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— theor. tools claiming efficient solvability of large classes of problems at once.
* Courcelle’s Theorem
e All MSO,-definable prop. in linear-time FPT for bounded tree-width.
— perhaps the best known algo. metatheorem on graphs (1988)
— clique-width 4+ MSO; version by [Courcelle-Makowsky—Rotics]
* Logic on Graphs
e Propositional logic (A\V —), graph vertices/edges (z, v, z,...e,...);
— e.g., Vz,y(edge(z,y) = x € CVy € C), “C is vertex cover”
— FO logic (first-order): just this 1
— MSO logic (monadic second-o.): quantifies vertex sets X, Y’

T MSOl VS. MSOz J,
— or, quantifies vertex and edge sets together XY | F'.
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How far can one get?
* Not far with MSO

e On monotone graph classes:
— [Kreutzer—Tazari] not above polylog. tree-width with MSO,
— [GHLORS] not above polylog. tree-width with coloured MSO;

e On hereditary classes, perhaps analogously with clique-width. . .7

* Better with FO

e FO is always in XP, but we aim for FPT (fixed exponent poly.):
— [Seese] on bounded degree graphs (1996)
— [Frick—=Grohe] locally bounded tree-width
— [Dawar—Grohe—Kreutzer| locally excluding a minor

— [D.-K. / Dvotak—Kréal'=Thomas]| locally bounded expansion
— [Grohe—Kreutzer-Siebertz] nowhere dense graphs! (2013)
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e A poset P (partially ordered set)

— a ground set P, and

— a reflexive, symmetric, transitive bin. relation < on P.

e FO logic on a poset; e.g.
- Vy(y <z —x<y), "zrisa minimal element”,
— z<zAz<yAVt [(tﬁx/\tﬁy) Htﬁz}, “infimum”,

e MODEL CHECKING (a parameterized formulation)

INPUT: A poset P, and an (FO) sentence ¢. PARAM.: |¢)|.
QUESTION: Is P = ¢7?
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e So far, most nontrivial results obtained on sparse classes of graphs;
— except [Ganian, PH, Krdl', ObdrZélek, Schwartz, Teskal]
FO model checking on L-interval graphs (2013).
e Posets present a very natural example of dense relational structures.

e The research initiated by

[Bova, Ganian, Szeider, LICS 2014]:

FO model checking on posets is hard (W[1]-hard par. |¢|) for, e.g.
— bounded depth (the maximum size of a chain),
— bounded cover-degree (the max. deg. in the Hasse diagram),

while the problem becomes FPT for
— posets of bounded width (the maximum size of an antichain).
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A short detour; Hasse Diagrams

e Having a poset P(P, <), the
Hasse diagram is the digraph H on V(H) = P

— such that (u,v) € E(H) iff u < v, and no z € P, u <z<v.
e H determines P, and so
— how FOm.c. can be hard when A(H) (cov. deg.) is bounded?

Yes. .. but P is the transitive closure of H — not FO-definable!

e Still, one more try:
— MSO logic defines the transitive closure, and
— Hasse d. of bounded width seem to have small tree-width.

NO, [BGS] arbitrarily large grids even for poset width 2!
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2 J-FO on Posets
* [Bova, Ganian, Szeider]
e -FO — the existential fragment of FO (no Vz...).

e The main result of [BGS, LICS 2014]:
POSET 3-FO MODEL CHECKING on P = (P, <) solvable in time

f(Ig]) - | P|otwiiP).

Note, only an XP algorithm with respect to width(P).

e Step 1. An FPT reduction to many instances of the embedding
problem (“induced subposet”).

e Step 2. A further reduction to a family of instances of the homo-
morphism problem on certain lattice structures.

e Step 3. Solving the homomorphism problem in polytime (using a
highly non-trivial theorem).
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| The Embedding Problem

e EMBEDDING (for posets) * [BGS]
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QUESTION: Is there an embedding from Q into P?
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e An embedding from Q into P
— an injective mapping e : () — P such that

q <o ¢ iff e(q) <pe(q), forevery ¢,¢ € Q.
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The Embedding Problem

e EMBEDDING (for posets) * [BGS]
INPUT: Two poset Q = (Q, <g) and P = (P, <p).
PARAMETERS: |Q| and width(P).

QUESTION: Is there an embedding from Q into P?

e An embedding from Q into P
— an injective mapping e : () — P such that
q <o ¢ iff e(q) <pe(q), forevery ¢,¢ € Q.
e Technically easier (with width(P)?l blow-up) to consider:

COMPATIBLE EMBEDDING
... P with a chain partition (Cy,...,C,), w = width(P),
and Q with a mapping f: Q — {1,...,w}.

QUESTION: Is there an embedding e : () — P such that
e(q) € Cy(q), for every g € Q7
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Note, this is now an FPT algorithm with respect to both ||, width(P).
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3 New Result

PoseT 3-FO MODEL CHECKING on P = (P, <) solvable in time

h(|¢|, width(P)) - | P|?.

Note, this is now an FPT algorithm with respect to both |¢|, width(P).
e Step 1. The same FPT reduction (as [BGS]) to many instances of
COMPATIBLE EMBEDDING.
e Step 2. (solution 1) Solving each CompP. EMBEDDING inst. as a
CSP instance closed under a min-polymorhpism (poly but slow).
(solution 2) Further one-to-one reduction to a certain variant of

well known MULTICOLOURED CLIQUE.
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3 New Result

PoseT 3-FO MODEL CHECKING on P = (P, <) solvable in time

h(|¢|, width(P)) - | P|?.

Note, this is now an FPT algorithm with respect to both |¢|, width(P).

e Step 1. The same FPT reduction (as [BGS]) to many instances of
COMPATIBLE EMBEDDING.

e Step 2. (solution 1) Solving each CompP. EMBEDDING inst. as a
CSP instance closed under a min-polymorhpism (poly but slow).
(solution 2) Further one-to-one reduction to a certain variant of

well known MULTICOLOURED CLIQUE.

e Step 3.  Solving the (interval-monotone) variant of MULTICOL-
OURED CLIQUE in polynomial time — overall quadratic in |P|.
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Multicoloured Clique

e i~
N
SEFT o~
oz §W>
& -
G

N N . N

e MULTICOLOURED CLIQUE
InpuUT: A graph G with a proper k-colouring.
PARAMETER: k.
QUESTION: s there a clique (complete subgr.) of size k in G?
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InpuUT: A graph G with a proper k-colouring.
PARAMETER: k.
QUESTION: s there a clique (complete subgr.) of size k in G?

e A traditional “hard problem” in parameterized complexity, though,
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e MULTICOLOURED CLIQUE

InpuUT: A graph G with a proper k-colouring.
PARAMETER: k.
QUESTION: s there a clique (complete subgr.) of size k in G?

e A traditional “hard problem” in parameterized complexity, though,

we are going to use the following special (polynomial) variant.

Petr Hlinény, ISAAC, Jeonju, 2014 11/15 Faster Existential FO on Posets



| Reduction to Multicol. Clique

e Recall... COMPATIBLE EMBEDDING
— P with a chain partition (C4,...,C,), w = width(P),
— and Q with a “chain” mapping [ : Q — {1,... w}.
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- V(G) =V1U...UV|g where V; is a copy of Cy,

Petr Hlinény, ISAAC, Jeonju, 2014 Faster Existential FO on Posets



Reduction to Multicol. Clique
e Recall... COMPATIBLE EMBEDDING
— P with a chain partition (C4,...,C,), w = width(P),
— and Q with a “chain” mapping [ : Q — {1,..., w}.
e ~ our |Q|-COLOURED CLIQUE of G defined

- V(G) =V1U...UV|g where V; is a copy of Cy,
— forp € V,,q € V; copies of p’ € Cyo), ¢’ € Crpy, a # b,
pq € E(G) iff p/ <pq <> a<gbandp >pq < a>qb.
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Interval-Monotone Multicol. Clique

Using special properties of the reduction. ..

A MULTICOLOURED CLIQUE instance is called interval-monotone if
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Interval-Monotone Multicol. Clique

Using special properties of the reduction. ..

A MULTICOLOURED CLIQUE instance is called interval-monotone if
e the given colour classes are V(G) =V, U---UV,, E = E(G), and

e the vertex set V(G) can be linearly ordered as < such that;
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Interval-Monotone Multicol. Clique

Using special properties of the reduction. . .

A MULTICOLOURED CLIQUE instance is called interval-monotone if
e the given colour classes are V(G) =V, U---UV,, E = E(G), and

e the vertex set V(G) can be linearly ordered as < such that;
— VP € Ve, V1 <2 <q3 € Vo pgi,pgs € E = pgs € E.
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Interval-Monotone Multicol. Clique

Using special properties of the reduction. . .

A MULTICOLOURED CLIQUE instance is called interval-monotone if
e the given colour classes are V(G) =V, U---UV,, E = E(G), and

e the vertex set V(G) can be linearly ordered as < such that;
— VP € Ve, V1 <2 <q3 € Vo pgi,pgs € E = pgs € E.
= VD1 <p2 € Vo, V1 <q2 € Vi p1go, 21 € E = p1¢1, p2go € E.
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]—The Algorithm N s W s T L

INPUT: G, coloured V(G) =V U...

UV}, ordered by <. I i e e S
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The Algorithm 1o - @) ¥
INPUT: G, coloured V(G) =ViU... | | | | T ’
o ___| | e, °
UVk, ordered by <. P B e e SN |
e Define MinK"(v), MaxK"(v) o o ] i
where 2 < i <k and v € V;: ) . \_oj .
— MinK'(v) := the <-minimum of all the i-cliques which are

contained in V; U---UV;_; U {v}.
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The Algorithm 1~

,,,,,,,,,, (@) (@) @)
INPUT: G, coloured V(G) =V U... I s o *
UV}, ordered by <. [ e S
e Define MinK"(v), MaxK"(v) o o ] i
where 2 < i< kand v € V;: < . \‘j .
— MinK'(v) := the <-minimum of all the i-cliques which are

contained in V; U---UV;_; U {v}.
e Dynamically compute this information, fort = 2,3, ..., k, as follows.

For every v € V;, set X := {v}, and repeat for j =i —1,...,1:
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The Algorithm I~ = A~
INPUT: G, coloured V(G) =V U... : 7777777777 : 77777777 : 77777777 :
UVk, ordered by <. . ;A:‘;\ji:::;:gi
e Define MinK"(v), MaxK"(v) o o ] i
where 2 < i<k and v € V;: o’

N N N N

(%

— MinK'(v) := the <-minimum of all the i-cliques which are

contained in V; U---UV;_; U {v}.

e Dynamically compute this information, fort = 2,3, ..., k, as follows.

For every v € V;, set X := {v}, and repeat for j =i —1,...,1:

— x:= <-min. neighbour of X in V; such that MaxK’(z) # ()

is in or above the neighbs. of X in each of Vi,...,V;_y;

— if x nonexistent, set X := ();
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The Algorithm

INPUT: G, coloured V(G) =V U. ..
UVj, ordered by <.

e Define MinK*(v), MaxK"(v)
where 2 <i<kandv eV

- MinK*'(v)

&

(%

= the <-minimum of all the i-cliques which are
contained in V; U---UV;_; U {v}.

e Dynamically compute this information, fort = 2,3, ..., k, as follows.

For every v € V;, set X := {v}, and repeat for j =i —1,...,1:

— x:= <-min. neighbour of X in V; such that MaxK’(z) # ()
is in or above the neighbs. of X in each of Vi,...,V;_y;

— if x nonexistent, set X := ();
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The Algorithm

INPUT: G, coloured V(G) =V U. ..
UVj, ordered by <.

e Define MinK*(v), MaxK"(v)
where 2 <i<kandv eV

- MinK*'(v) :

contained in V; U---UV;_; U {v}.

&

(%

the <-minimum of all the i-cliques which are

e Dynamically compute this information, fort = 2,3, ..., k, as follows.

For every v € V;, set X := {v}, and repeat for j =i —1,...,1:

— x:= <-min. neighbour of X in V; such that MaxK’(z) # ()
is in or above the neighbs. of X in each of Vi,...,V;_y;

— if x nonexistent, set X := ();

— MinK'(v) := X after finishing the iterations (of j).
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1_4 Summary

e Improvement over [Bova, Ganian, Szeider, LICS 2014]
BGS14) UORTE)
Algorithm 1 (using CSP) O(f'(¢,w) - n*)
Algorithm 2 (using mult. clique)  O(f"(¢, w) - n?)
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Algorithm 2 (using mult. clique)  O(f"(¢, w) - n?)
— our algorithms are FPT both in ¢ the width of the poset.

e Straightforward, simpler, and self-contained proofs (Alg. 2).

Non-complicated algorithm (Alg. 2) — “implementable”.
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4 Summary
e Improvement over [Bova, Ganian, Szeider, LICS 2014]

[BGS14] O(f(¢) - n#™)
Algorithm 1 (using CSP) O(f'(¢,w) - n*)

Algorithm 2 (using mult. clique)  O(f"(¢, w) - n?)
— our algorithms are FPT both in ¢ the width of the poset.
e Straightforward, simpler, and self-contained proofs (Alg. 2).
Non-complicated algorithm (Alg. 2) — “implementable”.
e Current work:

— extension to full FO logic.

THANK YOU FOR YOUR ATTENTION.
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