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Petr Hliněný, ISAAC, Jeonju, 2014 2 / 15 Faster Existential FO on Posets

0 The Aim; Algorithmic Metatheorems0 The Aim; Algorithmic Metatheorems

– theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle’s Theorem* Courcelle’s Theorem
• All MSO2-definable prop. in linear-time FPT for bounded tree-width.

– perhaps the best known algo. metatheorem on graphs (1988)

– clique-width + MSO1 version by [Courcelle–Makowsky–Rotics]

* Logic on Graphs* Logic on Graphs
• Propositional logic (∧∨ →), graph vertices/edges (x, y, z, .., e, . . . );

– e.g., ∀x, y
(
edge(x, y)→ x ∈ C∨y ∈ C

)
, “C is vertex cover”

– FO logic (first-order): just this ↑
– MSO logic (monadic second-o.): quantifies vertex sets ∃X, Y



page.15

Petr Hliněný, ISAAC, Jeonju, 2014 2 / 15 Faster Existential FO on Posets

0 The Aim; Algorithmic Metatheorems0 The Aim; Algorithmic Metatheorems

– theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle’s Theorem* Courcelle’s Theorem
• All MSO2-definable prop. in linear-time FPT for bounded tree-width.

– perhaps the best known algo. metatheorem on graphs (1988)

– clique-width + MSO1 version by [Courcelle–Makowsky–Rotics]

* Logic on Graphs* Logic on Graphs
• Propositional logic (∧∨ →), graph vertices/edges (x, y, z, .., e, . . . );

– e.g., ∀x, y
(
edge(x, y)→ x ∈ C∨y ∈ C

)
, “C is vertex cover”

– FO logic (first-order): just this ↑
– MSO logic (monadic second-o.): quantifies vertex sets ∃X, Y

↑ MSO1 vs. MSO2 ↓



page.15
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* Courcelle’s Theorem* Courcelle’s Theorem
• All MSO2-definable prop. in linear-time FPT for bounded tree-width.

– perhaps the best known algo. metatheorem on graphs (1988)

– clique-width + MSO1 version by [Courcelle–Makowsky–Rotics]

* Logic on Graphs* Logic on Graphs
• Propositional logic (∧∨ →), graph vertices/edges (x, y, z, .., e, . . . );

– e.g., ∀x, y
(
edge(x, y)→ x ∈ C∨y ∈ C

)
, “C is vertex cover”

– FO logic (first-order): just this ↑
– MSO logic (monadic second-o.): quantifies vertex sets ∃X, Y

↑ MSO1 vs. MSO2 ↓
– or, quantifies vertex and edge sets together ∃X, Y,E, F .
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– [GHLORS] not above polylog. tree-width with coloured MSO1

• On hereditary classes, perhaps analogously with clique-width. . . ?

* Better with FO* Better with FO

• FO is always in XP, but we aim for FPT (fixed exponent poly.):

– [Seese] on bounded degree graphs (1996)

– [Frick–Grohe] locally bounded tree-width

– [Dawar–Grohe–Kreutzer] locally excluding a minor

– [D.-K. / Dvǒrák–Král’–Thomas] locally bounded expansion

– [Grohe–Kreutzer–Siebertz] nowhere dense graphs ! (2013)
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Petr Hliněný, ISAAC, Jeonju, 2014 4 / 15 Faster Existential FO on Posets

1 FO Model Checking on Posets1 FO Model Checking on Posets

• A poset P (partially ordered set)

– a ground set P , and

– a reflexive, symmetric, transitive bin. relation ≤ on P .

• FO logic on a poset; e.g.

– ∀y (y ≤ x→ x ≤ y), “x is a minimal element”,



page.15
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– a ground set P , and

– a reflexive, symmetric, transitive bin. relation ≤ on P .

• FO logic on a poset; e.g.

– ∀y (y ≤ x→ x ≤ y), “x is a minimal element”,

– z ≤ x ∧ z ≤ y ∧ ∀t
[
(t ≤ x ∧ t ≤ y)→ t ≤ z

]
, “infimum”,

• Model checking (a parameterized formulation)

Input: A poset P , and an (FO) sentence φ. Param.: |φ|.
Question: Is P |= φ ?
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Why FO on Posets?Why FO on Posets?

• So far, most nontrivial results obtained on sparse classes of graphs;

– except [Ganian, PH, Král’, Obdržálek, Schwartz, Teska]

FO model checking on L-interval graphs (2013).

• Posets present a very natural example of dense relational structures.

• The research initiated by

[Bova, Ganian, Szeider, LICS 2014]:

FO model checking on posets is hard (W[1]-hard par. |φ|) for, e.g.

– bounded depth (the maximum size of a chain),

– bounded cover-degree (the max. deg. in the Hasse diagram),

while the problem becomes FPT for

– posets of bounded width (the maximum size of an antichain).
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A short detour; Hasse DiagramsA short detour; Hasse Diagrams

• Having a poset P(P,≤), the

Hasse diagram is the digraph H on V (H) = P

– such that (u, v) ∈ E(H) iff u < v, and no x ∈ P , u <x< v.

• H determines P , and so

– how FO m.c. can be hard when ∆(H) (cov. deg.) is bounded?

Yes. . . but P is the transitive closure of H – not FO-definable!

• Still, one more try:

– MSO logic defines the transitive closure, and

– Hasse d. of bounded width seem to have small tree-width.

NO, [BGS] arbitrarily large grids even for poset width 2 !
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2 ∃-FO on Posets2 ∃-FO on Posets

* [Bova, Ganian, Szeider]* [Bova, Ganian, Szeider]

• ∃-FO – the existential fragment of FO (no ∀x . . . ).

• The main result of [BGS, LICS 2014]:

Poset ∃-FO model checking on P = (P,≤) solvable in time

f(|φ|) · |P | g(width(P)).

Note, only an XP algorithm with respect to width(P).

• Step 1. An FPT reduction to many instances of the embedding

problem (“induced subposet”).

• Step 2. A further reduction to a family of instances of the homo-

morphism problem on certain lattice structures.

• Step 3. Solving the homomorphism problem in polytime (using a
highly non-trivial theorem).
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* [BGS]* [BGS]• Embedding (for posets)
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* [BGS]* [BGS]• Embedding (for posets)

Input: Two poset Q = (Q,≤Q) and P = (P,≤P ).

Parameters: |Q| and width(P).

Question: Is there an embedding from Q into P?

• An embedding from Q into P
– an injective mapping e : Q→ P such that

q ≤Q q
′ iff e(q) ≤P e(q

′), for every q, q′ ∈ Q.

• Technically easier (with width(P)|Q| blow-up) to consider:

Compatible Embedding

. . . P with a chain partition (C1, . . . , Cw), w = width(P),

and Q with a mapping f : Q→ {1, . . . , w}.
Question: Is there an embedding e : Q→ P such that

e(q) ∈ Cf(q), for every q ∈ Q?
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The Embedding Problem; examplesThe Embedding Problem; examples

Does it embed?

YES

NO
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3 New Result3 New Result

Poset ∃-FO model checking on P = (P,≤) solvable in time

h(|φ|, width(P)) · |P |2.

Note, this is now an FPT algorithm with respect to both |φ|, width(P).

• Step 1. The same FPT reduction (as [BGS]) to many instances of

Compatible Embedding.

• Step 2. (solution 1) Solving each Comp. Embedding inst. as a

CSP instance closed under a min-polymorhpism (poly but slow).

(solution 2) Further one-to-one reduction to a certain variant of

well known Multicoloured Clique.

• Step 3. Solving the (interval-monotone) variant of Multicol-
oured Clique in polynomial time – overall quadratic in |P |.
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• Multicoloured Clique

Input: A graph G with a proper k-colouring.

Parameter: k.

Question: Is there a clique (complete subgr.) of size k in G?
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• Multicoloured Clique

Input: A graph G with a proper k-colouring.

Parameter: k.

Question: Is there a clique (complete subgr.) of size k in G?

• A traditional “hard problem” in parameterized complexity, though,
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• Multicoloured Clique

Input: A graph G with a proper k-colouring.

Parameter: k.

Question: Is there a clique (complete subgr.) of size k in G?

• A traditional “hard problem” in parameterized complexity, though,

we are going to use the following special (polynomial) variant.



page.15
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• Recall. . . Compatible Embedding

– P with a chain partition (C1, . . . , Cw), w = width(P),

– and Q with a “chain” mapping f : Q→ {1, . . . , w}.
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Reduction to Multicol. CliqueReduction to Multicol. Clique

• Recall. . . Compatible Embedding

– P with a chain partition (C1, . . . , Cw), w = width(P),

– and Q with a “chain” mapping f : Q→ {1, . . . , w}.

• ; our |Q|-Coloured Clique of G defined

– V (G) = V1 ∪̇ . . . ∪̇V|Q| where Vi is a copy of Cf(i),

– for p ∈ Va, q ∈ Vb copies of p′ ∈ Cf(a), q
′ ∈ Cf(b), a 6= b,

pq ∈ E(G) iff p′ ≤P q
′ ↔ a ≤Q b and p′ ≥P q

′ ↔ a ≥Q b.
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A Multicoloured Clique instance is called interval-monotone if
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A Multicoloured Clique instance is called interval-monotone if

• the given colour classes are V (G) = V1 ∪ · · · ∪ Vk, E = E(G), and

• the vertex set V (G) can be linearly ordered as ≺ such that;
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A Multicoloured Clique instance is called interval-monotone if

• the given colour classes are V (G) = V1 ∪ · · · ∪ Vk, E = E(G), and

• the vertex set V (G) can be linearly ordered as ≺ such that;

– ∀p ∈ Va, ∀q1≺q2≺q3 ∈ Vb : pq1, pq3 ∈ E → pq2 ∈ E.
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A Multicoloured Clique instance is called interval-monotone if

• the given colour classes are V (G) = V1 ∪ · · · ∪ Vk, E = E(G), and

• the vertex set V (G) can be linearly ordered as ≺ such that;

– ∀p ∈ Va, ∀q1≺q2≺q3 ∈ Vb : pq1, pq3 ∈ E → pq2 ∈ E.

– ∀p1≺p2 ∈ Va, ∀q1≺q2 ∈ Vb : p1q2, p2q1 ∈ E → p1q1, p2q2 ∈ E.
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Input: G, coloured V (G) = V1 ∪ . . .
∪Vk, ordered by ≺.
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Input: G, coloured V (G) = V1 ∪ . . .
∪Vk, ordered by ≺.

• Define MinK i(v), MaxK i(v)
where 2 ≤ i ≤ k and v ∈ Vi:

– MinKi(v) := the ≺-minimum of all the i-cliques which are

contained in V1 ∪ · · · ∪ Vi−1 ∪ {v}.
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Input: G, coloured V (G) = V1 ∪ . . .
∪Vk, ordered by ≺.

• Define MinK i(v), MaxK i(v)
where 2 ≤ i ≤ k and v ∈ Vi:

– MinKi(v) := the ≺-minimum of all the i-cliques which are

contained in V1 ∪ · · · ∪ Vi−1 ∪ {v}.

• Dynamically compute this information, for i = 2, 3, . . . , k, as follows.

For every v ∈ Vi, set X := {v}, and repeat for j = i− 1, . . . , 1:
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Input: G, coloured V (G) = V1 ∪ . . .
∪Vk, ordered by ≺.

• Define MinK i(v), MaxK i(v)
where 2 ≤ i ≤ k and v ∈ Vi:

– MinKi(v) := the ≺-minimum of all the i-cliques which are

contained in V1 ∪ · · · ∪ Vi−1 ∪ {v}.

• Dynamically compute this information, for i = 2, 3, . . . , k, as follows.

For every v ∈ Vi, set X := {v}, and repeat for j = i− 1, . . . , 1:

– x := ≺-min. neighbour of X in Vj such that MaxKj(x) 6= ∅
is in or above the neighbs. of X in each of V1, . . . , Vj−1;

– if x nonexistent, set X := ∅;

v
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Input: G, coloured V (G) = V1 ∪ . . .
∪Vk, ordered by ≺.

• Define MinK i(v), MaxK i(v)
where 2 ≤ i ≤ k and v ∈ Vi:

– MinKi(v) := the ≺-minimum of all the i-cliques which are

contained in V1 ∪ · · · ∪ Vi−1 ∪ {v}.

• Dynamically compute this information, for i = 2, 3, . . . , k, as follows.

For every v ∈ Vi, set X := {v}, and repeat for j = i− 1, . . . , 1:

– x := ≺-min. neighbour of X in Vj such that MaxKj(x) 6= ∅
is in or above the neighbs. of X in each of V1, . . . , Vj−1;

– if x nonexistent, set X := ∅;

v
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Input: G, coloured V (G) = V1 ∪ . . .
∪Vk, ordered by ≺.

• Define MinK i(v), MaxK i(v)
where 2 ≤ i ≤ k and v ∈ Vi:

– MinKi(v) := the ≺-minimum of all the i-cliques which are

contained in V1 ∪ · · · ∪ Vi−1 ∪ {v}.

• Dynamically compute this information, for i = 2, 3, . . . , k, as follows.

For every v ∈ Vi, set X := {v}, and repeat for j = i− 1, . . . , 1:

– x := ≺-min. neighbour of X in Vj such that MaxKj(x) 6= ∅
is in or above the neighbs. of X in each of V1, . . . , Vj−1;

– if x nonexistent, set X := ∅;
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Input: G, coloured V (G) = V1 ∪ . . .
∪Vk, ordered by ≺.

• Define MinK i(v), MaxK i(v)
where 2 ≤ i ≤ k and v ∈ Vi:

– MinKi(v) := the ≺-minimum of all the i-cliques which are

contained in V1 ∪ · · · ∪ Vi−1 ∪ {v}.

• Dynamically compute this information, for i = 2, 3, . . . , k, as follows.

For every v ∈ Vi, set X := {v}, and repeat for j = i− 1, . . . , 1:

– x := ≺-min. neighbour of X in Vj such that MaxKj(x) 6= ∅
is in or above the neighbs. of X in each of V1, . . . , Vj−1;

– if x nonexistent, set X := ∅;
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Input: G, coloured V (G) = V1 ∪ . . .
∪Vk, ordered by ≺.

• Define MinK i(v), MaxK i(v)
where 2 ≤ i ≤ k and v ∈ Vi:

– MinKi(v) := the ≺-minimum of all the i-cliques which are

contained in V1 ∪ · · · ∪ Vi−1 ∪ {v}.

• Dynamically compute this information, for i = 2, 3, . . . , k, as follows.

For every v ∈ Vi, set X := {v}, and repeat for j = i− 1, . . . , 1:

– x := ≺-min. neighbour of X in Vj such that MaxKj(x) 6= ∅
is in or above the neighbs. of X in each of V1, . . . , Vj−1;

– if x nonexistent, set X := ∅;
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– MinKi(v) := X after finishing the iterations (of j).
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4 Summary4 Summary

• Improvement over [Bova, Ganian, Szeider, LICS 2014]

[BGS14] O(f(φ) · ng(w))

Algorithm 1 (using CSP) O(f ′(φ,w) · n4)

Algorithm 2 (using mult. clique) O(f ′′(φ,w) · n2)
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[BGS14] O(f(φ) · ng(w))

Algorithm 1 (using CSP) O(f ′(φ,w) · n4)

Algorithm 2 (using mult. clique) O(f ′′(φ,w) · n2)

– our algorithms are FPT both in φ the width of the poset.

• Straightforward, simpler, and self-contained proofs (Alg. 2).

Non-complicated algorithm (Alg. 2) – “implementable”.

• Current work:

– extension to full FO logic.

Thank you for your attention.
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