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Petr Hliněný, ISAAC, Nagoya, 2015 2 / 18 Joint Crossing Number: Hard

1 Two Planar Graphs in the Plane1 Two Planar Graphs in the Plane

• The crossing number problem: to minimize the number of pairwise edge
crossings over (feasible) drawings.
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1 Two Planar Graphs in the Plane1 Two Planar Graphs in the Plane

• The crossing number problem: to minimize the number of pairwise edge
crossings over (feasible) drawings.

• Joint embedding of two plane graphs (together) – what can happen?

• Silly question → of course, no crossings are needed!
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Two Embedded Graphs in one SurfaceTwo Embedded Graphs in one Surface

• Well, on a higher surface one usually cannot pull the two graphs apart. . .
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Two Embedded Graphs in one SurfaceTwo Embedded Graphs in one Surface

• Well, on a higher surface one usually cannot pull the two graphs apart. . .

→ Hence, indeed, some mutual crossings are needed even if each one of the
two graphs (itself) embeds there.
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Two Graphs in one SurfaceTwo Graphs in one Surface

An easy solution?An easy solution?

• Actually, why should these two graphs be entwined on the torus?
We can perhaps do better using just one (good) face of each map. . .
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Two Graphs in one SurfaceTwo Graphs in one Surface

An easy solution?An easy solution?

• Actually, why should these two graphs be entwined on the torus?
We can perhaps do better using just one (good) face of each map. . .

• NO; this tempting toroidal example is very misleading!



page.18
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2 Joint Embedding: a Brief History2 Joint Embedding: a Brief History

To minimize the number of mutual edge crossings in a joint embedding of two
graphs (say, red and blue) in one common surface.

• [Negami, 2001]: Introduction of the concept, in a connection with diag-
onal flips in surface triangulations.
A general upper bound of < 4g · β(G1)β(G2).
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• [Negami, 2001]: Introduction of the concept, in a connection with diag-
onal flips in surface triangulations.
A general upper bound of < 4g · β(G1)β(G2).
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An exact answer for the projective plane = ew(G∗1) · ew(G∗2).
Refined bounds for the torus – a constant factor (8) estimate, etc. . .

Conjectured a spec. (“one-face”) form of an opt. solution in any surf.

• [Richter–Salazar, 2005]: Disproving the A.–B. conjecture in the double-
torus, a replacement conjecture given.
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2 Joint Embedding: a Brief History2 Joint Embedding: a Brief History

To minimize the number of mutual edge crossings in a joint embedding of two
graphs (say, red and blue) in one common surface.

• [Negami, 2001]: Introduction of the concept, in a connection with diag-
onal flips in surface triangulations.
A general upper bound of < 4g · β(G1)β(G2).

• [Archdeacon–Bonnington, 2001]:
An exact answer for the projective plane = ew(G∗1) · ew(G∗2).
Refined bounds for the torus – a constant factor (8) estimate, etc. . .

Conjectured a spec. (“one-face”) form of an opt. solution in any surf.

• [Richter–Salazar, 2005]: Disproving the A.–B. conjecture in the double-
torus, a replacement conjecture given.
Improved Negami’s upper bound wrt. representativity.

• And more. . . ?
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• Let G1,G2 be two (disjoint) graphs embeddable/-ed in a surface Σ.
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Joint Embedding: Formal DefinitionsJoint Embedding: Formal Definitions

• Let G1,G2 be two (disjoint) graphs embeddable/-ed in a surface Σ.

• A drawing G0 of G1 + G2 in Σ is a joint embedding of (G1, G2) if the
restriction of G0 to Gi, for each i = 1, 2, is an embedding in Σ.

• The joint crossing number of (G1, G2) in Σ is the minimum number of
edge crossings over all joint embeddings of (G1, G2) in Σ.

Note that crossings are only between an edge of G1 and an edge of G2.

• Further variants of the joint embedding/crossing problem:

– joint homeomorphic ∼ must keep a homeom. class of G1 and G2;

– +orientation-preserving ∼ no mirror image of G1, G2 allowed.

• Which do we actually consider?

– Going to prove negative results,

and so it makes better sense to prove hardness without assuming
artificial restrictions, but make the construction working with all the
restrictions (e.g., homeomorphism).
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3 Highly Entwined Drawings, I3 Highly Entwined Drawings, I

To get simpler and rigorous args., transfer the problem to the plane – but how?
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To get simpler and rigorous args., transfer the problem to the plane – but how?

• Face-anchored joint embedding problem = prescribed faces of the blue
graph must hold assigned vertices of the red graph.
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Petr Hliněný, ISAAC, Nagoya, 2015 7 / 18 Joint Crossing Number: Hard

3 Highly Entwined Drawings, I3 Highly Entwined Drawings, I

To get simpler and rigorous args., transfer the problem to the plane – but how?

• Face-anchored joint embedding problem = prescribed faces of the blue
graph must hold assigned vertices of the red graph.

• Need to show that face-anchors can be enforced in a joint embedding. . .
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Highly Entwined Drawings, IHighly Entwined Drawings, I

Getting to the planeGetting to the plane

How?
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Highly Entwined Drawings, IHighly Entwined Drawings, I

Getting to the planeGetting to the plane

How? Use the following gadget for each face-anchor (the anchor is thick red):

aiLi

Ci

medium thick

G1

Ti

C ′i

G2



page.18
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The gadget and the constructionThe gadget and the construction

aiLi

Ci

medium thick

G1

Ti

C ′i

G2

• Make the original blue and red edges medium thick.
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• Every face-anchor → tor. handle with cheap blue toroidal grid, and
→ very thick red K3,3 sharing the anchor vertex.
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• The red K3,3 is too heavy to cross any original blue face (med. thick).
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Ti
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G2

• Make the original blue and red edges medium thick.

• Every face-anchor → tor. handle with cheap blue toroidal grid, and
→ very thick red K3,3 sharing the anchor vertex.

• The red K3,3 is too heavy to cross any original blue face (med. thick).
Consequently, each red K3,3 must use prec. one handle in an anchor face.
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The gadget and the constructionThe gadget and the construction

aiLi

Ci

medium thick

G1

Ti

C ′i

G2

• Make the original blue and red edges medium thick.

• Every face-anchor → tor. handle with cheap blue toroidal grid, and
→ very thick red K3,3 sharing the anchor vertex.

• The red K3,3 is too heavy to cross any original blue face (med. thick).
Consequently, each red K3,3 must use prec. one handle in an anchor face.

• Playing slightly with the weights of the red K3,3 s and the blue grids, we
can enforce a precise one-to-one assignment (and no other permutations).
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4 Highly Entwined Drawings, II4 Highly Entwined Drawings, II

More entwined with less handlesMore entwined with less handles

We can force more entwining with fewer handles –
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4 Highly Entwined Drawings, II4 Highly Entwined Drawings, II

More entwined with less handlesMore entwined with less handles

We can force more entwining with fewer handles – staying in fixed small genus!

The high level idea of anchor multiplication – a multi-anchor gadget:

• Only four face-anchors are used to tie down two long vertex sequences.
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The multi-anchor gadgetThe multi-anchor gadget

1. Make the base blue frame very thick to thick:
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2. Stretch the thinner red ladder through that frame – enforced this way:
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The multi-anchor gadgetThe multi-anchor gadget

1. Make the base blue frame very thick to thick:

2. Stretch the thinner red ladder through that frame – enforced this way:

3. Adjust weights on the horizontal red and on new (med.-light) vertical
blue bars to enforce unique even distribution of the red ladder vertices.
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Gadget detailsGadget details

How thick the edges are? T >> k >> 1

T 4

T 4

T 3

T 3

T 4

T 4

T 3

T 3

T 3

T 4

T 2

(k−1)T

T

T 2

(k−2)T

2T

T 2

(k−3)T

3T

T 2

4T

T 2

T 2

T

(k−1)T

T 2

C1

C2

C3

C4

k3+
(
k+1
2

)
k+1

k3

k3+
(
k
2

)

k3+1

k+1

k3+3 k3+6

k3+1 k3

k+1

k3+
(
k+1
2

)
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5 Anchored Hardness Reduction5 Anchored Hardness Reduction

[Cabello–Mohar] (2012): Anchored planar joint crossing number is NP-hard:
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Using our multi-anchor gadgetUsing our multi-anchor gadget

• Anchored planar drawing (by [Cabello–Mohar]):
a drawing of G in the unit disc such that selected vertices A ⊆ V (G)
appear in the prescribed order on the disc boundary.
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• How to force an anchored planar drawing?
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• Anchored planar drawing (by [Cabello–Mohar]):
a drawing of G in the unit disc such that selected vertices A ⊆ V (G)
appear in the prescribed order on the disc boundary.

• How to force an anchored planar drawing?

– Can use the multi-anchor gadget constructed above, but. . .

– must also force the original graph to stay “away” from this gadget!
(this is a technical connectivity argument)
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Using our multi-anchor gadgetUsing our multi-anchor gadget

• Anchored planar drawing (by [Cabello–Mohar]):
a drawing of G in the unit disc such that selected vertices A ⊆ V (G)
appear in the prescribed order on the disc boundary.

• How to force an anchored planar drawing?

– Can use the multi-anchor gadget constructed above, but. . .

– must also force the original graph to stay “away” from this gadget!
(this is a technical connectivity argument)

• Two copies of the gadget to emulate the four sides of the C.–M. constr.:
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Putting all togetherPutting all together

Double multi-anchor Cabello–Mohar
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Putting all togetherPutting all together

Double multi-anchor Cabello–Mohar

+

=

hardness of the joint crossing number with 6 face-anchors in the plane.
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Petr Hliněný, ISAAC, Nagoya, 2015 15 / 18 Joint Crossing Number: Hard

Putting all togetherPutting all together

Double multi-anchor Cabello–Mohar

+

=

hardness of the joint crossing number with 6 face-anchors in the plane.

Theorem. Joint Crossing Number, Joint Homeomorphic Crossing
Number, and Joint OP-Homeomorphic Crossing Number are NP-hard
problems in any orientable surface of genus 6 or higher. This remains true even
if the inputs are restricted to simple 3-connected graphs.
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6 Improvements and more Results6 Improvements and more Results

1. The same (hardness) result holds for non-orientable surfaces of genus ≥ 6
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1. The same (hardness) result holds for non-orientable surfaces of genus ≥ 6
– just use blue projective grids in the face-anchors.

2. We can improve down to genus 4 (both orientable and non-orientable)
– this uses a differently shaped multi-anchor gadget, though based on the
same ideas as above.
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problem stays NP-hard even when only 16 anchors are used (as oposed
to original unlimited number of anchors).
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1. The same (hardness) result holds for non-orientable surfaces of genus ≥ 6
– just use blue projective grids in the face-anchors.

2. We can improve down to genus 4 (both orientable and non-orientable)
– this uses a differently shaped multi-anchor gadget, though based on the
same ideas as above.

3. Returning to [Cabello–Mohar]; anchored planar joint crossing number
problem stays NP-hard even when only 16 anchors are used (as oposed
to original unlimited number of anchors).

4. Consequently, from (3.) we get the following new result (almost-planar):

Theorem. Let G be a planar graph with only 16 vertices of degree > 3,
and x, y ∈ V (G). Then it is NP-hard to decide the crossing number of G+xy.
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6 Improvements and more Results6 Improvements and more Results

1. The same (hardness) result holds for non-orientable surfaces of genus ≥ 6
– just use blue projective grids in the face-anchors.

2. We can improve down to genus 4 (both orientable and non-orientable)
– this uses a differently shaped multi-anchor gadget, though based on the
same ideas as above.

3. Returning to [Cabello–Mohar]; anchored planar joint crossing number
problem stays NP-hard even when only 16 anchors are used (as oposed
to original unlimited number of anchors).

4. Consequently, from (3.) we get the following new result (almost-planar):

Theorem. Let G be a planar graph with only 16 vertices of degree > 3,
and x, y ∈ V (G). Then it is NP-hard to decide the crossing number of G+xy.

(Previously, [Cabello–Mohar] required an unlimited number of degrees > 3.)
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The improved multi-anchor gadgetThe improved multi-anchor gadget

Just a simple sketch. . .
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7 Final Questions7 Final Questions

• The Joint Crossing Number problem seems rather easy in genus 1
but hard in genus 4. So, what is in between?
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Petr Hliněný, ISAAC, Nagoya, 2015 18 / 18 Joint Crossing Number: Hard

7 Final Questions7 Final Questions

• The Joint Crossing Number problem seems rather easy in genus 1
but hard in genus 4. So, what is in between?

We expect it to be hard in genus 3 and perhaps easy in genus 2. . .



page.18
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If such G has only 16 vertices of degree > 3, then the problem is NP-hard.
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7 Final Questions7 Final Questions

• The Joint Crossing Number problem seems rather easy in genus 1
but hard in genus 4. So, what is in between?

We expect it to be hard in genus 3 and perhaps easy in genus 2. . .

• If G is a planar 3-regular graph and x, y ∈ V (G), then the crossing
number of G+ xy can be computed in polynomial time.
[Riskin], [Cabello–Mohar]

If such G has only 16 vertices of degree > 3, then the problem is NP-hard.

Again, what happens in between?

Thank you for your attention.Thank you for your attention.
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