserving \sim no mirror image of G_{1}, G_{2} allowed.
- Which do we actually consider?
- Going to prove negative results,

Joint Embedding: Formal Definitions

- Let G_{1}, G_{2} be two (disjoint) graphs embeddable/-ed in a surface Σ.
- A drawing G^{0} of $G_{1}+G_{2}$ in Σ is a joint embedding of $\left(G_{1}, G_{2}\right)$ if the restriction of G^{0} to G_{i}, for each $i=1,2$, is an embedding in Σ.
- The joint crossing number of $\left(G_{1}, G_{2}\right)$ in Σ is the minimum number of edge crossings over all joint embeddings of $\left(G_{1}, G_{2}\right)$ in Σ.
Note that crossings are only between an edge of G_{1} and an edge of G_{2}.
- Further variants of the joint embedding/crossing problem:
- joint homeomorphic \sim must keep a homeom. class of G_{1} and G_{2};
- +orientation-preserving \sim no mirror image of G_{1}, G_{2} allowed.
- Which do we actually consider?
- Going to prove negative results, and so it makes better sense to prove hardness without assuming artificial restrictions, but make the construction working with all the restrictions (e.g., homeomorphism).

3 Highly Entwined Drawings, I

To get simpler and rigorous args., transfer the problem to the plane - but how?

3 Highly Entwined Drawings, I

To get simpler and rigorous args., transfer the problem to the plane - but how?

3 Highly Entwined Drawings, I

To get simpler and rigorous args., transfer the problem to the plane - but how?

- Face-anchored joint embedding problem $=$ prescribed faces of the blue graph must hold assigned vertices of the red graph.

3 Highly Entwined Drawings, I

To get simpler and rigorous args., transfer the problem to the plane - but how?

- Face-anchored joint embedding problem $=$ prescribed faces of the blue graph must hold assigned vertices of the red graph.
- Need to show that face-anchors can be enforced in a joint embedding. . .

Highly Entwined Drawings, I

Getting to the plane
How?

Highly Entwined Drawings, I

Getting to the plane
How? Use the following gadget for each face-anchor (the anchor is thick red):

The gadget and the construction

- Make the original blue and red edges medium thick.

The gadget and the construction

- Make the original blue and red edges medium thick.
- Every face-anchor \rightarrow tor. handle with cheap blue toroidal grid, and

The gadget and the construction

- Make the original blue and red edges medium thick.
- Every face-anchor \rightarrow tor. handle with cheap blue toroidal grid, and \rightarrow very thick red $K_{3,3}$ sharing the anchor vertex.

The gadget and the construction

- Make the original blue and red edges medium thick.
- Every face-anchor \rightarrow tor. handle with cheap blue toroidal grid, and \rightarrow very thick red $K_{3,3}$ sharing the anchor vertex.
- The red $K_{3,3}$ is too heavy to cross any original blue face (med. thick).

The gadget and the construction

- Make the original blue and red edges medium thick.
- Every face-anchor \rightarrow tor. handle with cheap blue toroidal grid, and \rightarrow very thick red $K_{3,3}$ sharing the anchor vertex.
- The red $K_{3,3}$ is too heavy to cross any original blue face (med. thick). Consequently, each red $K_{3,3}$ must use prec. one handle in an anchor face.

The gadget and the construction

- Make the original blue and red edges medium thick.
- Every face-anchor \rightarrow tor. handle with cheap blue toroidal grid, and \rightarrow very thick red $K_{3,3}$ sharing the anchor vertex.
- The red $K_{3,3}$ is too heavy to cross any original blue face (med. thick). Consequently, each red $K_{3,3}$ must use prec. one handle in an anchor face.
- Playing slightly with the weights of the red $K_{3,3}$ s and the blue grids, we can enforce a precise one-to-one assignment (and no other permutations).

4 Highly Entwined Drawings, II

More entwined with less handles

We can force more entwining with fewer handles -

4 Highly Entwined Drawings, II

More entwined with less handles

We can force more entwining with fewer handles - staying in fixed small genus!

4 Highly Entwined Drawings, II

More entwined with less handles

We can force more entwining with fewer handles - staying in fixed small genus! The high level idea of anchor multiplication - a multi-anchor gadget:

- Only four face-anchors are used to tie down two long vertex sequences.

The multi-anchor gadget

1. Make the base blue frame very thick to thick:

The multi-anchor gadget

1. Make the base blue frame very thick to thick:

2. Stretch the thinner red ladder through that frame - enforced this way:

The multi-anchor gadget

1. Make the base blue frame very thick to thick:

2. Stretch the thinner red ladder through that frame - enforced this way:

3. Adjust weights on the horizontal red and on new (med.-light) vertical blue bars to enforce unique even distribution of the red ladder vertices.

Gadget details

How thick the edges are? $\quad T \gg k \gg 1$

5 Anchored Hardness Reduction

[Cabello-Mohar] (2012): Anchored planar joint crossing number is NP-hard:

Using our multi-anchor gadget

- Anchored planar drawing (by [Cabello-Mohar]): a drawing of G in the unit disc such that selected vertices $A \subseteq V(G)$ appear in the prescribed order on the disc boundary.

Using our multi-anchor gadget

- Anchored planar drawing (by [Cabello-Mohar]): a drawing of G in the unit disc such that selected vertices $A \subseteq V(G)$ appear in the prescribed order on the disc boundary.
- How to force an anchored planar drawing?

Using our multi-anchor gadget

- Anchored planar drawing (by [Cabello-Mohar]): a drawing of G in the unit disc such that selected vertices $A \subseteq V(G)$ appear in the prescribed order on the disc boundary.
- How to force an anchored planar drawing?
- Can use the multi-anchor gadget constructed above, but. . .

Using our multi-anchor gadget

- Anchored planar drawing (by [Cabello-Mohar]): a drawing of G in the unit disc such that selected vertices $A \subseteq V(G)$ appear in the prescribed order on the disc boundary.
- How to force an anchored planar drawing?
- Can use the multi-anchor gadget constructed above, but. . .

- must also force the original graph to stay "away" from this gadget! (this is a technical connectivity argument)

Using our multi-anchor gadget

- Anchored planar drawing (by [Cabello-Mohar]): a drawing of G in the unit disc such that selected vertices $A \subseteq V(G)$ appear in the prescribed order on the disc boundary.
- How to force an anchored planar drawing?
- Can use the multi-anchor gadget constructed above, but. . .

- must also force the original graph to stay "away" from this gadget! (this is a technical connectivity argument)
- Two copies of the gadget to emulate the four sides of the C.-M. constr.:

Putting all together

Double multi-anchor

Cabello-Mohar

Putting all together

hardness of the joint crossing number with 6 face-anchors in the plane.

Putting all together

hardness of the joint crossing number with 6 face-anchors in the plane.

Theorem. Joint Crossing Number, Joint Homeomorphic Crossing Number, and Joint OP-Homeomorphic Crossing Number are NP-hard problems in any orientable surface of genus 6 or higher. This remains true even if the inputs are restricted to simple 3 -connected graphs.

6 Improvements and more Results

1. The same (hardness) result holds for non-orientable surfaces of genus ≥ 6

6 Improvements and more Results

1. The same (hardness) result holds for non-orientable surfaces of genus ≥ 6 - just use blue projective grids in the face-anchors.

6 Improvements and more Results

1. The same (hardness) result holds for non-orientable surfaces of genus ≥ 6 - just use blue projective grids in the face-anchors.
2. We can improve down to genus 4 (both orientable and non-orientable) - this uses a differently shaped multi-anchor gadget, though based on the same ideas as above.

6 Improvements and more Results

1. The same (hardness) result holds for non-orientable surfaces of genus ≥ 6 - just use blue projective grids in the face-anchors.
2. We can improve down to genus 4 (both orientable and non-orientable) - this uses a differently shaped multi-anchor gadget, though based on the same ideas as above.
3. Returning to [Cabello-Mohar]; anchored planar joint crossing number problem stays NP-hard even when only 16 anchors are used (as oposed to original unlimited number of anchors).

6 Improvements and more Results

1. The same (hardness) result holds for non-orientable surfaces of genus ≥ 6 - just use blue projective grids in the face-anchors.
2. We can improve down to genus 4 (both orientable and non-orientable) - this uses a differently shaped multi-anchor gadget, though based on the same ideas as above.
3. Returning to [Cabello-Mohar]; anchored planar joint crossing number problem stays NP-hard even when only 16 anchors are used (as oposed to original unlimited number of anchors).
4. Consequently, from (3.) we get the following new result (almost-planar):

Theorem. Let G be a planar graph with only 16 vertices of degree >3, and $x, y \in V(G)$. Then it is NP-hard to decide the crossing number of $G+x y$.

6 Improvements and more Results

1. The same (hardness) result holds for non-orientable surfaces of genus ≥ 6 - just use blue projective grids in the face-anchors.
2. We can improve down to genus 4 (both orientable and non-orientable) - this uses a differently shaped multi-anchor gadget, though based on the same ideas as above.
3. Returning to [Cabello-Mohar]; anchored planar joint crossing number problem stays NP-hard even when only 16 anchors are used (as oposed to original unlimited number of anchors).
4. Consequently, from (3.) we get the following new result (almost-planar):

Theorem. Let G be a planar graph with only 16 vertices of degree >3, and $x, y \in V(G)$. Then it is NP-hard to decide the crossing number of $G+x y$.
(Previously, [Cabello-Mohar] required an unlimited number of degrees >3.)

The improved multi-anchor gadget
Just a simple sketch. . .

7
 Final Questions

- The Joint Crossing Number problem seems rather easy in genus 1 but hard in genus 4 . So, what is in between?

7
 Final Questions

- The Joint Crossing Number problem seems rather easy in genus 1 but hard in genus 4 . So, what is in between?

We expect it to be hard in genus 3 and perhaps easy in genus $2 \ldots$

7 Final Questions

- The Joint Crossing Number problem seems rather easy in genus 1 but hard in genus 4 . So, what is in between?

We expect it to be hard in genus 3 and perhaps easy in genus $2 \ldots$

- If G is a planar 3 -regular graph and $x, y \in V(G)$, then the crossing number of $G+x y$ can be computed in polynomial time. [Riskin], [Cabello-Mohar]

7 Final Questions

- The Joint Crossing Number problem seems rather easy in genus 1 but hard in genus 4 . So, what is in between?

We expect it to be hard in genus 3 and perhaps easy in genus $2 \ldots$

- If G is a planar 3 -regular graph and $x, y \in V(G)$, then the crossing number of $G+x y$ can be computed in polynomial time. [Riskin], [Cabello-Mohar]
If such G has only 16 vertices of degree >3, then the problem is NP-hard. Again, what happens in between?

7 Final Questions

- The Joint Crossing Number problem seems rather easy in genus 1 but hard in genus 4 . So, what is in between?

We expect it to be hard in genus 3 and perhaps easy in genus $2 \ldots$

- If G is a planar 3-regular graph and $x, y \in V(G)$, then the crossing number of $G+x y$ can be computed in polynomial time. [Riskin], [Cabello-Mohar]

If such G has only 16 vertices of degree >3, then the problem is NP-hard. Again, what happens in between?

Thank you for your attention.

