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Abstract

In this paper we develop new algorithmic machinery for solving hard problems
on graphs of bounded rank-width and on digraphs of bounded bi-rank-width in
polynomial (XP, to be precise) time. These include, particularly, graph colour-
ing and chromatic polynomial problems, the Hamiltonian path and c-min-leaf
outbranching, the directed cut, and more generally MSOL-partitioning prob-
lems on digraphs. Our focus on a formally clean and unified approach for the
considered algorithmic problems is in contrast with many previous published
XP algorithms running on graphs of bounded clique-width, which mostly used
ad hoc techniques and ideas. The new contributions include faster algorithms
for computing the chromatic number and the chromatic polynomial on graphs
of bounded rank-width, and new algorithms for solving the defective colouring,
the min-leaf outbranching, and the directed cut problems.

Keywords: Rank-width, bi-rank-width, XP algorithm, chromatic number,
chromatic polynomial, Hamiltonian path, min-leaf outbranching, directed max-
cut.

1. Introduction

We postpone all formal definitions till the next section. Rank-width, in-
troduced by Oum and Seymour [27] in a relation to graph clique-width, is a
relatively new graph complexity measure which has been receiving considerable
attention over the past few years. Compared to the (perhaps better known)
clique-width measure, rank-width has some major advantages: First, an optimal
rank-decomposition can be efficiently constructed if the rank-width is bounded
[22]. Second, a rank-decomposition (actually, a suitable modification of it, see
Section 3) allows for design of formally cleaner [13], and often significantly faster
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parametrized (FPT) algorithms [3, 15] than previously known ones running on a
clique-width expression of the given graph. Third, analogously to clique-width,
there exist natural extensions of rank-width to digraphs – cf. bi-rank-width or
GF (4)-rank-width introduced by Kanté [23] – enjoying similar nice algorithmic
properties as shown in [16].

To recapitulate, several recently published papers have been dealing with
FPT algorithms on graphs of bounded rank-width [3, 5, 13, 15] and of bounded
bi-rank-width [16]. On the other hand, no papers dealing specifically with XP
algorithms on graphs of bounded rank-width seem to be published to date, and
related papers, e.g. [2, 9, 17, 24] working on graphs of bounded clique-width,
seem to mostly use ad hoc techniques and ideas for designing their algorithms.

The aim of this paper is to extend some of the core ideas of [13, 15] (which are
using mathematical tools of automata theory in designing FPT algorithms on
graphs of bounded rank-width) also to problems which likely do not have FPT
algorithms with respect to rank-width, and hence for which we would like to
get parametrized algorithms belonging to the class XP (“pseudopolynomial”).
Two main advantages of our novel unified approach are as follows.

Firstly, the underlying mathematical framework related to finite automata
and language congruences provides an easier and more precise description of
our algorithms and also their proofs. This is, simply speaking, due to the
fact that we use precisely defined equivalence relations on the universe of all
“partial solutions” instead of (often vaguely defined) dynamic processing data
(“tables”).

Secondly, by a careful analysis of the mentioned equivalences over all partial
solutions, we are able to provide XP algorithms whose theoretical runtime is of-
ten much better than the runtime of the corresponding algorithms which are (or
can be) formulated on graphs of bounded clique-width. For this we exploit the
nice algebraic properties of rank-width and its labeling parse trees (cf. Section 3
and Lemma 4.2).

Section 2 presents some basic definitions. In Section 3 we describe the parse-
tree formalism (analogous to [5, 12]) for handling rank-decompositions of graphs.
Section 4 then presents three new exemplary XP algorithms for colouring prob-
lems on graphs of bounded rank-width. An extension of rank-width and the
parse-tree formalism to directed graphs is shown in Section 5, which is then
applied to solving selected interesting digraph problems parameterized by bi-
rank-width in Section 6.

The most important new contributions of these sections can be summarized:

• 2 We provide algorithms computing the chromatic number and the chro-
matic polynomial of a graph of rank-width t in time O

(

nh(t)
)

where

h(t) = 21+t(t+1)/2 + O(1), largely beating the previous algorithms by

2These two algorithms have already appeared in the conference proceedings version of this
paper [14], and they have an improved presentation here.
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Kobler and Rotics [24] and Averbouch et al [2], respectively. See The-
orems 4.1 and 4.7.

• 3 We extend the recent XP algorithm for defective (ℓ, q)-colouring (with
ℓ fixed) by Kolman et al [25] from tree-width bounded graphs to graphs
of rank-width t, providing an XP algorithm of runtime O

(

nk(t)
)

where
k(t) = 4ℓ · 2t +O(1). See Theorem 4.8.

• 3 We provide new XP algorithms for solving the unweighted max-directed-
cut and the c-min-leaf (c fixed) outbranching problems on graphs of bi-
rank-width t, for which no analogous algorithms have been known before.
These run in time O

(

n4·2t+O(1)
)

and O
(

n4·2ct+c+t+O(1)
)

, respectively. See
Theorems 6.4 and 6.7.

Although above running times with terms like 2O(t) in the exponent may look
horrible at the first sight, we note that there exist interesting graph classes
having very small rank-width, such as the graphs of rank-width t = 1 which
have been known as “distance-hereditary” graphs for quite long time.

Final Section 7 then outlines some interesting generalizations of our algo-
rithms (including, for instance, an alternative approach to the so called MSOL-
partitioning problems of Rao [28]), and possible further research directions.

2. Definitions and Basics

For now we only consider finite undirected simple graphs, i.e. without loops
or multiple edges. We start by briefly introducing a few needed concepts and
then define rank-decompositions and rank-width, while in Section 3 we continue
by defining the concepts of t-labeled graphs and their parse trees. Many of
the definitions in the latter section are taken or adapted from [15]. Further
definitions related to digraphs are then presented in Section 5.

The reader should be aware of the notion of fixed-parameter tractable [8]
algorithms (FPT algorithms in short), which are the algorithms running in
time O(np · 2f(k)) for a constant p, a parameter k (rank-width in our case)
and any (computable) function f . Some NP-hard problems such as deciding
whether a graph is 3-colourable do have FPT algorithms when parameterized
by clique-width, see e.g. [6]. On the other hand, [11] have recently proved that
various problems, such as the chromatic number or Hamiltonicity, likely cannot
be solved by FPT algorithms parameterized by clique-/ rank-width.

In such cases, authors usually look for algorithms which are “pseudopolyno-
mial” – formally in class XP or uniform XP [8] – i.e. running in time O(nf(k)) for
the parameter k and a computable function f . Many examples using the clique-
width parameter can be found in [2, 9, 17, 24, 28]. Our goal in this paper is
to design and practically use a mathematically precise and sound formalism for
solving problems on graphs of bounded rank-width in XP time. This extends the

3All these algorithms are new here – not presented in the conference proceedings [14].
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Myhill–Nerode type automata formalism which we have introduced in [13, 15]
for FPT algorithms on such graphs.

Rank-width is usually defined in terms of generalized branch-width. We
therefore start with the definition of branch-width:

Branch-width. A set function f : 2M → Z is called symmetric if f(X) = f(M \
X) for all X ⊆M . A tree is subcubic if all its nodes have degree at most 3. For
a symmetric function f : 2M → Z on a finite set M , the branch-width of f is
defined as follows.

A branch-decomposition of f is a pair (T, µ) where T is a subcubic tree and
µ a bijective function µ : M → {t : t is a leaf of T}. For an edge e of T , the
connected components of T \e induce a bipartition (X,Y ) of the set of leaves of
T . The width of an edge e of a branch-decomposition (T, µ) is f(µ−1(X)). The
width of (T, µ) is the maximum width over all edges of T . The branch-width of
f is the minimum of the width of all branch-decompositions of f . (If |M | ≤ 1,
then we define the branch-width of f as f(∅).)

A natural application of this definition is the branch-width of a graph, in-
troduced by Robertson and Seymour along with better known tree-width. In
that case we put M = E(G), and take f to be the connectivity function of G.
There is, however, another interesting application of the aforementioned general
notions, in which we consider the vertex set V (G) = M of a graph G as the
ground set.

Rank-width ([27]). For a graph G, let AG[U,W ] be the adjacency matrix of
a bipartition (U,W ) of the vertex set V (G) defined over the two-element field
GF(2) as follows: the entry au,w, where u ∈ U and w ∈ W , of AG[U,W ] is 1
if and only if uw is an edge of G. The cut-rank function ρG(U) = ρG(W ) then
equals the rank of AG[U,W ] over GF(2). A rank-decomposition and rank-width
of a graph G is the branch-decomposition and branch-width of the cut-rank
function ρG of G on M = V (G), respectively. The important property of rank-
width is that it can be verified in polynomial time, as stated by the following
theorem.

Theorem 2.1 ([22]). For every parameter t there is an O(n3)-time FPT
algorithm that, for a given n-vertex graph G, either finds a rank-decomposition
of G of width at most t, or confirms that the rank-width of G is more than t.

A few rank-width examples. Any complete graph of more than one vertex has
clearly rank-width 1 since any of its adjacency matrices consists of all 1s. It
is similar for complete bipartite graphs if we split the decomposition along the
parts. We illustrate the situation with graph cycles: while C3 and C4 have
rank-width 1, C5 and all longer cycles have rank-width equal to 2. A rank-
decomposition of the cycle C5 is shown in Figure 1. Conversely, every subcubic
tree with at least 4 leaves has an edge separating at least 2 leaves on each side,
and every corresponding bipartition of C5 gives a matrix of rank 2.

Rank-width is closely tied to another width parameter called clique-width [9].
A graph has bounded rank-width if and only if it has bounded clique-width.
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Figure 1: A rank-decomposition of the graph cycle C5.

However, there is no equivalent of Theorem 2.1 for clique-width [10], and the
value of clique-width can be up to exponentially larger than rank-width [4], both
facts making rank-width a more attractive parameter for designing algorithms.
On the other hand, it appears really difficult to design dynamic programming
algorithms running on a “bare” rank-decomposition of a graph.

3. Rank-width (labeling) Parse Trees

In a search for a “more suitable form” of a rank-decomposition, Courcelle
and Kanté [5] defined the bilinear products of multiple-coloured graphs, and
proposed algebraic expressions over these operators as an equivalent description
of a rank-decomposition (cf. Theorem 3.2). Here we introduce (following [12]
and [13, 15]) the same idea in terms of labeling join and parse trees which we
propose as more convenient for the results in the next sections. One should note
that an analogous idea also underlies the H-join decompositions of Bui-Xuan,
Telle and Vatshelle [3].

t-labeled graphs. A t-labeling of a graph is a mapping lab : V (G) → 2Lt which to
each vertex ofG assigns a set of labels from Lt = {1, 2, . . . , t}. (This is equivalent
to multiple-coloured graphs of [5].) Having a graph G with an (implicitly)
associated t-labeling lab, we refer to the pair (G, lab) as to a t-labeled graph and
use notation Ḡ. Notice that each vertex of a t-labeled graph may have zero, one
or more labels. We will often view (cf. [5] again) a t-labeling of G equivalently
as a mapping V (G) → GF(2)t to the binary vector space of dimension t, where
GF(2) is the two-element finite field.

A t-relabeling is a mapping f : Lt → 2Lt . In linear algebra terms, a t-rela-
beling f is in a natural one-to-one correspondence with a linear transformation
f : GF(2)t → GF(2)t, i.e. a t × t binary matrix T f . For a t-labeled graph
Ḡ = (G, lab) we define f(Ḡ) as the same graph with a vertex t-labeling lab′ =
f ◦lab. Here f ◦lab stands for the linear transformation f applied to the labeling
lab, or equivalently lab′ = lab × T f as matrix multiplication. Informally, f is
applied separately to each label in lab(v) and the outcomes are summed up
“modulo 2”; e.g. for lab(v) = {1, 2} and f(1) = {1, 3, 4}, f(2) = {1, 2, 3}, we
get f ◦ lab(v) = {2, 4} = {1, 3, 4} △ {1, 2, 3} (here the operator △ stands for
symmetric difference).
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We will now define three different operators on t-labeled graphs. These
operators resemble the operators for building k-expressions for clique-width,
and were first introduced in [13]. The first operator is ⊙, a nullary operator
creating a single new graph vertex of label {1}.

Let Ḡ1 = (G1, lab1) and Ḡ2 = (G2, lab2) be t-labeled graphs. t-labeling join
of Ḡ1 and Ḡ2, Ḡ1 ⊗ Ḡ2, is defined as taking the disjoint union of G1 and G2 and
adding all edges (u, v) such that |lab1(u)∩ lab2(v)| is odd, where u ∈ V (G1), v ∈
V (G2). Considering the scalar product · of vectors, {u, v} is an edge of Ḡ1 ⊗ Ḡ2

if and only if lab1(u) · lab2(v) = 1 over GF(2). The resulting graph is unlabeled.
The third operator combines together t-labeling join and and t-relabeling.

For t-relabelings f1, f2, g : Lt → 2Lt , let ⊗[g | f1, f2] be a binary operator—
called t-labeling composition (as bilinear product of [5])—over pairs of t-labeled
graphs Ḡ1 = (G1, lab1) and Ḡ2 = (G2, lab2) defined as follows:

Ḡ1 ⊗[g | f1, f2] Ḡ2 := H̄ =
(

Ḡ1 ⊗ g(Ḡ2), lab
)

where a new labeling is lab(v) = fi ◦ labi(v) for v ∈ V (Gi), i = 1, 2. In
other words, t-labeling composition performs t-labeling join of Ḡ1 and g(Ḡ2),
and then relabels the vertices originally from V (G1) using t-relabeling f1 and
vertices from V (G2) using f2. The resulting graph H̄ is again a t-labeled graph.
Notice that {u, v} is an edge of H̄ if and only if lab1(u) × T

T
g × lab2(v)

T = 1
over GF(2).

Definition 3.1 ([12], Definition 6.11). A t-labeling parse tree T is a finite
rooted ordered subcubic tree (with the root degree at most 2) such that

• all leaves of T contain the ⊙ symbol, and

• each internal node of T contains one of the t-labeling composition symbols.

A parse tree T then generates (parses) the graph G which is obtained by succes-
sive leaves-to-root applications of the operators in the nodes of T .

For an illustration see Figure 2, 3.
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⊗[id | ∅, ∅]

⊗[id | id, 1→2]

⊗[id | id, 1→∅]
⊗[id |1→2, id]

Figure 2: An example of a labeling parse tree which generates a 2-labeled cycle C5, with
symbolic relabelings at the nodes (id denotes the relabeling preserving all labels, and ∅ is the
relabeling “forgetting” all labels).

Analogously to the work of Courcelle and Kanté we get a crucial statement:
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Figure 3: “Bottom-up” generation of C5 by the parse tree from Figure 2.

Theorem 3.2 (Rank-width parsing theorem [5, 15]). A graph G has rank-
width at most t if and only if (some labeling of) G can be generated by a t-labeling
parse tree. Furthermore, a width-t rank-decomposition of G can be transformed
into a t-labeling parse tree on Θ(|V (G)|) nodes in time O(t2 · |V (G)|2).

4. XP Algorithms for some Graph Colouring Problems

We start with an informal explanation of our unified approach to design-
ing XP algorithms on graphs of bounded rank-width. Importantly, we see the
classical Myhill–Nerode theorem in automata theory as the starting point of
formal understanding of dynamic programming algorithms: Such an algorithm
typically collects “all relevant information” about the studied problem on a lo-
cal part of the input, and then processes this information “through” the whole
input. The task is to determine what the words “all relevant information” mean
here, and to prove at the same time that this information is not too large.

In the easier case of typical FPT dynamic algorithms, we can simply stipulate
that a certain “formal language congruence” (the canonical equivalence as in,
e.g. [15, 21]) has finitely many classes, and thus there is a finite tree automaton
associated with our problem by the Myhill–Nerode theorem. For an explanation
of the relation of our t-labeled graphs to classical formal languages, we note
that word concatenation is replaced with the t-labeling join operation ⊗ of
Section 3. Then the “relevant information” needed in dynamic processing would
be precisely described by the states of the associated finite automaton.

For the problems we are considering here, however, the relevant congruence
has infinitely many classes in general, but we can at least “nicely estimate” the
number of classes relatively to the input graph size.
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4.1. Computing the chromatic number

We illustrate the diverse aspects of our formalism on the graph chromatic
number problem, for which we strongly improve runtime over the previous al-

gorithm of Kobler and Rotics [24] that runs in time O
(

n4k)

on graphs of clique-
width k. When comparing this with our Theorem 4.1, the readers should keep
in mind that our parameter t is the rank-width of the input graph, and the
clique-width k can reach up to 2t/2−1 by [4]. Since [11] have shown that com-
puting the chromatic number is a W [2]-hard problem when parameterized by
the clique-width / rank-width, we “cannot hope” for an FPT algorithm here.

Theorem 4.1. Assume that an input graph G is given in the form of a t-
labeling parse tree T . Then the chromatic number of G can be computed by an
XP algorithm running in time

O
(

|V (G)|h(t)
)

where h(t) = 21+t(t+1)/2 +O(1) .

For the purposes of this section, it is useful to think about colouring not as a
function from vertices to colours but rather as a vertex-partition of G. Formally,
a colour partition of G is an ordered partition N of V (G) into pairwise disjoint
sets (possibly empty) such that each X ∈ N is independent in G. The chromatic
number of a graph G is the minimum number of nonempty classes in a colour
partition of G.

Since we do not know the number of necessary colours in advance, we for-
mally allow ordered partitions with countably many parts, padding the rest
with empty classes. We, however, always have only finite number of nonempty
parts in N = (X0,X1,X2, . . . ) and this number of nonempty parts we denote
by ||N ||. Having ordered colour partitions Ni = (X0

i ,X
1
i , . . . ) for i = 1, 2, we

denote by N1⊎N2 =
(

X0
1 ∪X

0
2 ,X

1
1 ∪X

1
2 , . . .

)

, and for a permutation π : ω → ω

we write π(N ) =
(

Xπ(0),Xπ(1), . . .
)

.

We will also need a few preliminary technical results. Considering a t-labeled
graph Ḡ = (G, lab), let, for X ⊆ V (G), γ(Ḡ,X) = {lab(u) |u ∈ X}. Notice that
this set of labelings—vectors in GF(2)t —generates a vector subspace 〈γ(Ḡ,X)〉.
The core idea is that one only needs to remember this subspace for making a
future decision whether merging X with another set Y maintains the property
being independent:

Lemma 4.2 (also [3, 15]). Assume t-labeled graphs Ḡ and H̄, and arbitrary
nonempty sets X ⊆ V (Ḡ), Y ⊆ V (H̄). In the join graph Ḡ⊗ H̄, there is no
edge between any vertex of X and any vertex of Y if and only if the subspace
〈γ(Ḡ,X)〉 is orthogonal to the subspace 〈γ(H̄, Y )〉 in GF(2)t.

Proof. Let Ḡ = (G, lab) and H̄ = (H, lab′). We consider arbitrary y ∈ Y .
Then (as a scalar product in GF(2) ) lab(x)·lab′(y) = 0 for all x ∈ X; henceforth
α · lab′(y) = 0 for all α ∈ 〈γ(Ḡ,X)〉 by means of elementary linear algebra. By
a symmetrical argument, we get α · β = 0 for all β ∈ 〈γ(H̄, Y )〉, which means
these subspaces indeed are mutually orthogonal. Conversely, if 〈γ(Ḡ,X)〉 ⊥
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〈γ(H̄, Y )〉, then there is obviously no edge between x ∈ X and y ∈ Y by the
definition of ⊗ as lab(x) · lab′(y) = 0.

Corollary 4.3. Assume t-labeled graphs Ḡ1, Ḡ2 and H̄, and independent sets
Xi ⊆ V (Ḡi), i = 1, 2 and Y ⊆ V (H̄). If 〈γ(Ḡ1,X1)〉 = 〈γ(Ḡ2,X2)〉, then X1∪Y
is independent in Ḡ1 ⊗ H̄ if and only if X2 ∪ Y is independent in Ḡ2 ⊗ H̄.

Lemma 4.4 ([19], cf. [15, Proposition 6.1]). The number S(t) of subspaces of
the binary vector space GF(2)t satisfies S(t) ≤ 2t(t+1)/4 − 2 for all t ≥ 12.

The algorithm for Theorem 4.1, presented below, follows the typical dynamic
programming paradigm on the parse tree of an input graph. Its core novel
contribution (besides faster runtime) is in using an equivalence relation ≈ν,t
over all possible coloured subgraphs, which is analogous to classical language
congruence in automata theory, for defining the “information” a dynamic pro-
gramming algorithm needs to remember about all the colourings of a subgraph
processed so far. This information is then easily “made explicit” in Claim 4.5,
and the way the information can be efficiently processed is formally described
in Claim 4.6. As a result, our algorithm (as compared to [24]) has quite short,
and mathematically very precise at the same time, description and proof.

Proof of Theorem 4.1. Given a graph G, we write G |= ν(N ) to say that
an ordered set family N ∈ 2V (G)×ω is a proper colour partition of G. For any t-
labeled graphs Ḡ1, Ḡ2 and any colour partitions N1 ∈ 2V (G1)×ω, N2 ∈ 2V (G2)×ω,
we define

(Ḡ1,N1) ≈ν,t (Ḡ2,N2) (1)

if and only if ||N1|| = ||N2|| and, for all t-labeled graphs H̄ and all colour partitions
N ∈ 2V (H)×ω, the following holds true:

∃ permutation π1 : ω → ω such that
(

Ḡ1 ⊗ H̄
)

|= ν
(

π1(N1) ⊎N
)

⇐⇒ ∃ permutation π2 : ω → ω s.t.
(

Ḡ2 ⊗ H̄
)

|= ν
(

π2(N2) ⊎N
)

Note that (Ḡ1,N1) ≈ν,t (Ḡ2,N2) means that there is no real difference between
(Ḡ1,N1) and (Ḡ2,N2) concerning the possibility of merging their colour classes
with any joined graph H̄. Hence, ≈ν,t captures all information necessary to
decide which colourings of Ḡi extend to colourings of any larger Ḡi⊗ H̄.

Let Γ(Ḡ,N ) = {〈γ(Ḡ,X)〉 | ∅ 6= X ∈ N} denote a multiset of subspaces
of GF(2)t which, informally, stores the information about the (unordered) sub-
spaces generated by the colour classes of N (cf. Lemma 4.2). Our crucial new
finding, inspired by the colouring algorithm in [24], reads:

Claim 4.5. For any t-labeled graphs Ḡ1, Ḡ2 and any Ni ∈ 2V (Gi)×ω, i = 1, 2
such that Ḡi |= ν(Ni), it holds (Ḡ1,N1) ≈ν,t (Ḡ2,N2) if Γ(Ḡ1,N1) =
Γ(Ḡ2,N2).

9



To prove Claim 4.5 let Ni = (X0
i ,X

1
i , . . . ) where i = 1, 2, let N = (Y 0, Y 1, . . . ),

and let N+
i denote πi(Ni)⊎N , i = 1, 2. Let us assume Γ(Ḡ1,N1) = Γ(Ḡ2,N2),

and take any π1 and (H̄,N ) such that
(

Ḡ1 ⊗ H̄
)

|= ν(N+
1 ). (The case for π2

and G2 is symmetric.)
We choose any permutation ρ : ω → ω such that 〈γ(Ḡ1,X

j
1)〉 =

〈γ(Ḡ2,X
ρ(j)
2 )〉 for all Xj

1 ∈ N1 and corresponding X
ρ(j)
2 ∈ N2, and set

π2 = ρ ◦ π1. Since N+
2 is a partition of the vertices of Ḡ2 ⊗ H̄, to show

Ḡ2 ⊗ H̄ |= ν(N+
2 ) it suffices to verify that all parts of N+

2 are independent

in Ḡ2 ⊗ H̄. We take any X
π2(i)
2 ∪ Y i ∈ N+

2 . Then also X
π1(i)
1 ∪ Y i ∈ N+

1 and,

moreover, π2(i) = ρ(π1(i)). Hence from Corollary 4.3 applied to X1 = X
π1(i)
1 ,

X2 = X
π2(i)
2 and Y = Y i, it follows that X

π2(i)
2 ∪ Y i really is independent

since X
π1(i)
1 ∪Y i is independent by the assumption

(

Ḡ1 ⊗ H̄
)

|= ν(N+
1 ), which

finishes the proof of Claim 4.5.

With these preliminary results, we can proceed to the algorithm itself. Con-
sidering the labeling parse tree T of G, and a node z of T , let Ḡz denote the
t-labeled graph parsed by the subtree of T rooted at z. By Claim 4.5, a dynamic
algorithm for computing the chromatic number of G has to remember only the
set MT (z) of those multisets Γ(Ḡz,N ) coming from proper colour partitions N
of V (Gz), at any particular node z of T .

If z is a leaf, then this information is trivial to construct. So let z be a node
with a left son x and a right son y. We now show how to obtain the set MT (z)
from the sets MT (x) and MT (y). Since the number of classes of ≈ν,t is not
finite, this is not a completely trivial task, but it is not difficult either. Let z
carry the composition operator ⊗[g | f1, f2] in T , i.e. Ḡz = Ḡx ⊗[g | f1, f2] Ḡy.

For any colour partitions N1 of Ḡx and N2 of Ḡy, the multiset Γ(Ḡz,N1 ⊎
N2) can be straightforwardly computed (without knowing explicitly N1,N2)
from known Γ(Ḡx,N1), Γ(Ḡy,N2) and the relabelings f1, f2 if we specify also a
“signature” of N1,N2: The signature Sig(N1,N2) is an edge-weighted bipartite
graph on the vertex set S ∪̇ S, where S is the family of all subspaces of GF(2)t:
f = ΨΨ′ ∈ S × S is an edge of Sig(N1,N2) iff there is an index i ∈ ω (witness)
such that, for ∅ 6= Xi

1 ∈ N1, ∅ 6= Xi
2 ∈ N2, it is Ψ = 〈γ(Ḡx,X

i
1)〉 and Ψ′ =

〈γ(Ḡy,X
i
2)〉. The weight of the edge f is then the number of such witnesses i.

Informally, the signature Sig(N1,N2) “loosely specifies” the way the
(nonempty) colour classes of N1 are merged with those of N2 —the edge weights
represent the number of pairs of colour classes which will be merged. Notice
that although looping through all possible bijections between N1 and N2 is
not feasible, the number of distinct signatures Sig(N1,N2) is relatively small –
polynomial in |V (G)| as specified later.

We furthermore have to decide whether the join N1 ⊎ N2 is a proper colour
partition of Gz. For that purpose we define on S ∪̇ S a bipartite graph D⊥

g

(depending only on the relabeling g) with E(D⊥
g ) = {ΨΨ′ ∈ S×S |Ψ ⊥ g(Ψ′)}.

See Figure 4 left. From Lemma 4.2 we immediately conclude:
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Claim 4.6. Ḡz |= ν(N1 ⊎N2) for any partitions N1,N2 such that Ḡx |= ν(N1)
and Ḡy |= ν(N2) if, and only if, Sig(N1,N2) is a subgraph of D⊥

g .

With Claim 4.6 at hand it is easy to compute the set MT (z) from the sets
MT (x) and MT (y). We loop through all members Γx ∈MT (x) and Γy ∈MT (y),
and all admissible signatures Sig (i.e. nonnegative integer weightings of the
bipartite graph D⊥

g by Claim 4.6 ) conforming to a simple consistency condition,
and then add the resulting Γz to MT (z). The consistency condition on Sig is
that, for each its vertex Ψ, the sum of the weights of the edges of Sig incident
with Ψ is at most the multiplicity of Ψ in Γx or Γy, respectively. See Figure 4.

˙

{1},{2}
¸

˙

{1,2}
¸

˙

∅
¸

˙

{2,3}
¸

˙

{1,2}, {3}
¸

˙

{1,2,3}, {1}
¸

D⊥
id

˙

{1}, {2}
¸

˙

{1,2}
¸

˙

∅
¸

˙

{2,3}
¸

˙

{1,2}, {3}
¸

˙

{1,2,3}, {1}
¸

3

1

2

Sig

Figure 4: Illustration of a fragment (on the left) of the graph D⊥
g

which, by Claim 4.6,

encodes admissible compositions of colour partitions of Ḡx and Ḡy in the composed graph
Ḡz = Ḡx ⊗[g | f1, f2] Ḡy. Here it is g = id for simplicity. Since, for instance, the labeling
{1} vector is not orthogonal to {1,2}, there is no edge between

˙

{1}, {2}
¸

and
˙

{1,2},{3}
¸

.

On the right, there is a corresponding fragment of a signature (weighted subgraph of D⊥
g

)
Sig = Sig(N1,N2) telling us that three of the N1-classes which generate the same subspace
Ψ =

˙

{1,2}
¸

in Ḡx should be merged with three (no matter which) of the N2-classes which

generate Ψ′ =
˙

{1,2},{3}
¸

. Analogously for the remaining weighted edges.

Finally, the chromatic number of G equals the least cardinality of a member
of MT (r) where r is the root of T . Such a leaves-to-root dynamic algorithm
then runs in time O

(

m(G, t)2 ·w(G, t) ·S(t)2 · t3 · |V (G)|
)

, where m(G, t) denotes
the number of possible distinct Γ(Ḡ,N ), and w(G, t) stands for the number of
distinct weightings of the graph D⊥

g . Each Γz is then determined from Γx,Γy
and Sig in S(t)2t3 steps where the number of subspaces S(t) is estimated in
Lemma 4.4.

For simplicity, we provide only short arguments giving rather weak (but suffi-
cient) bounds onm,w here: m(G, t) can be bounded from above by |V (G)|S(t) —
consider that the multiplicity of any subspace in the multiset Γ(Ḡ,N ) is at most
the number of nonempty colour classes. Analogously, the number of edges of
D⊥
g is always at most S(t)2, and so w(G, t) ≤ |V (G)|S(t)2 . These estimates then

lead to a runtime bound of order |V (G)|h(t) where

h(t) ≤ 2S(t) + S(t)2 +O(1) ≤ 2S(t)2 +O(1) = 21+t(t+1)/2 +O(1) .
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4.2. Chromatic polynomial

The chromatic polynomial was first introduced by Birkhoff in the context
of the Four Colour problem. Although the concept seems quite technical and
obscure in nature, it has since become of independent interest. The chromatic
polynomial of G is a polynomial PG(x) such that for every nonnegative integer
x, PG(x) equals the number of distinct proper colourings of G which use at
most x colours. It is a trivial observation that, given the values of all PG(x) for
x = 1, 2, . . . , n = |V (G)|, finding PG(x) simply becomes a matter of resolving n
(independent) equations of n unknowns.

Computing the chromatic polynomial is generally #P -complete. It has been
noted by [18] that the algorithm of [24] extends towards computing the chro-
matic polynomial on graphs of bounded clique-width, and the same statement
occurs with a proof in [2]. We improve these results to match Theorem 4.1:

Theorem 4.7. Assume that an input graph G is given in the form of a t-labeling
parse tree T . Then the chromatic polynomial of G can be computed in XP time

O
(

|V (G)|h(t)
)

where h(t) = 21+t(t+1)/2 +O(1) .

Proof. We modify the algorithm of Theorem 4.1 so that it will compute the
number of distinct proper colour partitions N ∈ 2V (G)×c of G having exactly c
classes (including possible empty ones). The core tools are again the equivalence
≈ν,t and Claim 4.5 telling us that it is enough to remember the numbers of
partitions N determining the same values of Γ(Ḡz,N ) at any node z.

Let ~α =
(

αΓ | Γ is a multiset of subspaces of GF(2)t, |Γ| ≤ c
)

be a vector of
free variables. Our algorithm shall compute the linear multivariate (symbolic)
polynomial R(Ḡz)[~α] =

∑

Γ qΓ · αΓ where qΓ stands for the number of distinct
unordered colour partitions U of Gz such that Γ(Ḡz,U) = Γ.

The algorithm generally proceeds as that of Theorem 4.1. Specifically, at a
node z of T with the sons x and y, we compute straightforwardly

R(Ḡz)[~α] = R(Ḡx)[~α] ·R(Ḡy)[~α]

and then apply all these substitutions: For every pair αΓ1
, αΓ2

∈ ~α, we replace
the term αΓ1

·αΓ2
with a sum, over all admissible signatures Sig (see Claim 4.6),

of the terms rSig ·αΓSig
where ΓSig is the multiset uniquely determined by Γ1,Γ2,

the composition relabelings at z, and Sig. The number rSig is defined as follows.
Let (any) colour partitions N1,N2 of Ḡx, Ḡy be such that Γ(Ḡx,N1) = Γ1

and Γ(Ḡy,N2) = Γ2. Then rSig is the number of distinct unordered partitions
determined from the set

{

N1 ⊎ π(N2) | π : ω → ω s.t. Sig(N1, π(N2)) = Sig
}

.
One can check that this quantity does not depend on a particular choice of
N1,N2 and can be easily computed from Γ1,Γ2 and Sig via the formula (which
is in fact symmetric in Γ1 and Γ2):

rSig =
∏

x∈Γ1

(

mΓ1
(x)

w(xy1), . . . , w(xyd(x)), mΓ1
(x)−wd(x)

)

·
∏

y∈Γ2

(

mΓ2
(y)

wd(y)

)

wd(y)! ,
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where x ∈ Γ run over the elements of Γ without repetition, mΓ(x) is the mul-
tiplicity of x in Γ, w is the edge-weight function of Sig and wd means the
“weighted degree” of a vertex of Sig – the sum of incident edge weights, and
y1, . . . , yd(x) run through the neighbours of x in Sig.

Finally, since the coefficient of αΓ in the computed polynomial R(Ḡ)[~α] by
definition counts certain unordered colour partitions with exactly |Γ| colours, we
get the resulting number of c-colourings of G (i.e. the number of ordered colour
partitions from c colours) from R(Ḡ)[~α] by substituting αΓ = c!/(c − |Γ|)! .

4.3. Defective colourings

Defective or improper colouring problems (partitions of graphs into vertex
parts of bounded degree) appear in several research papers on graph theory, but
do not seem to be widely considered from the algorithmic point of view (see,
e.g., the extensive list of references provided in [25]).

Formally, a defective (ℓ, q)-colouring of a graph G is a partition of the vertex
set of G into ℓ parts such that each part induces a subgraph of maximum de-
gree at most q. Taking q as a fixed parameter (and thus optimizing on ℓ), this
problem fits easily into the so called MSOL-partitioning framework of Rao [28]
(see also Section 7), and hence this problem is solvable by an XP algorithm
on graphs of bounded tree-width or clique-width. On the other hand, the sit-
uation gets very different if one fixes ℓ and optimizes on q, a case that does
not fit into established frameworks. Kolman et al [25] have solved the defective
(ℓ, q)-colouring problem (ℓ fixed) on graphs of bounded tree-width with an XP
algorithm. What follows is our new generalization of their algorithm.

Theorem 4.8. Assume that an input graph G is given in the form of a t-labeling
parse tree T . Then the defective (ℓ, q)-colouring problem with a fixed parameter ℓ
(i.e. minimizing q) can be solved on G with an XP algorithm running in time

O
(

|V (G)|k(t,ℓ)
)

where k(t, ℓ) = 4ℓ · 2t +O(1) .

Proof. According to definition, a partition N of V (G) is a proper defective
(ℓ, q)-colour partition if N has at most ℓ parts and each part induces a subgraph
of G of maximum degree ≤ q. Hence we will write G |= τq(N ) to say that an
ordered partition N ∈ 2V (G)×ℓ is such that the induced subgraph G ↾X has
maximum degree ≤ q, for all X ∈ N .

For integer q, any t-labeled graphs Ḡ1, Ḡ2, and any partitions Ni ∈ 2V (Gi)×ℓ,
i = 1, 2, we define

(Ḡ1,N1) ≈τq,t (Ḡ2,N2)

if and only if, for all t-labeled graphs H̄ and all N ∈ 2V (H)×ℓ, it holds

(

Ḡ1 ⊗ H̄
)

|= τq(N1 ⊎ N ) ⇐⇒
(

Ḡ2 ⊗ H̄
)

|= τq(N2 ⊎ N ) .

Compared to ≈ν,t, used in the proof of Theorem 4.1, this definition is obviously
much simpler thanks to the fact that we are dealing with a fixed number ℓ
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of parts, and so it is not necessary (though also possible) to factor out their
permutations. Again, the equivalence classes of ≈τq,t are defined as to capture
all the information needed during the run of a dynamic programming algorithm
for our problem.

Having a t-labeled graph Ḡ = (G, lab) and X ⊆ V (G), we set D(Ḡ,X) =
(

(da, |Xa|) | a ∈ GF(2)t
)

to be a vector of pairs (da, |Xa|), where Xa = {v ∈
X | lab(v) = a} are the vertices of X labeled a and da is the highest degree of
a vertex of Xa in the induced subgraph G ↾ X. I.e. we restrict ourselves to
the induced subgraph G ↾X, and store the number and the highest degree of
vertices with labeling a, for every possible labeling. (Remember that labeling is
a point of GF(2)t). Then we define

Θ(Ḡ,N ) =
(

D(Ḡ,X) |X ∈ N
)

(as a sequence). (2)

Claim 4.9. For any q, any t-labeled graphs Ḡ1, Ḡ2, and any partitions Ni ∈
2V (Gi)×ℓ, i = 1, 2, it holds (Ḡ1,N1) ≈τq,t (Ḡ2,N2) if Θ(Ḡ1,N1) = Θ(Ḡ2,N2).

The proof of Claim 4.9 is quite straightforward. We assume the Θ(Ḡ1,N1) =
Θ(Ḡ2,N2), and fix arbitrary H̄ and N . We denote by Fi,j = (Ḡi⊗ H̄) ↾ (Xj

i ∪
Y j) for i = 1, 2, 0 ≤ j < ℓ, where Ni = (X0

i ,X
1
i , . . . ), and N = (Y 0, Y 1, . . . ).

Since D(Ḡ1,X
j
1 ) = D(Ḡ2,X

j
2 ), the sets Xj

1 and Xj
2 have the same numbers of

vertices of each label, and so every vertex of Y j will have the same degree in
F1,j as in F2,j . On the other hand, every vertex of Xj

1 of label a ∈ GF(2)t has

the same neighbourhood in Y j of F1,j as any vertex of Xj
2 of label a has in Y j

of F2,j , and the highest degrees among them are equal. Therefore,
(

Ḡ1 ⊗ H̄
)

|=

τq(N1 ⊎ N ) holds if and only if
(

Ḡ2 ⊗ H̄
)

|= τq(N2 ⊎ N ) holds.

Our dynamic programming algorithm for testing defective (ℓ, q)-colourability
of the graph G then proceeds as follows. At a node z of the t-labeling parse tree
T of G, the stored data is precisely the set MT (z) of those Θ(Ḡz,N ) coming
from partitions N ∈ 2V (Gz)×ℓ such that Gz |= τq(N ). According to the same
arguments as used in the proof of Claim 4.9, we see that MT (z) can be easily
computed fromMT (x), MT (y) at the sons x, y of z in T , and from the relabelings
of the composition operator at z. Finally, at the root, we simply test whether
MT (r) is nonempty.

We run this algorithm for q = 0, 1, . . . , |V (G)| − 1 to find the optimal value

of q. Since the number of distinct possible Θ(Ḡ,N ) is at most |V (G)|2ℓ·2
t

, the

runtime bound for our algorithm is O(|V (G)|4ℓ·2
t+O(1)).

5. Directed Rank-width and Parse Trees

From now on we are going to deal with directed graphs, or digraphs for short.
We usually call the edges of a digraph arcs. A vertex v is a sink (a source) if no
arc is leaving (entering) v. We again consider only simple digraphs, i.e. those
without loops and multiple arcs of the same direction (2-cycles are allowed).
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As noted above, the rank-width of undirected graphs was introduced by
Oum and Seymour [27] in relation to graph clique-width. While the definition
of clique-width works “as is” also on digraphs, the following straightforward
generalization of rank-width to digraphs (related to clique-width again) has
been proposed by Kanté [23] recently: Instead of using one adjacency matrix
for every cut, we use two matrices (one for arcs going “left-to-right”, and the
other one for arcs going “right-to-left”), the cut-rank being the sum of their
ranks. This is formalized by the following definition:

Definition 5.1 (Bi-rank-width). Consider a digraph G, and vertex subsets
X ⊆ V (G) and Y = V (G) \X. Let A

+
X denote the X × Y 0, 1-matrix with the

entries ai,j = 1 (i ∈ X, j ∈ Y ) iff (i, j) ∈ E(G), and let A
−
X = (A+

Y )T . The
bi-cutrank function of G is defined as the sum of the ranks of these two matrices
brkG(X) = rank(A+

X) + rank(A−
X) over the binary field GF(2).

The bi-rank-width brwd(G) and bi-rank-decomposition of G is the branch-
width and branch-decomposition of the bi-cutrank function brkG. See an illus-
tration in Figure 5.
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Figure 5: A bi-rank-decomposition of a sample graph.

Importantly, Kanté [23] also proved that the rank-decomposition algorithm
of Theorem 2.1 can be used to find an optimal bi-rank-decomposition of a di-
graph:

Theorem 5.2 ([23]). For every parameter t there is an O(n3)-time FPT algo-
rithm that, for a given n-vertex digraph G, either finds a bi-rank-decomposition
of G of width at most t, or confirms that the bi-rank-width of G is more than t.

As in the case of ordinary rank-width, bi-rank-decomposition is not so suit-
able for designing dynamic programming algorithms. For rank-width, we showed
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the characterization using t-labeling parse trees in Section 3.
We remind the readers that, unlike with undirected tree-width, one cannot

use an undirected rank-decomposition (or parse tree) of a digraph G to design
a dynamic programming algorithm for a problem referring to the direction of
arcs of G. That is because the parse tree produces large bipartite cliques, and
one cannot exhaustively process all possible orientations of those.

However, an analogous “dynamic programming friendly” parse-tree view of
bi-rank-width exists for digraphs: Bi-labeling parse trees (Definition 5.3), first
defined by Kanté [23, Section 4.1] as terms over “algebraic operations for bi-
rank-width”, characterize bi-rank-width of digraphs up to a multiplicative fac-
tor 2 (cf. Lemma 5.4).

Bi-labeling parse trees present a natural generalization of labeling parse trees
from Definition 3.1, performing actually two join operations at once in every
composition node – one join adding the arcs from Ḡ1 to Ḡ2, and the other join
adding the arcs in the opposite direction: Ḡ2 to Ḡ1. To formally capture this
framework in one join operation, we hence have to define the join ⊗ with a
bi-labeled graph on the right hand side (cf. the congruence relations in all the
coming proofs).

t-labeled digraphs. A t-labeled digraph Ḡ = (G, lab) for a digraph G and t-
relabeling are defined the same way as for ordinary graphs (cf. Section 3). A
generalization is a t-bi-labeled digraph H̃ = (H, lab+, lab−), where each vertex
v ∈ V (H) has two labels lab+(v) and lab−(v). The operator ⊙ is defined the
same way as for undirected graphs, t-bi-labeling join and t-bi-labeling composi-
tion are defined as follows:

For a t-labeled digraph Ḡ = (G, lab) and a t-bi-labeled digraph H̃ =
(H, lab+, lab−), the t-bi-labeling join Ḡ⊗ H̃ is defined by taking a disjoint union
of G and H, and adding, for u ∈ V (G), v ∈ V (H), all arcs (u, v) such that
|lab(u) ∩ lab+(v)| is odd, and all arcs (v, u) such that |lab(u) ∩ lab−(v)| is odd.
The resulting digraph is unlabeled.

For two t-labeled digraphs Ḡi = (Gi, labi), i = 1, 2, and four relabelings
f1, f2, h

+, h− : GF(2)t → GF(2)t, we define a t-bi-labeling composition operator
⊗[h+, h− | f1, f2] as follows:

Ḡ1 ⊗[h+, h− | f1, f2] Ḡ2 := Ḡ3 =
(

Ḡ1 ⊗ (h+, h−)(Ḡ2), lab3
)

where (h+, h−)(Ḡ2) denotes the t-bi-labeled digraph
(

G2, h
+ ◦ lab2, h

− ◦ lab2
)

and the resulting labeling is lab3(v) = fi ◦ labi(v) for v ∈ V (Gi), i = 1, 2.
Note that we, in effect, add arcs from Ḡ1 to h+(Ḡ2), and from h−(Ḡ2) to Ḡ1,
relabeling by f1 and f2 once all edges are added.

Definition 5.3 (Bi-labeling parse trees). A t-bi-labeling parse tree T , is a finite
rooted ordered subcubic tree (with the root degree at most 2) such that

• the leaves of T contain a ⊙ symbol, and

• each internal node of T contains one of the t-bi-labeling composition sym-
bols.
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a b

c

d

e

⊙ a
⊙ b ⊙ c ⊙ d ⊙ e

⊗[1→∅, 2→∅| ∅, ∅]

⊗[id, 1→∅| id, 1→2]
⊗[id, 1→∅| id, 1→2] ⊗[id, 1→∅|1→2, id]

Figure 6: An example of a bi-labeling parse tree with symbolic relabelings at the nodes
(id denotes the relabeling preserving all labels, and ∅ is the relabeling “forgetting” all labels).

A parse tree T then generates (parses) the digraph Ḡ which is obtained by suc-
cessive leaves-to-root applications of the operators in the nodes of T .

This definition is illustrated in Figure 6.

Lemma 5.4 (Kanté [23]). Let G be a digraph of bi-rank-width t. If m is the
smallest integer such that (some labeling of) G is produced by some m-bi-labeling
parse tree, then t ≥ m ≥ t/2.

For sake of completeness, we lastly remark that Kanté [23] considers also
another directed generalization of rank-width, the so called GF (4)-rank-width.
Since these two are within a constant factor, there is no need to consider the
latter in our paper.

6. XP algorithms for directed problems

Having now the bi-labeling parse tree machinery at hand, it is straight-
forward to translate the formal tools of the previous sections to digraphs of
bounded bi-rank-width, see e.g. the easy proof of Theorem 6.1. Moreover, we
are able to provide new XP algorithms for other problems which have not been
considered on digraphs of bounded clique-width / bi-rank-width before, such as
the unweighted max-directed-cut and the min-leaf outbranching problems.

6.1. Hamiltonian path

This illustrating algorithm is based on the Hamiltonian path (i.e. a path
visiting all vertices of the graph) algorithm for graphs of bounded clique-width
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by Espelage et al [9]. We include it in our paper for two main reasons; first, to
show how our unified formalism works on digraphs and is able to capture the
design ideas of previously known algorithms, and, second, to explicitly cover the
directed variant of Hamiltonian path for a reference (as needed, e.g., in [16]).
Moreover, this Theorem 6.1 has a useful generalization in Theorem 6.7.

Before we state the theorem, notice that handling of the Hamiltonian path
problem within our formalism brings a new aspect – that we work with a set
of edges (instead of vertex sets only). This means that we have to explicitly
consider selections of edges “created” by the labeling join operation within our
congruence (3), defined in the proof.

Theorem 6.1. Assume an input digraph G given in the form of a t-bi-labeling
parse tree T . Then one can decide whether G has a (directed) Hamiltonian path
in time

O
(

|V (G)|ℓ(t)
)

where ℓ(t) = 4t+1 +O(1) .

Proof. We say that a set of arcs F ⊆ E(G) is linear if the subgraph G ↾

F =
(

V (G), F
)

is a spanning collection of pairwise disjoint directed paths or
isolated vertices. Notice that the restriction of a Hamiltonian path to an induced
subgraph is always a linear set. We, moreover, write G |= κ(F ) to say that F
is a directed Hamiltonian path in G.

Let A(Ḡ, H̃) = E(Ḡ⊗ H̃) \ (E(G) ∪E(H)) denote the set of arcs which are
created, by the join operation (i.e. the set of arcs between G and H). Having
t-labeled graphs Ḡ1 and Ḡ2, and linear subsets F1 ⊆ E(G1) and F2 ⊆ E(G2),
we define the equivalence relation

(Ḡ1, F1) ≈κ,t (Ḡ2, F2)

if and only if, for all t-bi-labeled digraphs H̃ and all linear F ⊆ E(H), it holds

∃F3 ⊆ A(Ḡ1, H̃) :
(

Ḡ1 ⊗ H̃
)

|= κ(F1 ∪ F3 ∪ F ) (3)

⇐⇒ ∃F4 ⊆ A(Ḡ2, H̃) :
(

Ḡ2 ⊗ H̃
)

|= κ(F2 ∪ F4 ∪ F ) .

Again, this definition captures all information necessary to decide which linear
subsets of G1 extend to Hamiltonian paths in any Ḡ1 ⊗ H̃.

Similarly to [9], for Ḡ = (G, lab) and a linear subset F ⊆ E(Ḡ), we define
a multiset of labeling pairs Π(Ḡ, F ) =

{

(lab(u), lab(v)) | there is a component

in G ↾F , actually a path, from u to v
}

. (An isolated vertex is a path with the
ends u = v.)

Claim 6.2. For any t-labeled graphs Ḡ1, Ḡ2 and any linear F1 ⊆ E(G1) and
F2 ⊆ E(G2), it holds (Ḡ1, F1) ≈κ,t (Ḡ2, F2) if Π(Ḡ1, F1) = Π(Ḡ2, F2).

To prove Claim 6.2, we fix any H̃ and F ⊆ E(H), and assume (Ḡ1 ⊗ H̃) |=
κ(F1 ∪ F3 ∪ F ) for some F3 ⊆ A(Ḡ1, H̃). Since Π(Ḡ1, F1) = Π(Ḡ2, F2), there
is a partial injective mapping b : V (G1) → V (G2) such that b determines a
bijection between the set of components of G1 ↾F1 and that of G2 ↾F2 (actually,
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between the ends of their components–paths) which preserves labelings of the
ends. Hence for every arc (u, v) ∈ F3 there is either the arc (b(u), v) ∈ A(Ḡ2, H̃)
(if v ∈ V (H)) or the arc (u, b(v)) ∈ A(Ḡ2, H̃) (if u ∈ V (H)) by the definition
of ⊗, and the set F4 ⊆ A(Ḡ2, H̃) of all such arcs then fulfils (Ḡ2 ⊗ H̃) |=
κ(F2 ∪ F4 ∪ F ). This finishes the proof of Claim 6.2.

Therefore, our algorithm computes, in the leaves-to-root direction on T , the
sets MT (z) = {Π(Ḡz , F ) | F ⊆ E(Gz) linear } at the nodes z of T (parsing a
t-labeled subdigraph Ḡz). It holds that G has a Hamiltonian path with the arc
set F if and only if MT (r) at the root r of T contains a multiset Π(Ḡ, F ) of
cardinality one.

First, it is easy to compute the set MT (x) when x is a leaf of T . So let z be
a node of T with two sons x and y. The set MT (z) is computed from the sets
MT (x) and MT (y) iteratively as outlined below. We start with the set M0

T (z)
which is trivial to compute:

M0
T (z) = {Π(Ḡz , Fx ∪ Fy) | Π(Ḡx, Fx) ∈MT (x), Π(Ḡy, Fy) ∈MT (y)}

Since both Fx and Fy are linear, so is their union and therefore Π(Ḡz, Fx ∪ Fy)
is defined. In the rest of the algorithm we assume we can distinguish between
labellings of MT (x) and MT (y). This is easily achieved by using an extra label
“t+ 1” for the vertices of MT (y).

Let A′(Ḡx, Ḡy) = { (labx(u), laby(v)) | (u, v) ∈ A(Ḡx, Ḡy)}, as a multiset of
“symbolic arcs” added by the composition operator at z. This definition gives
us a natural bijection b : A(Ḡx, Ḡy) → A′(Ḡx, Ḡy). Now assume the arcs of
A′(Ḡx, Ḡy) are linearly ordered as (f1, f2, . . . , fa) where a = |A′(Ḡx, Ḡy)| =
|A(Ḡx, Ḡy)|. Then we put, for i = 1, . . . , a,

M i
T (z) = M i−1

T (z) ∪ (4)
{

Π(Ḡz, F ∪ {b−1(fi)}) | Π(Ḡz, F ) ∈M i−1
T (z) ∧ (F ∪ {b−1(fi)}) is linear

}

.

Finally, let MT (z) = Ma
T (z). The following Claim 6.3, which is easy to prove,

implies that we can efficiently compute each of the setsM i
T (z) (4) in an “abstract

way”, looking just at MT (x),MT (y) and A′(Ḡx, Ḡy).

Claim 6.3. Let Ḡ be a t-labeled graph, F ⊆ E(G) a linear set and e, e′ ∈
E(G) \ F , e = (u, v), e′ = (u′, v′) arcs s.t. lab(u) = lab(u′), lab(v) = lab(v′),
and both F ∪{e} and F ∪{e′} are linear. Then Π(Ḡ, F ∪{e}) = Π(Ḡ, F ∪{e′}).

Complexity-wise there are 22t = 4t distinct labeling pairs in GF(2)t, and so

m(Ḡz, t) ≤ |V (Gz)|
4t

distinct multisets are considered as elements of the set
MT (z). The procedure for computing MT (z) for non-leaf vertices has at most
m(Ḡz, t) distinct final outcomes, but we need the extra label distinguishing
between MT (x) and MT (y), and so we have to deal with up to m(Ḡz, t + 1)
distinct partial outcomes as elements of M i

T (z) (4). Hence the recombination
procedure takes time bounded by

(

m(G, t)2+m(G, t+1)
)

·2O(t) ≤ m(G, t)4·2O(t),
and the total runtime of the algorithm thus is

O
(

|V (G)| ·m(G, t)4 · 2O(t)
)

= O
(

|V (G)|4
t+1+O(1)

)

.
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6.2. Maximum directed cut problem

Max-cut is an extensively studied NP-hard problem both on graphs and, in
its natural directed variant, on digraphs. Formally, in the maximum directed
cut problem on a given digraph G, the goal is to partition the vertex set V (G)
into V0 and V1 such that the cardinality of { (u, v) ∈ E(G) | u ∈ V0, v ∈ V1 }
is maximized. This problem is often stated also with edge weights, but we
consider only the unweighted (cardinality max-cut) variant in our paper – for
reasons explained in Section 7.3.

It is well known that the maximum directed cut problem is NP-hard, and
it has been shown to stay NP-hard even on acyclic digraphs [26]. Further
parameterized complexity related issues of this problem can be found in [16].

Theorem 6.4. Assume an input digraph G given in the form of a t-bi-labeling
parse tree T . Then one can solve the unweighted maximum directed cut problem
on G with an XP algorithm running in time

O
(

|V (G)|q(t)
)

where q(t) = 4 · 2t +O(1) .

Proof. Recall the set of “new edges” A(Ḡ, H̃) = E(Ḡ⊗ H̃) \ (E(G) ∪ E(H))
from the previous proof. This time, the “information to capture” is how many
arcs from A(Ḡ, H̃) add to a (partial) solution of max-cut on Ḡ when joined with
an arbitrary H̃. This is formally expressed as follows.

Let cut(G;X,Y ) = {(u, v) ∈ E(G) | u ∈ X, v ∈ Y }. Given two t-labeled
digraphs Ḡ1, Ḡ2 andXi ⊆ V (Gi) where i = 1, 2 we define an equivalence relation

(Ḡ1,X1) ≈cut,t (Ḡ2,X2)

if and only if, for all t-bi-labeled digraphs H̃ and all Y ⊆ V (H), it holds

∣

∣

∣
cut(Ḡ1 ⊗ H̃; X1, V (H) \ Y )

∣

∣

∣
+

∣

∣

∣
cut(Ḡ1 ⊗ H̃; Y, V (G1) \X1)

∣

∣

∣
=

=
∣

∣

∣
cut(Ḡ2 ⊗ H̃; X2, V (H) \ Y )

∣

∣

∣
+

∣

∣

∣
cut(Ḡ2 ⊗ H̃; Y, V (G2) \X2)

∣

∣

∣
.

Then we immediately have:

Claim 6.5. Assume that Z ⊆ V (G) maximizes |cut(G; Z, V (G) \ Z)| where
G = Ḡ1 ⊗ H̃. Then, setting Z1 = Z ∩ V (G1), it is |cut(G1; Z1, V (G1) \ Z1)| ≥
|cut(G1; X1, V (G1)\X1)| for all X1 ⊆ V (G1) such that (Ḡ1,X1) ≈cut,t (Ḡ1, Z1).

Defining C(Ḡ,X) =
(

{lab(v) | v ∈ X}, {lab(v) | v ∈ V (G) \X}
)

as a pair of
multisets, we moreover easily conclude:

Claim 6.6. For any t-labeled graphs Ḡ1, Ḡ2 and any X1 ⊆ V (G1) and X2 ⊆
V (G2), it holds (Ḡ1,X1) ≈cut,t (Ḡ2,X2) if C(Ḡ1,X1) = C(Ḡ2,X2).
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Our algorithm processes the given parse tree T in the leaves to root direction.
At every node z of T , parsing a t-labeled subdigraph Ḡz, we define Mcut

T (z) as
the set of the pairs (c,X0) where X0 = X is a uniquely chosen set achieving
maximum cardinality of cut(Gz ; X,V (Gz) \ X) among all X ⊆ V (Gz) such
that C(Ḡz,X) = c. Thanks to Claims 6.5 and 6.6, the set Mcut

T (z) can be
straightforwardly computed from Mcut

T (x) and Mcut
T (y) of the sons x, y of z

in T . The largest X such that (c,X) ∈ Mcut
T (r) at the root r of T is then an

optimal solution to the maximum directed cut problem on G.
The number of distinct possible multiset pairs C(Ḡ,X) is at most |V (G)|2

t+1

,
which bounds the cardinality of each Mcut

T (z). Hence the runtime estimate for

our algorithm is O
(

|V (G)| · |V (G)|2
t+1·2 · 2O(t)

)

= O
(

|V (G)|4·2
t+O(1)

)

.

6.3. Min-leaf outbranching

A (directed) tree T in a digraph G is called an outbranching (of G) if T is
spanning and has only one source vertex (hence this vertex is the root and all
arcs of T are directed from it). A leaf of a directed tree is a degree-1 vertex
which is a sink. The min-leaf outbranching problem asks for an outbranching in
the given graph with the least possible number of leaves. Obviously, this is an
NP-hard problem already when we ask for an outbranching with one leaf (i.e. a
directed Hamiltonian path).

Considering restricted digraph classes, the min-leaf outbranching problem is
polynomial on acyclic digraphs [20], but NP-hard already on digraphs of directed
path-width one [7]. c-min-leaf outbranching is in XP when parametrized by
c (the number of leaves) and the DAG-width [7] of the input digraph. To
our knowledge, min-leaf outbranching problems have not been considered on
digraphs of bounded bi-rank-width so far.

We note that in [11] it was shown that already deciding Hamiltonicity (i.e.
1-min-leaf outbranching) is a W [2]-hard problem when parameterized by rank-
width, and so we again “cannot hope” for an FPT algorithm here. Our XP al-
gorithm for this problem widely generalizes the approach taken by Theorem 6.1.

Theorem 6.7. Assume that an input graph G is given in the form of a t-labeling
parse tree T . Then the question whether G has an outbranching with at most c
leaves, where c is a fixed parameter (the c-min-leaf outbranching problem), can
be solved on G with an XP algorithm running in time

O
(

|V (G)|r(t,c)
)

where r(t, c) = 2(c+1)(t+1)+1 +O(1) .

Proof. If F is the edge set of an outbranching in a digraph G and H is an
induced subgraph of G, then the restriction F ∩E(H) always gives an outforest
– a spanning forest in which every connected component has a unique source
(root). The core of our algorithm is based on the following simple observation:
If U is a component (an out-tree) induced by F ∩ E(H), then the number of
vertices u of U such that u is a U -leaf or that some edge of F \ E(H) starts
in u, is at most the number c of the leaves of the outbranching F in G. This
observation suggests a way how to “store” necessary information about the
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components of F ∩E(H) during parse tree processing, as formalized by (5) and
Claim 6.8 below.

Writing G |= ̺c(F ) to express that F is the edge set of an outbranching in
G with ≤ c leaves, we define (cf. the proof of Theorem 6.1):

(Ḡ1, F1) ≈̺c,t (Ḡ2, F2)

for t-labeled Ḡ1, Ḡ2 and outforest edge sets F1 ⊆ E(G1), F2 ⊆ E(G2) if, and
only if, for all t-bi-labeled digraphs H̃ and all outforest sets F ⊆ E(H), it holds

∃F3 ⊆ A(Ḡ1, H̃) :
(

Ḡ1 ⊗ H̃
)

|= ̺c(F1 ∪ F3 ∪ F ) (5)

⇐⇒ ∃F4 ⊆ A(Ḡ2, H̃) :
(

Ḡ2 ⊗ H̃
)

|= ̺c(F2 ∪ F4 ∪ F ) .

Let Ḡ = (G, lab) be a t-labeled digraph, and F be the edge set of an outforest
Ḡ ↾F =

(

V (G), F
)

. If Ū = (U, lab) is a connected component of Ḡ ↾F with the
root s and W = {w1, . . . , wi} ⊆ V (U), i ≤ c is a vertex set containing (besides
other vertices) all the leaves of U , then we define

B(Ū ,W ) =
(

lab(s), lab(w1), . . . , lab(wi)
)

∈ GF(2)t× ≤(c+1) . (6)

The order of w1, . . . , wi is irrelevant. Particularly, if Ū consists of a single
vertex s, then B(Ū , {s}) = (lab(s), lab(s)).

For a vertex set W ⊆ V (G), we define R(Ḡ, F,W ) as the multiset of all
B(Ū ,W ∩ V (U)) where Ū ranges over the components of Ḡ ↾F , provided that
all these B(Ū ,W ∩ V (U)) are defined. Finally, we define the set

R(Ḡ, F ) :=
{

R(Ḡ, F,W ) |W ⊆ V (G) such that R(Ḡ, F,W ) is defined
}

, (7)

and we claim:

Claim 6.8. For any t-labeled graphs Ḡ1, Ḡ2 and any outforest sets F1 ⊆ E(G1)
and F2 ⊆ E(G2), it holds (Ḡ1, F1) ≈̺c,t (Ḡ2, F2) if R(Ḡ1, F1) = R(Ḡ2, F2).

To prove Claim 6.8, we fix any H̃ and F , and assume (Ḡ1 ⊗ H̃) |= ̺c(F1 ∪
F3 ∪ F ) for some F3 ⊆ A(Ḡ1, H̃). Let W1 ⊆ V (G1) be the set containing
all the leaves of G1 ↾ F1 and all the vertices u of G1 such that some edge of
F3 starts in u. Then |W1 ∩ V (U)| ≤ c for every component U of G1 ↾ F1,
and so R(Ḡ1, F1,W1) ∈ R(Ḡ1, F1). Hence there exists W2 ⊆ V (G2) such that
R(Ḡ1, F1,W1) = R(Ḡ2, F2,W2) ∈ R(Ḡ2, F2).

The latter equality, by definition of R, means that there exist bijections
b, d between the sets S1, S2 of the roots of G1 ↾ F1 and G2 ↾ F2, and between
W1 and W2, respectively, which satisfy: For a component root s ∈ S1, it is
lab1(s) = lab2(b(s)), and for w ∈ W1 it is lab1(w) = lab2(d(w)). Moreover,
these bijections preserve components, meaning that w belongs to the (G1 ↾F1)-
component with the root s iff d(w) belongs to the (G2 ↾ F2)-component with
the root b(s). Thus each arc (v, u) ∈ F3, u ∈ S1 has a corresponding arc
(v, b(u)) ∈ A(Ḡ2, H̃) by the definition of ⊗. Similarly every arc (u, v) ∈ F3,
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u ∈ W1 has corresponding (d(u), v) ∈ A(Ḡ2, H̃). Let F4 be the set of all
these corresponding arcs. Then F2 ∪F4 ∪F defines an outbranching in Ḡ2 ⊗ H̃
with a set of leaves S4 ⊆ W2 ∪ V (H). Let also S3 be the set of leaves of the
outbranching F2 ∪F3 ∪F in Ḡ1 ⊗ H̃. Clearly, S3 ∩ V (H) = S4 ∩ V (H), and for
each u ∈ S4 ∩W2 we have d−1(u) ∈ W1 ∩ S3 since no edge of F3 starts in this
d−1(u). Hence |S4| ≤ |S3|, which proves Claim 6.8.

The algorithm then, in the leaves-to-root direction on T , recursively com-
putes the sets MT (z) =

⋃

{R(Ḡz, F ) | F ⊆ E(Gz) outforest } at the nodes z of
T . In the root r of T , we get that G has an outbranching with arc set F and
leaf set W iff MT (r) contains an element R(Ḡ, F,W ) of cardinality one. It is
trivial to compute the set MT (z) when z is a leaf of T .

So let z be a node of T with two sons x and z. To compute the set MT (z)
from the sets MT (x) and MT (y) we proceed analogously to Theorem 6.1 and
Claim 6.3. We start with computing

M0
T (z) =

{

R(Ḡz, Fx ∪ Fy,Wx ∪Wy) = R(Ḡx, Fx,Wx) ∪R(Ḡy, Fy,Wy) |

R(Ḡx, Fx,Wx) ∈MT (x), R(Ḡy, Fy,Wy) ∈MT (y)
}

which is always well-founded. For the rest, we again assume that the vertex
labelings coming from elements ofMT (y) are distinguished from those of MT (x),
which can be implemented easily by using an extra label “t + 1”. Once again,
let A′(Ḡx, Ḡy) = { (labx(u), laby(v)) | (u, v) ∈ A(Ḡx, Ḡy)} be the multiset of
“symbolic arcs” added by the composition operator at z, linearly ordered as
(f1, f2, . . . , fa) = A′(Ḡx, Ḡy), and b : A(Ḡx, Ḡy) → A′(Ḡx, Ḡy) be a natural
bijection. Let b−1(fi) = (ui, vi). We further put, for i = 1, . . . , a,

M i
T (z) = M i−1

T (z) ∪
⋃

X=W, W\{ui}

{

R(Ḡz, F ∪ {b−1(fi)},X) | (8)

R(Ḡz, F,W ) ∈M i−1
T (z) ∧ ui ∈W ∧

R(Ḡz, F ∪ {b−1(fi)},X) is defined
}

.

We remind the readers that the multiset R(Ḡz, F ∪ {b−1(fi)},X) is defined iff
F ∪ {b−1(fi)} is an outforest set (i.e. ui, vi belong to distinct components of
Ḡz ↾F and vi is a root (source) of Ḡz ↾F ), and all the sets B(Ū ,X ∩V (U)) are
defined, where Ū ranges over the components of Ḡz ↾F .

In a straightforward analogy to Claim 6.3, this whole computation of
MT (z) = Ma

T (z) (8) can be carried out from the knowledge of only MT (x),
MT (y) and A′(Ḡx, Ḡy). The number of possible distinct B(Ū ,W ) (6) is

22t + 23t + · · · + 2(c+1)t ≤ 2(c+1)t+1. Hence the number of elements in ev-

ery MT (z) is bounded by m(G, c, t) ≤ |V (G)|2
(c+1)t+1

. Due to the extra label
t + 1, however, the number of possible distinct partial outcomes (elements) of

M i
T (z) (8) is up to m(G, c, t + 1) ≤ |V (G)|2

(c+1)(t+1)+1

. The overall runtime
estimate for our algorithm comes out:

O
(

|V (G)| · 2O(ct)
(

m(G, c, t)2 +m(G, c, t+ 1)
))

≤ O
(

|V (G)|2
(c+1)(t+1)+1+O(1)

)
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7. Concluding Notes

The list of algorithms presented in this article is by no means exhaustive.
Other XP algorithms designed for graphs of bounded clique-width (e.g., for
the edge-dominating set [24]) can similarly be translated into our parse tree
approach for rank-width. One can expect that the time complexity of such
algorithms will have a “one-level higher” exponent, as we see for instance in
Theorem 6.1. As already mentioned, the reason is that rank-width generally has
an exponentially smaller value than clique-width (not that the new algorithms
would be slower).

Still, we have presented several nontrivial examples in which our unified
formal approach gives new algorithms, or algorithms with an improved runtime
bound. Determining which XP algorithms originally designed for clique-width
can be radically improved using our approach remains an open question, one
that we believe deserves further study. Finally, the main advantage of designing
algorithms on rank-decompositions of graphs is that we can efficiently compute
an optimal rank-decomposition by Theorem 2.1 and Theorem 5.2.

There are also a few more general considerations related to our presented
algorithms which we would like to discuss briefly in the remainder of the paper.

Looking back at our aspiration for a unified formal approach to designing
XP algorithms on graphs of bounded rank-width, the reader would likely ask;
why did not we come up with one general framework including all the presented
algorithmic problems? Say, one similar to the so called LinEMSOL framework
of Arnborg et al [1] and Courcelle et al [6]. The truth is that this task does
not seem easy at all. The diverse existing XP algorithms, even considering just
those from our paper, have quite different setups—as witnessed for instance by
the very different definitions of the congruence relations in our proofs here.

Nevertheless, we believe such a general “XP framework for width measures”
might exist and we propose the unified design approach presented in our paper
as a promising step towards finding it, which is one of the main targets of
our future research. In particular, we briefly argue that our approach includes
two existing specialized frameworks for XP algorithms parameterized by width
measures.

7.1. On MSOL-partitioning problems

The monadic second order logic (MSOL) of one-sorted adjacency graphs,
commonly abbreviated as MS1, has variables for graph vertices (say x, y, z . . . )
and for vertex sets (X,Y,Z . . . ), common logic connectives and quantifiers. For
an illustration, we can express that X is a dominating set in G as

G |= ∀y
(

y ∈ X ∨ ∃z (z ∈ X ∧ edge(y, z))
)

.

See, e.g., [6, 15].
A problem is called MSOL-partitioning [28] if there exists an MSOL formula

φ such that the problem can be (equivalently) formulated as follows: Find all
integers s such that the vertex set of an input graph G can be partitioned into
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nonempty sets X1∪· · ·∪Xs = V (G) where G |= φ(Xi) for i = 1, . . . , s. A typical
example of MSOL-partitioning problems is computing the chromatic number,
and we have already shown how to compute it on graphs of bounded rank-width.

Moreover, as shown by the following theorem, a straightforward generaliza-
tion of our Theorem 4.1 can solve any MSOL-partitioning problem, giving an
alternative combinatorial proof of the main result of [28].

Theorem 7.1 (Rao [28]). Let P be an MSOL-partitioning problem described
by a formula φ(X). Then P can be solved on a graph (digraph) G by an XP
algorithm with respect to the parameters φ, and t – the rank-width (bi-rank-
width) of G.

Proof. (sketch) For any property φ(X) there is a natural “congruence” re-
lation, called the canonical equivalence in [15], defined as follows. Let (Ḡ,W )
denote the t-labeled graph Ḡ equipped with a partial interpretation W ⊆ V (G)
of the variable X. Then we put (Ḡ1,W1) ≈φ,t (Ḡ2,W2) iff, for all t-labeled
graphs H̄ equipped with W0 ⊆ V (H), it holds that

Ḡ1 ⊗ H̄ |= φ(W1 ∪W0) ⇐⇒ Ḡ2 ⊗ H̄ |= φ(W2 ∪W0) . (9)

The crucial result of [15, Theorem 4.2] (implicitly following also from earlier
work, e.g. [6]) claims that ≈φ,t has finitely many classes over the universe of
all t-labeled graphs equipped with a partial interpretation of X. Moreover, [15,
Theorem 4.2] can easily be extended to t-labeled digraphs.

For the rest, we closely follow the proof of Theorem 4.1. Let the input
(di)graph Ḡ be given by a t-labeling parse tree T (cf. Theorem 3.2). Having an
ordered vertex partition N of Ḡ, we define a multiset

Γφ(Ḡ,N ) :=
{

C a class of ≈φ,t | ∅ 6= W ∈ N and (Ḡ,W ) ∈ C
}

.

As one can prove analogously to Claim 4.5, a dynamic programming algorithm
solving our MSOL-partitioning problem P along T needs to remember, at a
node z of T , only the set MT (z) of those multisets Γφ(Ḡ,N ) that result from
some ordered vertex partition N of Gz. Furthermore, the sets MT (z) can be
computed in XP time from the leaves to the root of T in a way which naturally
combines Claim 4.6 and the transition function of a tree automaton associated
with the classes of ≈φ,t .

Finally, at the root r of T , the solution to our problem P is the set of those
integers s such that s = |Γφ0 | for some Γφ0 ∈MT (r) satisfying the following: For

each ≈φ,t-class C0 ∈ Γφ0 and (Ḡ,W0) ∈ C0, it is G |= φ(W0) (which is consistently
defined thanks to (9) for H̄ = ∅).

Our alternative proof has one noticeable advantage over original Rao’s proof
[28] (which was based on formal logic tools) —we can give for any particular
MSOL-partitioning problem a fine runtime estimate based just on the number
of classes of ≈φ,t .

Furthermore, an analogous generalization of Theorem 4.7 shows that we can
even count the solutions to an MSOL-partitioning problem in XP time.
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7.2. Max-degree optimization problems

Another short note relates to Theorem 4.8. Kolman et al [25], observing that
some natural graph optimization problems do not fit into previously known for-
malisms (for graphs of bounded tree-width in their case), came with the follow-
ing approach. An MSOL formula of two-sorted incidence graphs, abbreviated
as MS2 formula, has variables for graph vertices, edges, and their sets. (The
expressive power of MS2 is stronger than that of previously discussed MS1.)
Let, for a graph G and F ⊆ E(G), the operator ∆G(F ) returns the maximum
degree of the subgraph (V (G), F ).

Theorem 7.2 (Kolman, Lidický, and Sereni [25]). Let ψ(F ) be an MS2 formula.
Then the problem

minF⊆E(G) ∆G(F ) : G |= ψ(F )

is solvable by an XP algorithm on graphs of bounded tree-width.

Unfortunately, this result cannot be extended to graphs of bounded rank-
width in a straightforward manner since MS1 formulae are not capable of dealing
with edge sets. We can, however, define an operator ∆G(W1, . . . ,Wc) which,
for W1, . . . ,Wc ⊆ V (G), equals to the maximum degree over the collection of
induced subgraphs G ↾W1, . . . , G ↾Wc. Then, extending Theorem 4.8, we can
prove:

Theorem 7.3. Let ψ(X1, . . . ,Xc) be an MS1 formula. Then the problem

minX1,...,Xc⊆V (G) ∆G(X1, . . . ,Xc) : G |= ψ(X1, . . . ,Xc)

is solvable by an XP algorithm on graphs of bounded rank-width.

Proof. (sketch) For simplicity we consider a decision version, i.e. the problem
to decide, for an arbitrary integer q, whether there exist W1, . . . ,Wc ⊆ V (G)
such that G |= ψ(W1, . . . ,Wc) and ∆G(W1, . . . ,Wc) ≤ q. We write shortly
X : {X1, . . . ,Xc} → 2V (G) for a partial interpretation of the set variables Xi

in G. As in the proof of Theorem 7.1, we use the claim that the canonical
equivalence ≈ψ,t has finitely many classes over all X -equipped t-labeled graphs
by [15, Theorem 4.2].

Besides a novel use of the previous claim, the whole proof proceeds in the
same way as that of Theorem 4.8. We start from a parse tree T for t-labeled Ḡ.
The novel idea is that we “separately process” the partial solutions belonging
to each one of the (fixed number of) classes of ≈ψ,t. Specifically, we define
Θ(Ḡ,X ) =

(

D(Ḡ,X (Xi)) | i = 1, . . . , c
)

as in (2). Being at a node z of T
(parsing an induced subgraph Ḡz), we define a sequence of setsM ′

T (z, C) for each
of the classes C of ≈ψ,t, where M ′

T (z, C) consists of all Θ(Ḡz,X ) such that the
variable interpretation X gives (Ḡz,X ) ∈ C and ∆Gz

(X (X1), . . . ,X (Xc)) ≤ q.

It again follows from Claim 4.9 and [15, Theorem 4.2] that the sets M ′
T (z, C)

can be computed recursively from the leaves of T to the root, and that the
result of the computation is correct. Namely, at the root r of T , we simply
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check whether some of the sets M ′
T (r, C) for an “ψ-accepting” class C of ≈ψ,t

is nonempty. Since the number of elements of M ′
T (z, C) is at most |V (G)|2c·2

t

,
and the number of classes C is independent of |V (G)|, the whole algorithm runs
in time |V (G)|p(c,ψ,t) for some function p (depending mainly on the number of
classes of ≈ψ,t).

7.3. Rank-width and edge-weighted graphs

Our last remark concerns optimization problems on edge-weighted graphs.
An example is the weighted version of maximum directed cut (Section 6.2).

With tree-width, it is often the case that whenever an unweighted version
of a problem has an efficient solution on graphs of bounded tree-width, so does
the corresponding weighted version. On the other hand, this is not the typical
case with edge-weighted problems on graphs of bounded rank-width. An in-
formal explanation might be that, even on a complete graph of rank-width 1,
edge weights can “model” arbitrarily complex subgraphs (for which no efficient
solution is likely). That is why, for instance, no efficient solution to weighted
maximum directed cut likely exists on all graphs of bounded rank-width (com-
pared to Theorem 6.4).

If one aims at designing parameterized algorithms for optimization problems
on edge-weighted graphs G, the following idea might be a good starting point:
Let BG[U,W ] be the weighted adjacency matrix of a bipartition (U,W ) of V (G),
i.e. the matrix whose entries are the edge weights, or 0. The weighted cut-rank
function then equals the rank of BG[U,W ] over the reals, and the weighted
rank-width is the branch-width of it. Then, for instance, Theorem 6.4 can be
extended to computing weighted maximum directed cut on digraphs of bounded
weighted bi-rank-width. Again, we believe that this mentioned aspect of rank-
width deserves deeper theoretical investigation in the future.
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