
page.15

Petr Hliněný, ISAAC, Jeonju, 2014 1 / 15 Faster Existential FO on Posets

Faster Existential FOFaster Existential FO

Model Checking on PosetsModel Checking on Posets

Petr HliněnýPetr Hliněný

Faculty of Informatics
Masaryk University, Brno, CZ

Jakub Gajarský,Jakub Gajarský,

Jan Obdržálek,Jan Obdržálek,

Sebastian OrdyniakSebastian Ordyniak

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 2 / 15 Faster Existential FO on Posets

0 The Aim; Algorithmic Metatheorems0 The Aim; Algorithmic Metatheorems

– theor. tools claiming efficient solvability of large classes of problems at once.

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 2 / 15 Faster Existential FO on Posets

0 The Aim; Algorithmic Metatheorems0 The Aim; Algorithmic Metatheorems

– theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle’s Theorem* Courcelle’s Theorem
• All MSO2-definable prop. in linear-time FPT for bounded tree-width.

– perhaps the best known algo. metatheorem on graphs (1988)

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 2 / 15 Faster Existential FO on Posets

0 The Aim; Algorithmic Metatheorems0 The Aim; Algorithmic Metatheorems

– theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle’s Theorem* Courcelle’s Theorem
• All MSO2-definable prop. in linear-time FPT for bounded tree-width.

– perhaps the best known algo. metatheorem on graphs (1988)

– clique-width + MSO1 version by [Courcelle–Makowsky–Rotics]

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 2 / 15 Faster Existential FO on Posets

0 The Aim; Algorithmic Metatheorems0 The Aim; Algorithmic Metatheorems

– theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle’s Theorem* Courcelle’s Theorem
• All MSO2-definable prop. in linear-time FPT for bounded tree-width.

– perhaps the best known algo. metatheorem on graphs (1988)

– clique-width + MSO1 version by [Courcelle–Makowsky–Rotics]

* Logic on Graphs* Logic on Graphs
• Propositional logic (∧∨ →), graph vertices/edges (x, y, z, .., e, . . .);

– e.g., ∀x, y
(
edge(x, y)→ x ∈ C∨y ∈ C

)
,

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 2 / 15 Faster Existential FO on Posets

0 The Aim; Algorithmic Metatheorems0 The Aim; Algorithmic Metatheorems

– theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle’s Theorem* Courcelle’s Theorem
• All MSO2-definable prop. in linear-time FPT for bounded tree-width.

– perhaps the best known algo. metatheorem on graphs (1988)

– clique-width + MSO1 version by [Courcelle–Makowsky–Rotics]

* Logic on Graphs* Logic on Graphs
• Propositional logic (∧∨ →), graph vertices/edges (x, y, z, .., e, . . .);

– e.g., ∀x, y
(
edge(x, y)→ x ∈ C∨y ∈ C

)
, “C is vertex cover”

– FO logic (first-order): just this ↑

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 2 / 15 Faster Existential FO on Posets

0 The Aim; Algorithmic Metatheorems0 The Aim; Algorithmic Metatheorems

– theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle’s Theorem* Courcelle’s Theorem
• All MSO2-definable prop. in linear-time FPT for bounded tree-width.

– perhaps the best known algo. metatheorem on graphs (1988)

– clique-width + MSO1 version by [Courcelle–Makowsky–Rotics]

* Logic on Graphs* Logic on Graphs
• Propositional logic (∧∨ →), graph vertices/edges (x, y, z, .., e, . . .);

– e.g., ∀x, y
(
edge(x, y)→ x ∈ C∨y ∈ C

)
, “C is vertex cover”

– FO logic (first-order): just this ↑
– MSO logic (monadic second-o.): quantifies vertex sets ∃X, Y

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 2 / 15 Faster Existential FO on Posets

0 The Aim; Algorithmic Metatheorems0 The Aim; Algorithmic Metatheorems

– theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle’s Theorem* Courcelle’s Theorem
• All MSO2-definable prop. in linear-time FPT for bounded tree-width.

– perhaps the best known algo. metatheorem on graphs (1988)

– clique-width + MSO1 version by [Courcelle–Makowsky–Rotics]

* Logic on Graphs* Logic on Graphs
• Propositional logic (∧∨ →), graph vertices/edges (x, y, z, .., e, . . .);

– e.g., ∀x, y
(
edge(x, y)→ x ∈ C∨y ∈ C

)
, “C is vertex cover”

– FO logic (first-order): just this ↑
– MSO logic (monadic second-o.): quantifies vertex sets ∃X, Y

↑ MSO1 vs. MSO2 ↓

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 2 / 15 Faster Existential FO on Posets

0 The Aim; Algorithmic Metatheorems0 The Aim; Algorithmic Metatheorems

– theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle’s Theorem* Courcelle’s Theorem
• All MSO2-definable prop. in linear-time FPT for bounded tree-width.

– perhaps the best known algo. metatheorem on graphs (1988)

– clique-width + MSO1 version by [Courcelle–Makowsky–Rotics]

* Logic on Graphs* Logic on Graphs
• Propositional logic (∧∨ →), graph vertices/edges (x, y, z, .., e, . . .);

– e.g., ∀x, y
(
edge(x, y)→ x ∈ C∨y ∈ C

)
, “C is vertex cover”

– FO logic (first-order): just this ↑
– MSO logic (monadic second-o.): quantifies vertex sets ∃X, Y

↑ MSO1 vs. MSO2 ↓
– or, quantifies vertex and edge sets together ∃X, Y,E, F .

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 3 / 15 Faster Existential FO on Posets

How far can one get?How far can one get?
* Not far with MSO* Not far with MSO

• On monotone graph classes:

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 3 / 15 Faster Existential FO on Posets

How far can one get?How far can one get?
* Not far with MSO* Not far with MSO

• On monotone graph classes:

– [Kreutzer–Tazari] not above polylog. tree-width with MSO2

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 3 / 15 Faster Existential FO on Posets

How far can one get?How far can one get?
* Not far with MSO* Not far with MSO

• On monotone graph classes:

– [Kreutzer–Tazari] not above polylog. tree-width with MSO2

– [GHLORS] not above polylog. tree-width with coloured MSO1

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 3 / 15 Faster Existential FO on Posets

How far can one get?How far can one get?
* Not far with MSO* Not far with MSO

• On monotone graph classes:

– [Kreutzer–Tazari] not above polylog. tree-width with MSO2

– [GHLORS] not above polylog. tree-width with coloured MSO1

• On hereditary classes, perhaps analogously with clique-width. . . ?

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 3 / 15 Faster Existential FO on Posets

How far can one get?How far can one get?
* Not far with MSO* Not far with MSO

• On monotone graph classes:

– [Kreutzer–Tazari] not above polylog. tree-width with MSO2

– [GHLORS] not above polylog. tree-width with coloured MSO1

• On hereditary classes, perhaps analogously with clique-width. . . ?

* Better with FO* Better with FO

• FO is always in XP, but we aim for FPT (fixed exponent poly.):

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 3 / 15 Faster Existential FO on Posets

How far can one get?How far can one get?
* Not far with MSO* Not far with MSO

• On monotone graph classes:

– [Kreutzer–Tazari] not above polylog. tree-width with MSO2

– [GHLORS] not above polylog. tree-width with coloured MSO1

• On hereditary classes, perhaps analogously with clique-width. . . ?

* Better with FO* Better with FO

• FO is always in XP, but we aim for FPT (fixed exponent poly.):

– [Seese] on bounded degree graphs (1996)

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 3 / 15 Faster Existential FO on Posets

How far can one get?How far can one get?
* Not far with MSO* Not far with MSO

• On monotone graph classes:

– [Kreutzer–Tazari] not above polylog. tree-width with MSO2

– [GHLORS] not above polylog. tree-width with coloured MSO1

• On hereditary classes, perhaps analogously with clique-width. . . ?

* Better with FO* Better with FO

• FO is always in XP, but we aim for FPT (fixed exponent poly.):

– [Seese] on bounded degree graphs (1996)

– [Frick–Grohe] locally bounded tree-width

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 3 / 15 Faster Existential FO on Posets

How far can one get?How far can one get?
* Not far with MSO* Not far with MSO

• On monotone graph classes:

– [Kreutzer–Tazari] not above polylog. tree-width with MSO2

– [GHLORS] not above polylog. tree-width with coloured MSO1

• On hereditary classes, perhaps analogously with clique-width. . . ?

* Better with FO* Better with FO

• FO is always in XP, but we aim for FPT (fixed exponent poly.):

– [Seese] on bounded degree graphs (1996)

– [Frick–Grohe] locally bounded tree-width

– [Dawar–Grohe–Kreutzer] locally excluding a minor

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 3 / 15 Faster Existential FO on Posets

How far can one get?How far can one get?
* Not far with MSO* Not far with MSO

• On monotone graph classes:

– [Kreutzer–Tazari] not above polylog. tree-width with MSO2

– [GHLORS] not above polylog. tree-width with coloured MSO1

• On hereditary classes, perhaps analogously with clique-width. . . ?

* Better with FO* Better with FO

• FO is always in XP, but we aim for FPT (fixed exponent poly.):

– [Seese] on bounded degree graphs (1996)

– [Frick–Grohe] locally bounded tree-width

– [Dawar–Grohe–Kreutzer] locally excluding a minor

– [D.-K. / Dvǒrák–Král’–Thomas] locally bounded expansion

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 3 / 15 Faster Existential FO on Posets

How far can one get?How far can one get?
* Not far with MSO* Not far with MSO

• On monotone graph classes:

– [Kreutzer–Tazari] not above polylog. tree-width with MSO2

– [GHLORS] not above polylog. tree-width with coloured MSO1

• On hereditary classes, perhaps analogously with clique-width. . . ?

* Better with FO* Better with FO

• FO is always in XP, but we aim for FPT (fixed exponent poly.):

– [Seese] on bounded degree graphs (1996)

– [Frick–Grohe] locally bounded tree-width

– [Dawar–Grohe–Kreutzer] locally excluding a minor

– [D.-K. / Dvǒrák–Král’–Thomas] locally bounded expansion

– [Grohe–Kreutzer–Siebertz] nowhere dense graphs ! (2013)

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 4 / 15 Faster Existential FO on Posets

1 FO Model Checking on Posets1 FO Model Checking on Posets

• A poset P (partially ordered set)

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 4 / 15 Faster Existential FO on Posets

1 FO Model Checking on Posets1 FO Model Checking on Posets

• A poset P (partially ordered set)

– a ground set P , and

– a reflexive, symmetric, transitive bin. relation ≤ on P .

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 4 / 15 Faster Existential FO on Posets

1 FO Model Checking on Posets1 FO Model Checking on Posets

• A poset P (partially ordered set)

– a ground set P , and

– a reflexive, symmetric, transitive bin. relation ≤ on P .

• FO logic on a poset; e.g.

– ∀y (y ≤ x→ x ≤ y),

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 4 / 15 Faster Existential FO on Posets

1 FO Model Checking on Posets1 FO Model Checking on Posets

• A poset P (partially ordered set)

– a ground set P , and

– a reflexive, symmetric, transitive bin. relation ≤ on P .

• FO logic on a poset; e.g.

– ∀y (y ≤ x→ x ≤ y), “x is a minimal element”,

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 4 / 15 Faster Existential FO on Posets

1 FO Model Checking on Posets1 FO Model Checking on Posets

• A poset P (partially ordered set)

– a ground set P , and

– a reflexive, symmetric, transitive bin. relation ≤ on P .

• FO logic on a poset; e.g.

– ∀y (y ≤ x→ x ≤ y), “x is a minimal element”,

– z ≤ x ∧ z ≤ y ∧ ∀t
[
(t ≤ x ∧ t ≤ y)→ t ≤ z

]
, “infimum”,

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 4 / 15 Faster Existential FO on Posets

1 FO Model Checking on Posets1 FO Model Checking on Posets

• A poset P (partially ordered set)

– a ground set P , and

– a reflexive, symmetric, transitive bin. relation ≤ on P .

• FO logic on a poset; e.g.

– ∀y (y ≤ x→ x ≤ y), “x is a minimal element”,

– z ≤ x ∧ z ≤ y ∧ ∀t
[
(t ≤ x ∧ t ≤ y)→ t ≤ z

]
, “infimum”,

• Model checking (a parameterized formulation)

Input: A poset P , and an (FO) sentence φ.

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 4 / 15 Faster Existential FO on Posets

1 FO Model Checking on Posets1 FO Model Checking on Posets

• A poset P (partially ordered set)

– a ground set P , and

– a reflexive, symmetric, transitive bin. relation ≤ on P .

• FO logic on a poset; e.g.

– ∀y (y ≤ x→ x ≤ y), “x is a minimal element”,

– z ≤ x ∧ z ≤ y ∧ ∀t
[
(t ≤ x ∧ t ≤ y)→ t ≤ z

]
, “infimum”,

• Model checking (a parameterized formulation)

Input: A poset P , and an (FO) sentence φ. Param.: |φ|.
Question: Is P |= φ ?

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 5 / 15 Faster Existential FO on Posets

Why FO on Posets?Why FO on Posets?

• So far, most nontrivial results obtained on sparse classes of graphs;

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 5 / 15 Faster Existential FO on Posets

Why FO on Posets?Why FO on Posets?

• So far, most nontrivial results obtained on sparse classes of graphs;

– except [Ganian, PH, Král’, Obdržálek, Schwartz, Teska]

FO model checking on L-interval graphs (2013).

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 5 / 15 Faster Existential FO on Posets

Why FO on Posets?Why FO on Posets?

• So far, most nontrivial results obtained on sparse classes of graphs;

– except [Ganian, PH, Král’, Obdržálek, Schwartz, Teska]

FO model checking on L-interval graphs (2013).

• Posets present a very natural example of dense relational structures.

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 5 / 15 Faster Existential FO on Posets

Why FO on Posets?Why FO on Posets?

• So far, most nontrivial results obtained on sparse classes of graphs;

– except [Ganian, PH, Král’, Obdržálek, Schwartz, Teska]

FO model checking on L-interval graphs (2013).

• Posets present a very natural example of dense relational structures.

• The research initiated by

[Bova, Ganian, Szeider, LICS 2014]:

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 5 / 15 Faster Existential FO on Posets

Why FO on Posets?Why FO on Posets?

• So far, most nontrivial results obtained on sparse classes of graphs;

– except [Ganian, PH, Král’, Obdržálek, Schwartz, Teska]

FO model checking on L-interval graphs (2013).

• Posets present a very natural example of dense relational structures.

• The research initiated by

[Bova, Ganian, Szeider, LICS 2014]:

FO model checking on posets is hard (W[1]-hard par. |φ|) for, e.g.

– bounded depth (the maximum size of a chain),

– bounded cover-degree (the max. deg. in the Hasse diagram),

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 5 / 15 Faster Existential FO on Posets

Why FO on Posets?Why FO on Posets?

• So far, most nontrivial results obtained on sparse classes of graphs;

– except [Ganian, PH, Král’, Obdržálek, Schwartz, Teska]

FO model checking on L-interval graphs (2013).

• Posets present a very natural example of dense relational structures.

• The research initiated by

[Bova, Ganian, Szeider, LICS 2014]:

FO model checking on posets is hard (W[1]-hard par. |φ|) for, e.g.

– bounded depth (the maximum size of a chain),

– bounded cover-degree (the max. deg. in the Hasse diagram),

while the problem becomes FPT for

– posets of bounded width (the maximum size of an antichain).

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 6 / 15 Faster Existential FO on Posets

A short detour; Hasse DiagramsA short detour; Hasse Diagrams

• Having a poset P(P,≤), the

Hasse diagram is the digraph H on V (H) = P

– such that (u, v) ∈ E(H) iff u < v, and no x ∈ P , u <x< v.

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 6 / 15 Faster Existential FO on Posets

A short detour; Hasse DiagramsA short detour; Hasse Diagrams

• Having a poset P(P,≤), the

Hasse diagram is the digraph H on V (H) = P

– such that (u, v) ∈ E(H) iff u < v, and no x ∈ P , u <x< v.

• H determines P , and so

– how FO m.c. can be hard when ∆(H) (cov. deg.) is bounded?

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 6 / 15 Faster Existential FO on Posets

A short detour; Hasse DiagramsA short detour; Hasse Diagrams

• Having a poset P(P,≤), the

Hasse diagram is the digraph H on V (H) = P

– such that (u, v) ∈ E(H) iff u < v, and no x ∈ P , u <x< v.

• H determines P , and so

– how FO m.c. can be hard when ∆(H) (cov. deg.) is bounded?

Yes. . . but P is the transitive closure of H – not FO-definable!

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 6 / 15 Faster Existential FO on Posets

A short detour; Hasse DiagramsA short detour; Hasse Diagrams

• Having a poset P(P,≤), the

Hasse diagram is the digraph H on V (H) = P

– such that (u, v) ∈ E(H) iff u < v, and no x ∈ P , u <x< v.

• H determines P , and so

– how FO m.c. can be hard when ∆(H) (cov. deg.) is bounded?

Yes. . . but P is the transitive closure of H – not FO-definable!

• Still, one more try:

– MSO logic defines the transitive closure, and

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 6 / 15 Faster Existential FO on Posets

A short detour; Hasse DiagramsA short detour; Hasse Diagrams

• Having a poset P(P,≤), the

Hasse diagram is the digraph H on V (H) = P

– such that (u, v) ∈ E(H) iff u < v, and no x ∈ P , u <x< v.

• H determines P , and so

– how FO m.c. can be hard when ∆(H) (cov. deg.) is bounded?

Yes. . . but P is the transitive closure of H – not FO-definable!

• Still, one more try:

– MSO logic defines the transitive closure, and

– Hasse d. of bounded width seem to have small tree-width.

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 6 / 15 Faster Existential FO on Posets

A short detour; Hasse DiagramsA short detour; Hasse Diagrams

• Having a poset P(P,≤), the

Hasse diagram is the digraph H on V (H) = P

– such that (u, v) ∈ E(H) iff u < v, and no x ∈ P , u <x< v.

• H determines P , and so

– how FO m.c. can be hard when ∆(H) (cov. deg.) is bounded?

Yes. . . but P is the transitive closure of H – not FO-definable!

• Still, one more try:

– MSO logic defines the transitive closure, and

– Hasse d. of bounded width seem to have small tree-width.

NO, [BGS] arbitrarily large grids even for poset width 2 !

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 7 / 15 Faster Existential FO on Posets

2 ∃-FO on Posets2 ∃-FO on Posets

* [Bova, Ganian, Szeider]* [Bova, Ganian, Szeider]

• ∃-FO – the existential fragment of FO (no ∀x . . .).

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 7 / 15 Faster Existential FO on Posets

2 ∃-FO on Posets2 ∃-FO on Posets

* [Bova, Ganian, Szeider]* [Bova, Ganian, Szeider]

• ∃-FO – the existential fragment of FO (no ∀x . . .).

• The main result of [BGS, LICS 2014]:

Poset ∃-FO model checking on P = (P,≤) solvable in time

f(|φ|) · |P | g(width(P)).

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 7 / 15 Faster Existential FO on Posets

2 ∃-FO on Posets2 ∃-FO on Posets

* [Bova, Ganian, Szeider]* [Bova, Ganian, Szeider]

• ∃-FO – the existential fragment of FO (no ∀x . . .).

• The main result of [BGS, LICS 2014]:

Poset ∃-FO model checking on P = (P,≤) solvable in time

f(|φ|) · |P | g(width(P)).

Note, only an XP algorithm with respect to width(P).

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 7 / 15 Faster Existential FO on Posets

2 ∃-FO on Posets2 ∃-FO on Posets

* [Bova, Ganian, Szeider]* [Bova, Ganian, Szeider]

• ∃-FO – the existential fragment of FO (no ∀x . . .).

• The main result of [BGS, LICS 2014]:

Poset ∃-FO model checking on P = (P,≤) solvable in time

f(|φ|) · |P | g(width(P)).

Note, only an XP algorithm with respect to width(P).

• Step 1. An FPT reduction to many instances of the embedding

problem (“induced subposet”).

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 7 / 15 Faster Existential FO on Posets

2 ∃-FO on Posets2 ∃-FO on Posets

* [Bova, Ganian, Szeider]* [Bova, Ganian, Szeider]

• ∃-FO – the existential fragment of FO (no ∀x . . .).

• The main result of [BGS, LICS 2014]:

Poset ∃-FO model checking on P = (P,≤) solvable in time

f(|φ|) · |P | g(width(P)).

Note, only an XP algorithm with respect to width(P).

• Step 1. An FPT reduction to many instances of the embedding

problem (“induced subposet”).

• Step 2. A further reduction to a family of instances of the homo-

morphism problem on certain lattice structures.

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 7 / 15 Faster Existential FO on Posets

2 ∃-FO on Posets2 ∃-FO on Posets

* [Bova, Ganian, Szeider]* [Bova, Ganian, Szeider]

• ∃-FO – the existential fragment of FO (no ∀x . . .).

• The main result of [BGS, LICS 2014]:

Poset ∃-FO model checking on P = (P,≤) solvable in time

f(|φ|) · |P | g(width(P)).

Note, only an XP algorithm with respect to width(P).

• Step 1. An FPT reduction to many instances of the embedding

problem (“induced subposet”).

• Step 2. A further reduction to a family of instances of the homo-

morphism problem on certain lattice structures.

• Step 3. Solving the homomorphism problem in polytime (using a
highly non-trivial theorem).

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 8 / 15 Faster Existential FO on Posets

The Embedding ProblemThe Embedding Problem

* [BGS]* [BGS]• Embedding (for posets)

Input: Two poset Q = (Q,≤Q) and P = (P,≤P).

Parameters: |Q| and width(P).

Question: Is there an embedding from Q into P?

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 8 / 15 Faster Existential FO on Posets

The Embedding ProblemThe Embedding Problem

* [BGS]* [BGS]• Embedding (for posets)

Input: Two poset Q = (Q,≤Q) and P = (P,≤P).

Parameters: |Q| and width(P).

Question: Is there an embedding from Q into P?

• An embedding from Q into P
– an injective mapping e : Q→ P such that

q ≤Q q
′ iff e(q) ≤P e(q

′), for every q, q′ ∈ Q.

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 8 / 15 Faster Existential FO on Posets

The Embedding ProblemThe Embedding Problem

* [BGS]* [BGS]• Embedding (for posets)

Input: Two poset Q = (Q,≤Q) and P = (P,≤P).

Parameters: |Q| and width(P).

Question: Is there an embedding from Q into P?

• An embedding from Q into P
– an injective mapping e : Q→ P such that

q ≤Q q
′ iff e(q) ≤P e(q

′), for every q, q′ ∈ Q.

• Technically easier (with width(P)|Q| blow-up) to consider:

Compatible Embedding

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 8 / 15 Faster Existential FO on Posets

The Embedding ProblemThe Embedding Problem

* [BGS]* [BGS]• Embedding (for posets)

Input: Two poset Q = (Q,≤Q) and P = (P,≤P).

Parameters: |Q| and width(P).

Question: Is there an embedding from Q into P?

• An embedding from Q into P
– an injective mapping e : Q→ P such that

q ≤Q q
′ iff e(q) ≤P e(q

′), for every q, q′ ∈ Q.

• Technically easier (with width(P)|Q| blow-up) to consider:

Compatible Embedding

. . . P with a chain partition (C1, . . . , Cw), w = width(P),

and Q with a mapping f : Q→ {1, . . . , w}.

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 8 / 15 Faster Existential FO on Posets

The Embedding ProblemThe Embedding Problem

* [BGS]* [BGS]• Embedding (for posets)

Input: Two poset Q = (Q,≤Q) and P = (P,≤P).

Parameters: |Q| and width(P).

Question: Is there an embedding from Q into P?

• An embedding from Q into P
– an injective mapping e : Q→ P such that

q ≤Q q
′ iff e(q) ≤P e(q

′), for every q, q′ ∈ Q.

• Technically easier (with width(P)|Q| blow-up) to consider:

Compatible Embedding

. . . P with a chain partition (C1, . . . , Cw), w = width(P),

and Q with a mapping f : Q→ {1, . . . , w}.
Question: Is there an embedding e : Q→ P such that

e(q) ∈ Cf(q), for every q ∈ Q?

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 9 / 15 Faster Existential FO on Posets

The Embedding Problem; examplesThe Embedding Problem; examples

Does it embed?

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 9 / 15 Faster Existential FO on Posets

The Embedding Problem; examplesThe Embedding Problem; examples

Does it embed?

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 9 / 15 Faster Existential FO on Posets

The Embedding Problem; examplesThe Embedding Problem; examples

Does it embed?

YES

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 9 / 15 Faster Existential FO on Posets

The Embedding Problem; examplesThe Embedding Problem; examples

Does it embed?

YES

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 9 / 15 Faster Existential FO on Posets

The Embedding Problem; examplesThe Embedding Problem; examples

Does it embed?

YES

NO

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 10 / 15 Faster Existential FO on Posets

3 New Result3 New Result

Poset ∃-FO model checking on P = (P,≤) solvable in time

h(|φ|, width(P)) · |P |2.

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 10 / 15 Faster Existential FO on Posets

3 New Result3 New Result

Poset ∃-FO model checking on P = (P,≤) solvable in time

h(|φ|, width(P)) · |P |2.

Note, this is now an FPT algorithm with respect to both |φ|, width(P).

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 10 / 15 Faster Existential FO on Posets

3 New Result3 New Result

Poset ∃-FO model checking on P = (P,≤) solvable in time

h(|φ|, width(P)) · |P |2.

Note, this is now an FPT algorithm with respect to both |φ|, width(P).

• Step 1. The same FPT reduction (as [BGS]) to many instances of

Compatible Embedding.

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 10 / 15 Faster Existential FO on Posets

3 New Result3 New Result

Poset ∃-FO model checking on P = (P,≤) solvable in time

h(|φ|, width(P)) · |P |2.

Note, this is now an FPT algorithm with respect to both |φ|, width(P).

• Step 1. The same FPT reduction (as [BGS]) to many instances of

Compatible Embedding.

• Step 2. (solution 1) Solving each Comp. Embedding inst. as a

CSP instance closed under a min-polymorhpism (poly but slow).

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 10 / 15 Faster Existential FO on Posets

3 New Result3 New Result

Poset ∃-FO model checking on P = (P,≤) solvable in time

h(|φ|, width(P)) · |P |2.

Note, this is now an FPT algorithm with respect to both |φ|, width(P).

• Step 1. The same FPT reduction (as [BGS]) to many instances of

Compatible Embedding.

• Step 2. (solution 1) Solving each Comp. Embedding inst. as a

CSP instance closed under a min-polymorhpism (poly but slow).

(solution 2) Further one-to-one reduction to a certain variant of

well known Multicoloured Clique.

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 10 / 15 Faster Existential FO on Posets

3 New Result3 New Result

Poset ∃-FO model checking on P = (P,≤) solvable in time

h(|φ|, width(P)) · |P |2.

Note, this is now an FPT algorithm with respect to both |φ|, width(P).

• Step 1. The same FPT reduction (as [BGS]) to many instances of

Compatible Embedding.

• Step 2. (solution 1) Solving each Comp. Embedding inst. as a

CSP instance closed under a min-polymorhpism (poly but slow).

(solution 2) Further one-to-one reduction to a certain variant of

well known Multicoloured Clique.

• Step 3. Solving the (interval-monotone) variant of Multicol-
oured Clique in polynomial time – overall quadratic in |P |.

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 11 / 15 Faster Existential FO on Posets

Multicoloured CliqueMulticoloured Clique

ss
ss
ss

ss
ss
ss

ss
ss
ss

. . .
##
##
##
#

%
%
%
%
%
%
%
%

aaaaaaa

%
%
%
%
%
%
%
%

aaaaaaa

!!!
!!!
!

%
%
%
%
%
%
%
%

!!!
!!!
!

##
##
##
#

ccccccc

T
T
T
T
T
T
T
T
T
T
T

ccccccc

!!
!!
!!
!!
!!
!!
!!

`̀ `̀ `̀ `̀ `̀ `̀ `̀

!!
!!
!!
!!
!!
!!
!!

""
""
""
""
""
""
""

aaaaaaaaaaaaaa

aaaaaaaaaaaaaa

!!
!!
!!
!!
!!
!!
!!

 bbbbbbbbbbbbbb

hhhhhhhhhhhhhhhhhhhhhh

(((((((
(((((((

(((((((
((((((((

(((((((
(((((((

(

XXXXXXXXXXXXXXXXXXXXXXX

hhhhhhhhhhhhhhhhhhhhhh

�

�

�

�

�

�

�

�

�

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 11 / 15 Faster Existential FO on Posets

Multicoloured CliqueMulticoloured Clique

ss
ss
ss

ss
ss
ss

ss
ss
ss

. . .
##
##
##
#

%
%
%
%
%
%
%
%

aaaaaaa

%
%
%
%
%
%
%
%

aaaaaaa

!!!
!!!
!

%
%
%
%
%
%
%
%

!!!
!!!
!

##
##
##
#

ccccccc

T
T
T
T
T
T
T
T
T
T
T

ccccccc

!!
!!
!!
!!
!!
!!
!!

`̀ `̀ `̀ `̀ `̀ `̀ `̀

!!
!!
!!
!!
!!
!!
!!

""
""
""
""
""
""
""

aaaaaaaaaaaaaa

aaaaaaaaaaaaaa

!!
!!
!!
!!
!!
!!
!!

 bbbbbbbbbbbbbb

hhhhhhhhhhhhhhhhhhhhhh

(((((((
(((((((

(((((((
((((((((

(((((((
(((((((

(

XXXXXXXXXXXXXXXXXXXXXXX

hhhhhhhhhhhhhhhhhhhhhh

�

�

�

�

�

�

�

�

�

• Multicoloured Clique

Input: A graph G with a proper k-colouring.

Parameter: k.

Question: Is there a clique (complete subgr.) of size k in G?

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 11 / 15 Faster Existential FO on Posets

Multicoloured CliqueMulticoloured Clique

ss
ss
ss

ss
ss
ss

ss
ss
ss

. . .
##
##
##
#

%
%
%
%
%
%
%
%

aaaaaaa

%
%
%
%
%
%
%
%

aaaaaaa

!!!
!!!
!

%
%
%
%
%
%
%
%

!!!
!!!
!

##
##
##
#

ccccccc

T
T
T
T
T
T
T
T
T
T
T

ccccccc

!!
!!
!!
!!
!!
!!
!!

`̀ `̀ `̀ `̀ `̀ `̀ `̀

!!
!!
!!
!!
!!
!!
!!

""
""
""
""
""
""
""

aaaaaaaaaaaaaa

aaaaaaaaaaaaaa

!!
!!
!!
!!
!!
!!
!!

 bbbbbbbbbbbbbb

hhhhhhhhhhhhhhhhhhhhhh

(((((((
(((((((

(((((((
((((((((

(((((((
(((((((

(

XXXXXXXXXXXXXXXXXXXXXXX

hhhhhhhhhhhhhhhhhhhhhh

�

�

�

�

�

�

�

�

�

• Multicoloured Clique

Input: A graph G with a proper k-colouring.

Parameter: k.

Question: Is there a clique (complete subgr.) of size k in G?

• A traditional “hard problem” in parameterized complexity, though,

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 11 / 15 Faster Existential FO on Posets

Multicoloured CliqueMulticoloured Clique

ss
ss
ss

ss
ss
ss

ss
ss
ss

. . .
##
##
##
#

%
%
%
%
%
%
%
%

aaaaaaa

%
%
%
%
%
%
%
%

aaaaaaa

!!!
!!!
!

%
%
%
%
%
%
%
%

!!!
!!!
!

##
##
##
#

ccccccc

T
T
T
T
T
T
T
T
T
T
T

ccccccc

!!
!!
!!
!!
!!
!!
!!

`̀ `̀ `̀ `̀ `̀ `̀ `̀

!!
!!
!!
!!
!!
!!
!!

""
""
""
""
""
""
""

aaaaaaaaaaaaaa

aaaaaaaaaaaaaa

!!
!!
!!
!!
!!
!!
!!

 bbbbbbbbbbbbbb

hhhhhhhhhhhhhhhhhhhhhh

(((((((
(((((((

(((((((
((((((((

(((((((
(((((((

(

XXXXXXXXXXXXXXXXXXXXXXX

hhhhhhhhhhhhhhhhhhhhhh

�

�

�

�

�

�

�

�

�

• Multicoloured Clique

Input: A graph G with a proper k-colouring.

Parameter: k.

Question: Is there a clique (complete subgr.) of size k in G?

• A traditional “hard problem” in parameterized complexity, though,

we are going to use the following special (polynomial) variant.

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 12 / 15 Faster Existential FO on Posets

Reduction to Multicol. CliqueReduction to Multicol. Clique

• Recall. . . Compatible Embedding

– P with a chain partition (C1, . . . , Cw), w = width(P),

– and Q with a “chain” mapping f : Q→ {1, . . . , w}.

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 12 / 15 Faster Existential FO on Posets

Reduction to Multicol. CliqueReduction to Multicol. Clique

• Recall. . . Compatible Embedding

– P with a chain partition (C1, . . . , Cw), w = width(P),

– and Q with a “chain” mapping f : Q→ {1, . . . , w}.

• ; our |Q|-Coloured Clique of G defined

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 12 / 15 Faster Existential FO on Posets

Reduction to Multicol. CliqueReduction to Multicol. Clique

• Recall. . . Compatible Embedding

– P with a chain partition (C1, . . . , Cw), w = width(P),

– and Q with a “chain” mapping f : Q→ {1, . . . , w}.

• ; our |Q|-Coloured Clique of G defined

– V (G) = V1 ∪̇ . . . ∪̇V|Q| where Vi is a copy of Cf(i),

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 12 / 15 Faster Existential FO on Posets

Reduction to Multicol. CliqueReduction to Multicol. Clique

• Recall. . . Compatible Embedding

– P with a chain partition (C1, . . . , Cw), w = width(P),

– and Q with a “chain” mapping f : Q→ {1, . . . , w}.

• ; our |Q|-Coloured Clique of G defined

– V (G) = V1 ∪̇ . . . ∪̇V|Q| where Vi is a copy of Cf(i),

– for p ∈ Va, q ∈ Vb copies of p′ ∈ Cf(a), q
′ ∈ Cf(b), a 6= b,

pq ∈ E(G) iff p′ ≤P q
′ ↔ a ≤Q b and p′ ≥P q

′ ↔ a ≥Q b.

s
s

sss
sss
sss
ss

((((((((
((

����
����

��

!!!
!!!
!!!
!

hhhhhhhhhh
((((((((

((
����

����
��

!!!
!!!
!!!
!

. . . s
s

s

s

s
s

s

s

��
��
��
��
��HHHHHHHHHH

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 13 / 15 Faster Existential FO on Posets

Interval-Monotone Multicol. CliqueInterval-Monotone Multicol. Clique

Using special properties of the reduction. . .

s
s

sss
sss
sss
ss

((((((((
((

����
����

��

!!!
!!!
!!!
!

hhhhhhhhhh
((((((((

((
����

����
��

!!!
!!!
!!!
!

. . . s
s

s

s

s
s

s

s

��
��
��
��
��HHHHHHHHHH

A Multicoloured Clique instance is called interval-monotone if

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 13 / 15 Faster Existential FO on Posets

Interval-Monotone Multicol. CliqueInterval-Monotone Multicol. Clique

Using special properties of the reduction. . .

s
s

sss
sss
sss
ss

((((((((
((

����
����

��

!!!
!!!
!!!
!

hhhhhhhhhh
((((((((

((
����

����
��

!!!
!!!
!!!
!

. . . s
s

s

s

s
s

s

s

��
��
��
��
��HHHHHHHHHH

A Multicoloured Clique instance is called interval-monotone if

• the given colour classes are V (G) = V1 ∪ · · · ∪ Vk, E = E(G), and

• the vertex set V (G) can be linearly ordered as ≺ such that;

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 13 / 15 Faster Existential FO on Posets

Interval-Monotone Multicol. CliqueInterval-Monotone Multicol. Clique

Using special properties of the reduction. . .

s
s

sss
sss
sss
ss

((((((((
((

����
����

��

!!!
!!!
!!!
!

hhhhhhhhhh
((((((((

((
����

����
��

!!!
!!!
!!!
!

. . . s
s

s

s

s
s

s

s

��
��
��
��
��HHHHHHHHHH

A Multicoloured Clique instance is called interval-monotone if

• the given colour classes are V (G) = V1 ∪ · · · ∪ Vk, E = E(G), and

• the vertex set V (G) can be linearly ordered as ≺ such that;

– ∀p ∈ Va, ∀q1≺q2≺q3 ∈ Vb : pq1, pq3 ∈ E → pq2 ∈ E.

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 13 / 15 Faster Existential FO on Posets

Interval-Monotone Multicol. CliqueInterval-Monotone Multicol. Clique

Using special properties of the reduction. . .

s
s

sss
sss
sss
ss

((((((((
((

����
����

��

!!!
!!!
!!!
!

hhhhhhhhhh
((((((((

((
����

����
��

!!!
!!!
!!!
!

. . . s
s

s

s

s
s

s

s

��
��
��
��
��HHHHHHHHHH

A Multicoloured Clique instance is called interval-monotone if

• the given colour classes are V (G) = V1 ∪ · · · ∪ Vk, E = E(G), and

• the vertex set V (G) can be linearly ordered as ≺ such that;

– ∀p ∈ Va, ∀q1≺q2≺q3 ∈ Vb : pq1, pq3 ∈ E → pq2 ∈ E.

– ∀p1≺p2 ∈ Va, ∀q1≺q2 ∈ Vb : p1q2, p2q1 ∈ E → p1q1, p2q2 ∈ E.

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 14 / 15 Faster Existential FO on Posets

The AlgorithmThe Algorithm

ss
ss
ss

ss
ss
ss

ss
ss
ss

ss
ss
ss

1 k

##
##
##
#

!!!
!!!
!(((((((hhhhhhhhhhhhhh(((((((

�

�

�

�

�

�

�

�

�

�

�

�

Input: G, coloured V (G) = V1 ∪ . . .
∪Vk, ordered by ≺.

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 14 / 15 Faster Existential FO on Posets

The AlgorithmThe Algorithm

ss
ss
ss

ss
ss
ss

ss
ss
ss

ss
ss
ss

1 k

##
##
##
#

!!!
!!!
!(((((((hhhhhhhhhhhhhh(((((((

�

�

�

�

�

�

�

�

�

�

�

�

Input: G, coloured V (G) = V1 ∪ . . .
∪Vk, ordered by ≺.

• Define MinK i(v), MaxK i(v)
where 2 ≤ i ≤ k and v ∈ Vi:

– MinKi(v) := the ≺-minimum of all the i-cliques which are

contained in V1 ∪ · · · ∪ Vi−1 ∪ {v}.

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 14 / 15 Faster Existential FO on Posets

The AlgorithmThe Algorithm

ss
ss
ss

ss
ss
ss

ss
ss
ss

ss
ss
ss

1 k

##
##
##
#

!!!
!!!
!(((((((hhhhhhhhhhhhhh(((((((

�

�

�

�

�

�

�

�

�

�

�

�

Input: G, coloured V (G) = V1 ∪ . . .
∪Vk, ordered by ≺.

• Define MinK i(v), MaxK i(v)
where 2 ≤ i ≤ k and v ∈ Vi:

– MinKi(v) := the ≺-minimum of all the i-cliques which are

contained in V1 ∪ · · · ∪ Vi−1 ∪ {v}.

• Dynamically compute this information, for i = 2, 3, . . . , k, as follows.

For every v ∈ Vi, set X := {v}, and repeat for j = i− 1, . . . , 1:

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 14 / 15 Faster Existential FO on Posets

The AlgorithmThe Algorithm

ss
ss
ss

ss
ss
ss

ss
ss
ss

ss
ss
ss

1 k

##
##
##
#

!!!
!!!
!(((((((hhhhhhhhhhhhhh(((((((

�

�

�

�

�

�

�

�

�

�

�

�

Input: G, coloured V (G) = V1 ∪ . . .
∪Vk, ordered by ≺.

• Define MinK i(v), MaxK i(v)
where 2 ≤ i ≤ k and v ∈ Vi:

– MinKi(v) := the ≺-minimum of all the i-cliques which are

contained in V1 ∪ · · · ∪ Vi−1 ∪ {v}.

• Dynamically compute this information, for i = 2, 3, . . . , k, as follows.

For every v ∈ Vi, set X := {v}, and repeat for j = i− 1, . . . , 1:

– x := ≺-min. neighbour of X in Vj such that MaxKj(x) 6= ∅
is in or above the neighbs. of X in each of V1, . . . , Vj−1;

– if x nonexistent, set X := ∅;

v

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 14 / 15 Faster Existential FO on Posets

The AlgorithmThe Algorithm

ss
ss
ss

ss
ss
ss

ss
ss
ss

ss
ss
ss

1 k

##
##
##
#

!!!
!!!
!(((((((hhhhhhhhhhhhhh(((((((

�

�

�

�

�

�

�

�

�

�

�

�

Input: G, coloured V (G) = V1 ∪ . . .
∪Vk, ordered by ≺.

• Define MinK i(v), MaxK i(v)
where 2 ≤ i ≤ k and v ∈ Vi:

– MinKi(v) := the ≺-minimum of all the i-cliques which are

contained in V1 ∪ · · · ∪ Vi−1 ∪ {v}.

• Dynamically compute this information, for i = 2, 3, . . . , k, as follows.

For every v ∈ Vi, set X := {v}, and repeat for j = i− 1, . . . , 1:

– x := ≺-min. neighbour of X in Vj such that MaxKj(x) 6= ∅
is in or above the neighbs. of X in each of V1, . . . , Vj−1;

– if x nonexistent, set X := ∅;

v

aaa
aaa

a

`̀`̀`̀`̀`̀`̀`

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 14 / 15 Faster Existential FO on Posets

The AlgorithmThe Algorithm

ss
ss
ss

ss
ss
ss

ss
ss
ss

ss
ss
ss

1 k

##
##
##
#

!!!
!!!
!(((((((hhhhhhhhhhhhhh(((((((

�

�

�

�

�

�

�

�

�

�

�

�

Input: G, coloured V (G) = V1 ∪ . . .
∪Vk, ordered by ≺.

• Define MinK i(v), MaxK i(v)
where 2 ≤ i ≤ k and v ∈ Vi:

– MinKi(v) := the ≺-minimum of all the i-cliques which are

contained in V1 ∪ · · · ∪ Vi−1 ∪ {v}.

• Dynamically compute this information, for i = 2, 3, . . . , k, as follows.

For every v ∈ Vi, set X := {v}, and repeat for j = i− 1, . . . , 1:

– x := ≺-min. neighbour of X in Vj such that MaxKj(x) 6= ∅
is in or above the neighbs. of X in each of V1, . . . , Vj−1;

– if x nonexistent, set X := ∅;

v

aaa
aaa

a

`̀`̀`̀`̀`̀`̀` aaa
aaa

a

`̀`̀`̀`̀`̀`̀`

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 14 / 15 Faster Existential FO on Posets

The AlgorithmThe Algorithm

ss
ss
ss

ss
ss
ss

ss
ss
ss

ss
ss
ss

1 k

##
##
##
#

!!!
!!!
!(((((((hhhhhhhhhhhhhh(((((((

�

�

�

�

�

�

�

�

�

�

�

�

Input: G, coloured V (G) = V1 ∪ . . .
∪Vk, ordered by ≺.

• Define MinK i(v), MaxK i(v)
where 2 ≤ i ≤ k and v ∈ Vi:

– MinKi(v) := the ≺-minimum of all the i-cliques which are

contained in V1 ∪ · · · ∪ Vi−1 ∪ {v}.

• Dynamically compute this information, for i = 2, 3, . . . , k, as follows.

For every v ∈ Vi, set X := {v}, and repeat for j = i− 1, . . . , 1:

– x := ≺-min. neighbour of X in Vj such that MaxKj(x) 6= ∅
is in or above the neighbs. of X in each of V1, . . . , Vj−1;

– if x nonexistent, set X := ∅;

v

aaa
aaa

a

`̀`̀`̀`̀`̀`̀` aaa
aaa

a

`̀`̀`̀`̀`̀`̀` aaa
aaa

acc
cc

cc
c

bb
bb

bb
bb

bb
bb

b

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 14 / 15 Faster Existential FO on Posets

The AlgorithmThe Algorithm

ss
ss
ss

ss
ss
ss

ss
ss
ss

ss
ss
ss

1 k

##
##
##
#

!!!
!!!
!(((((((hhhhhhhhhhhhhh(((((((

�

�

�

�

�

�

�

�

�

�

�

�

Input: G, coloured V (G) = V1 ∪ . . .
∪Vk, ordered by ≺.

• Define MinK i(v), MaxK i(v)
where 2 ≤ i ≤ k and v ∈ Vi:

– MinKi(v) := the ≺-minimum of all the i-cliques which are

contained in V1 ∪ · · · ∪ Vi−1 ∪ {v}.

• Dynamically compute this information, for i = 2, 3, . . . , k, as follows.

For every v ∈ Vi, set X := {v}, and repeat for j = i− 1, . . . , 1:

– x := ≺-min. neighbour of X in Vj such that MaxKj(x) 6= ∅
is in or above the neighbs. of X in each of V1, . . . , Vj−1;

– if x nonexistent, set X := ∅;

v

aaa
aaa

a

`̀`̀`̀`̀`̀`̀` aaa
aaa

a

`̀`̀`̀`̀`̀`̀` aaa
aaa

acc
cc

cc
c

bb
bb

bb
bb

bb
bb

b

– MinKi(v) := X after finishing the iterations (of j).

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 15 / 15 Faster Existential FO on Posets

4 Summary4 Summary

• Improvement over [Bova, Ganian, Szeider, LICS 2014]

[BGS14] O(f(φ) · ng(w))

Algorithm 1 (using CSP) O(f ′(φ,w) · n4)

Algorithm 2 (using mult. clique) O(f ′′(φ,w) · n2)

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 15 / 15 Faster Existential FO on Posets

4 Summary4 Summary

• Improvement over [Bova, Ganian, Szeider, LICS 2014]

[BGS14] O(f(φ) · ng(w))

Algorithm 1 (using CSP) O(f ′(φ,w) · n4)

Algorithm 2 (using mult. clique) O(f ′′(φ,w) · n2)

– our algorithms are FPT both in φ the width of the poset.

• Straightforward, simpler, and self-contained proofs (Alg. 2).

Non-complicated algorithm (Alg. 2) – “implementable”.

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 15 / 15 Faster Existential FO on Posets

4 Summary4 Summary

• Improvement over [Bova, Ganian, Szeider, LICS 2014]

[BGS14] O(f(φ) · ng(w))

Algorithm 1 (using CSP) O(f ′(φ,w) · n4)

Algorithm 2 (using mult. clique) O(f ′′(φ,w) · n2)

– our algorithms are FPT both in φ the width of the poset.

• Straightforward, simpler, and self-contained proofs (Alg. 2).

Non-complicated algorithm (Alg. 2) – “implementable”.

• Current work:

– extension to full FO logic.

page.15

Petr Hliněný, ISAAC, Jeonju, 2014 15 / 15 Faster Existential FO on Posets

4 Summary4 Summary

• Improvement over [Bova, Ganian, Szeider, LICS 2014]

[BGS14] O(f(φ) · ng(w))

Algorithm 1 (using CSP) O(f ′(φ,w) · n4)

Algorithm 2 (using mult. clique) O(f ′′(φ,w) · n2)

– our algorithms are FPT both in φ the width of the poset.

• Straightforward, simpler, and self-contained proofs (Alg. 2).

Non-complicated algorithm (Alg. 2) – “implementable”.

• Current work:

– extension to full FO logic.

Thank you for your attention.

	The Aim; Algorithmic Metatheorems
	FO Model Checking on Posets
	-FO on Posets
	New Result
	Summary

