Faster Existential FO Model Checking on Posets

Petr Hliněný

Faculty of Informatics Masaryk University, Brno, CZ

Jakub Gajarský, Jan Obdržálek, Sebastian Ordyniak

- theor. tools claiming efficient solvability of large classes of problems at once.

- theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle's Theorem

- All MSO₂-definable prop. in linear-time FPT for bounded tree-width.
 - perhaps the best known algo. metatheorem on graphs (1988)

- theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle's Theorem

- All MSO₂-definable prop. in linear-time FPT for bounded tree-width.
 - perhaps the best known algo. metatheorem on graphs (1988)
 - clique-width + MSO₁ version by [Courcelle–Makowsky–Rotics]

- theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle's Theorem

- All MSO₂-definable prop. in linear-time FPT for bounded tree-width.
 - perhaps the best known algo. metatheorem on graphs (1988)
 - clique-width + MSO₁ version by [Courcelle–Makowsky–Rotics]

- Propositional logic ($\land \lor \rightarrow$), graph vertices/edges (x, y, z, ..., e, ...);
 - e.g., $\forall x, y (edge(x, y) \rightarrow x \in C \lor y \in C)$,

- theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle's Theorem

- All MSO₂-definable prop. in linear-time FPT for bounded tree-width.
 - perhaps the best known algo. metatheorem on graphs (1988)
 - clique-width + MSO₁ version by [Courcelle–Makowsky–Rotics]

- Propositional logic ($\land \lor \rightarrow$), graph vertices/edges (x, y, z, ..., e, ...);
 - e.g., $\forall x, y (edge(x, y) \rightarrow x \in C \lor y \in C)$, "C is vertex cover"
 - FO logic (first-order): just this \uparrow

- theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle's Theorem

- All MSO₂-definable prop. in linear-time FPT for bounded tree-width.
 - perhaps the best known algo. metatheorem on graphs (1988)
 - clique-width + MSO₁ version by [Courcelle–Makowsky–Rotics]

- Propositional logic ($\land \lor \rightarrow$), graph vertices/edges (x, y, z, ..., e, ...);
 - e.g., $\forall x, y (edge(x, y) \rightarrow x \in C \lor y \in C)$, "C is vertex cover"
 - FO logic (first-order): just this \uparrow
 - **MSO logic** (monadic second-o.): quantifies vertex sets $\exists X, Y$

- theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle's Theorem

- All MSO₂-definable prop. in linear-time FPT for bounded tree-width.
 - perhaps the best known algo. metatheorem on graphs (1988)
 - clique-width + MSO₁ version by [Courcelle–Makowsky–Rotics]

- Propositional logic ($\land \lor \rightarrow$), graph vertices/edges (x, y, z, ..., e, ...);
 - e.g., $\forall x, y (edge(x, y) \rightarrow x \in C \lor y \in C)$, "C is vertex cover"
 - FO logic (first-order): just this \uparrow
 - **MSO logic** (monadic second-o.): quantifies vertex sets $\exists X, Y$

$$\uparrow MSO_1$$
 vs. $MSO_2 \downarrow$

- theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle's Theorem

- All MSO₂-definable prop. in linear-time FPT for bounded tree-width.
 - perhaps the best known algo. metatheorem on graphs (1988)
 - clique-width + MSO₁ version by [Courcelle–Makowsky–Rotics]

* Logic on Graphs

- Propositional logic ($\land \lor \rightarrow$), graph vertices/edges (x, y, z, ..., e, ...);
 - e.g., $\forall x, y (edge(x, y) \rightarrow x \in C \lor y \in C)$, "C is vertex cover"
 - FO logic (first-order): just this \uparrow
 - **MSO logic** (monadic second-o.): quantifies vertex sets $\exists X, Y$

$$\uparrow \mathsf{MSO}_1$$
 vs. $\mathsf{MSO}_2\downarrow$

- or, quantifies vertex and edge sets together $\exists X, Y, E, F$.

• On monotone graph classes:

- On monotone graph classes:
 - [Kreutzer-Tazari] not above polylog. tree-width with MSO₂

- On monotone graph classes:
 - [Kreutzer-Tazari] not above polylog. tree-width with MSO₂
 - [GHLORS] not above polylog. tree-width with coloured MSO₁

- On monotone graph classes:
 - [Kreutzer-Tazari] not above polylog. tree-width with MSO₂
 - [GHLORS] not above polylog. tree-width with coloured MSO₁
- On hereditary classes, perhaps analogously with clique-width...?

* Not far with MSO

- On monotone graph classes:
 - [Kreutzer-Tazari] not above polylog. tree-width with MSO₂
 - [GHLORS] not above polylog. tree-width with coloured MSO₁
- On hereditary classes, perhaps analogously with clique-width...?

* Better with FO

• FO is always in XP, but we aim for FPT (fixed exponent poly.):

* Not far with MSO

- On monotone graph classes:
 - [Kreutzer-Tazari] not above polylog. tree-width with MSO₂
 - [GHLORS] not above polylog. tree-width with coloured MSO₁
- On hereditary classes, perhaps analogously with clique-width...?

- FO is always in XP, but we aim for FPT (fixed exponent poly.):
 - [Seese] on bounded degree graphs (1996)

* Not far with MSO

- On monotone graph classes:
 - [Kreutzer-Tazari] not above polylog. tree-width with MSO₂
 - [GHLORS] not above polylog. tree-width with coloured MSO₁
- On hereditary classes, perhaps analogously with clique-width...?

- FO is always in XP, but we aim for FPT (fixed exponent poly.):
 - [Seese] on bounded degree graphs (1996)
 - [Frick-Grohe] locally bounded tree-width

* Not far with MSO

- On monotone graph classes:
 - [Kreutzer-Tazari] not above polylog. tree-width with MSO₂
 - [GHLORS] not above polylog. tree-width with coloured MSO₁
- On hereditary classes, perhaps analogously with clique-width...?

- FO is always in XP, but we aim for FPT (fixed exponent poly.):
 - [Seese] on bounded degree graphs (1996)
 - [Frick-Grohe] locally bounded tree-width
 - [Dawar–Grohe–Kreutzer] locally excluding a minor

* Not far with MSO

- On monotone graph classes:
 - [Kreutzer-Tazari] not above polylog. tree-width with MSO₂
 - [GHLORS] not above polylog. tree-width with coloured MSO₁
- On hereditary classes, perhaps analogously with clique-width...?

- FO is always in XP, but we aim for FPT (fixed exponent poly.):
 - [Seese] on bounded degree graphs (1996)
 - [Frick-Grohe] locally bounded tree-width
 - [Dawar–Grohe–Kreutzer] locally excluding a minor
 - [D.-K. / Dvořák–Král'–Thomas] locally bounded expansion

* Not far with MSO

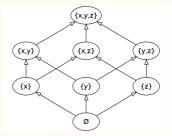
- On monotone graph classes:
 - [Kreutzer-Tazari] not above polylog. tree-width with MSO₂
 - [GHLORS] not above polylog. tree-width with coloured MSO₁
- On hereditary classes, perhaps analogously with clique-width...?

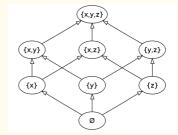
- FO is always in XP, but we aim for FPT (fixed exponent poly.):
 - [Seese] on bounded degree graphs (1996)
 - [Frick-Grohe] locally bounded tree-width
 - [Dawar-Grohe-Kreutzer] locally excluding a minor
 - [D.-K. / Dvořák–Král'–Thomas] locally bounded expansion
 - [Grohe-Kreutzer-Siebertz] nowhere dense graphs! (2013)

1

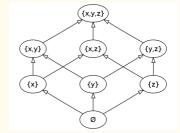
FO Model Checking on Posets

• A poset \mathcal{P} (partially ordered set)

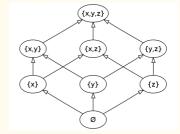




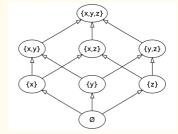
- A poset \mathcal{P} (partially ordered set)
 - a ground set P, and
 - a reflexive, symmetric, transitive bin. relation \leq on P.



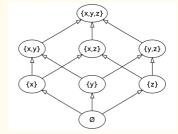
- A poset \mathcal{P} (partially ordered set)
 - a ground set \boldsymbol{P} , and
 - a reflexive, symmetric, transitive bin. relation \leq on P.
- FO logic on a poset; e.g.
 - $\quad \forall y \, (y \le x \to x \le y),$



- A poset \mathcal{P} (partially ordered set)
 - a ground set P, and
 - a reflexive, symmetric, transitive bin. relation \leq on P.
- FO logic on a poset; e.g.
 - $\forall y (y \leq x \rightarrow x \leq y)$, "x is a minimal element",

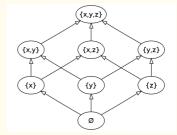


- A poset \mathcal{P} (partially ordered set)
 - a ground set P, and
 - a reflexive, symmetric, transitive bin. relation \leq on P.
- FO logic on a poset; e.g.
 - $\forall y (y \leq x \rightarrow x \leq y)$, "x is a minimal element",
 - $\ z \leq x \wedge z \leq y \wedge \forall t \left[(t \leq x \wedge t \leq y) \rightarrow t \leq z \right], \quad \text{``infimum''},$



- A poset \mathcal{P} (partially ordered set)
 - a ground set P, and
 - a reflexive, symmetric, transitive bin. relation \leq on P.
- FO logic on a poset; e.g.
 - $\forall y (y \leq x \rightarrow x \leq y)$, "x is a minimal element",
 - $z \le x \land z \le y \land \forall t \left[(t \le x \land t \le y) \to t \le z \right], \quad \text{``infimum''},$
- MODEL CHECKING (a parameterized formulation)

INPUT: A poset \mathcal{P} , and an (FO) sentence ϕ .



- A poset \mathcal{P} (partially ordered set)
 - a ground set $\boldsymbol{P},$ and
 - a reflexive, symmetric, transitive bin. relation \leq on P.
- FO logic on a poset; e.g.
 - $\forall y (y \leq x \rightarrow x \leq y)$, "x is a minimal element",
 - $z \leq x \wedge z \leq y \wedge \forall t \left[(t \leq x \wedge t \leq y) \rightarrow t \leq z \right], \quad \text{``infimum''},$
- MODEL CHECKING (a parameterized formulation)

INPUT: A poset \mathcal{P} , and an (FO) sentence ϕ . PARAM.: $|\phi|$. QUESTION: Is $\mathcal{P} \models \phi$?

• So far, most nontrivial results obtained on sparse classes of graphs;

- So far, most nontrivial results obtained on sparse classes of graphs;
 - except [Ganian, PH, Král', Obdržálek, Schwartz, Teska]
 FO model checking on *L*-interval graphs (2013).

- So far, most nontrivial results obtained on sparse classes of graphs;
 - except [Ganian, PH, Král', Obdržálek, Schwartz, Teska]
 FO model checking on *L*-interval graphs (2013).
- Posets present a very natural example of dense relational structures.

- So far, most nontrivial results obtained on sparse classes of graphs;
 - except [Ganian, PH, Král', Obdržálek, Schwartz, Teska]
 FO model checking on *L*-interval graphs (2013).
- Posets present a very natural example of dense relational structures.
- The research initiated by

[Bova, Ganian, Szeider, LICS 2014]:

- So far, most nontrivial results obtained on sparse classes of graphs;
 - except [Ganian, PH, Král', Obdržálek, Schwartz, Teska]
 FO model checking on *L*-interval graphs (2013).
- Posets present a very natural example of dense relational structures.
- The research initiated by

[Bova, Ganian, Szeider, LICS 2014]:

FO model checking on posets is hard (W[1]-hard par. $|\phi|$) for, e.g.

- bounded depth (the maximum size of a chain),
- bounded cover-degree (the max. deg. in the Hasse diagram),

- So far, most nontrivial results obtained on sparse classes of graphs;
 - except [Ganian, PH, Král', Obdržálek, Schwartz, Teska]
 FO model checking on *L*-interval graphs (2013).
- Posets present a very natural example of dense relational structures.
- The research initiated by

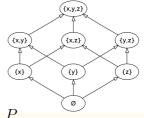
[Bova, Ganian, Szeider, LICS 2014]:

FO model checking on posets is hard (W[1]-hard par. $|\phi|$) for, e.g.

- bounded depth (the maximum size of a chain),
- bounded cover-degree (the max. deg. in the Hasse diagram),

while the problem becomes FPT for

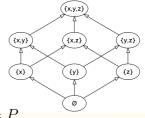
- posets of bounded width (the maximum size of an antichain).



• Having a poset $\mathcal{P}(P, \leq)$, the

Hasse diagram is the digraph H on V(H) = P

- such that $(u, v) \in E(H)$ iff u < v, and no $x \in P$, u < x < v.

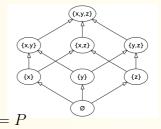


• Having a poset $\mathcal{P}(P, \leq)$, the

Hasse diagram is the digraph H on V(H) = P

- such that $(u, v) \in E(H)$ iff u < v, and no $x \in P$, u < x < v.

- H determines \mathcal{P} , and so
 - how FO m.c. can be hard when $\Delta(H)$ (cov. deg.) is bounded?



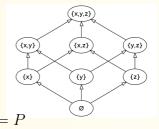
Having a poset P(P, ≤), the
 Hasse diagram is the digraph H on V(H) = P

- such that $(u, v) \in E(H)$ iff u < v, and no $x \in P$, u < x < v.

• H determines \mathcal{P} , and so

- how FO m.c. can be hard when $\Delta(H)$ (cov. deg.) is bounded?

Yes... but \mathcal{P} is the transitive closure of H – not FO-definable!



Having a poset P(P, ≤), the
 Hasse diagram is the digraph H on V(H) = P

- such that $(u, v) \in E(H)$ iff u < v, and no $x \in P$, u < x < v.

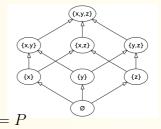
• H determines \mathcal{P} , and so

- how FO m.c. can be hard when $\Delta(H)$ (cov. deg.) is bounded?

Yes... but \mathcal{P} is the transitive closure of H – not FO-definable!

- Still, one more try:
 - MSO logic defines the transitive closure, and

A short detour; Hasse Diagrams



Having a poset P(P, ≤), the
 Hasse diagram is the digraph H on V(H) = P

- such that $(u, v) \in E(H)$ iff u < v, and no $x \in P$, u < x < v.

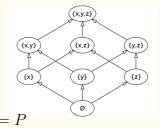
• H determines \mathcal{P} , and so

- how FO m.c. can be hard when $\Delta(H)$ (cov. deg.) is bounded?

Yes... but \mathcal{P} is the transitive closure of H – not FO-definable!

- Still, one more try:
 - MSO logic defines the transitive closure, and
 - Hasse d. of bounded width seem to have small tree-width.

A short detour; Hasse Diagrams



Having a poset P(P, ≤), the
 Hasse diagram is the digraph H on V(H) = P

- such that $(u, v) \in E(H)$ iff u < v, and no $x \in P$, u < x < v.

• H determines \mathcal{P} , and so

- how FO m.c. can be hard when $\Delta(H)$ (cov. deg.) is bounded?

Yes... but \mathcal{P} is the transitive closure of H – not FO-definable!

- Still, one more try:
 - MSO logic defines the transitive closure, and
 - Hasse d. of bounded width seem to have small tree-width.
 - NO, [BGS] arbitrarily large grids even for poset width 2!

* [Bova, Ganian, Szeider]

• \exists -FO – the existential fragment of FO (no $\forall x \dots$).

* [Bova, Ganian, Szeider]

- \exists -FO the existential fragment of FO (no $\forall x \dots$).
- The main result of [BGS, LICS 2014]:
 POSET ∃-FO MODEL CHECKING on P = (P, ≤) solvable in time

 $f(|\phi|) \cdot |P|^{g(width(\mathcal{P}))}.$

* [Bova, Ganian, Szeider]

- \exists -FO the existential fragment of FO (no $\forall x \dots$).
- The main result of [BGS, LICS 2014]:
 POSET ∃-FO MODEL CHECKING on P = (P, ≤) solvable in time

 $f(|\phi|) \cdot |P|^{g(width(\mathcal{P}))}.$

Note, only an XP algorithm with respect to $width(\mathcal{P})$.

* [Bova, Ganian, Szeider]

- \exists -FO the existential fragment of FO (no $\forall x \dots$).
- The main result of [BGS, LICS 2014]:
 POSET ∃-FO MODEL CHECKING on P = (P, ≤) solvable in time

 $f(|\phi|) \cdot |P|^{g(width(\mathcal{P}))}.$

Note, only an XP algorithm with respect to $width(\mathcal{P})$.

• Step 1. An FPT reduction to many instances of the embedding problem ("induced subposet").

* [Bova, Ganian, Szeider]

- \exists -FO the existential fragment of FO (no $\forall x \dots$).
- The main result of [BGS, LICS 2014]:
 POSET ∃-FO MODEL CHECKING on P = (P, ≤) solvable in time

 $f(|\phi|) \cdot |P|^{g(width(\mathcal{P}))}.$

Note, only an XP algorithm with respect to $width(\mathcal{P})$.

- Step 1. An FPT reduction to many instances of the embedding problem ("induced subposet").
- Step 2. A further reduction to a family of instances of the homomorphism problem on certain lattice structures.

* [Bova, Ganian, Szeider]

- \exists -FO the existential fragment of FO (no $\forall x \dots$).
- The main result of [BGS, LICS 2014]:
 POSET ∃-FO MODEL CHECKING on P = (P, ≤) solvable in time

 $f(|\phi|) \cdot |P|^{g(width(\mathcal{P}))}.$

Note, only an XP algorithm with respect to $width(\mathcal{P})$.

- Step 1. An FPT reduction to many instances of the embedding problem ("induced subposet").
- Step 2. A further reduction to a family of instances of the homomorphism problem on certain lattice structures.
- Step 3. Solving the homomorphism problem in polytime (using a highly non-trivial theorem).

• EMBEDDING (for posets)

2

INPUT: Two poset $Q = (Q, \leq_Q)$ and $\mathcal{P} = (P, \leq_P)$. PARAMETERS: |Q| and $width(\mathcal{P})$.

 $|\varphi| \text{ and } w(w(r)).$

QUESTION: Is there an embedding from Q into P?

• EMBEDDING (for posets)

INPUT: Two poset $Q = (Q, \leq_Q)$ and $\mathcal{P} = (P, \leq_P)$. PARAMETERS: |Q| and $width(\mathcal{P})$.

QUESTION: Is there an embedding from Q into P?

- An embedding from $\mathcal Q$ into $\mathcal P$
 - an injective mapping $e: Q \to P$ such that $q \leq_Q q'$ iff $e(q) \leq_P e(q')$, for every $q, q' \in Q$.

• EMBEDDING (for posets)

INPUT: Two poset $Q = (Q, \leq_Q)$ and $\mathcal{P} = (P, \leq_P)$. PARAMETERS: |Q| and $width(\mathcal{P})$.

QUESTION: Is there an embedding from Q into P?

- An embedding from $\mathcal Q$ into $\mathcal P$
 - an injective mapping $e: Q \to P$ such that $q \leq_Q q'$ iff $e(q) \leq_P e(q')$, for every $q, q' \in Q$.
- Technically easier (with width(P)^{|Q|} blow-up) to consider:
 COMPATIBLE EMBEDDING

• EMBEDDING (for posets)

INPUT: Two poset $Q = (Q, \leq_Q)$ and $\mathcal{P} = (P, \leq_P)$. PARAMETERS: |Q| and $width(\mathcal{P})$.

QUESTION: Is there an embedding from Q into P?

- An embedding from $\mathcal Q$ into $\mathcal P$
 - an injective mapping $e: Q \to P$ such that $q \leq_Q q'$ iff $e(q) \leq_P e(q')$, for every $q, q' \in Q$.
- Technically easier (with $width(\mathcal{P})^{|Q|}$ blow-up) to consider:

Compatible Embedding

... \mathcal{P} with a chain partition (C_1, \ldots, C_w) , $w = width(\mathcal{P})$, and \mathcal{Q} with a mapping $f : Q \to \{1, \ldots, w\}$.

• EMBEDDING (for posets)

2

INPUT: Two poset $Q = (Q, \leq_Q)$ and $\mathcal{P} = (P, \leq_P)$. PARAMETERS: |Q| and $width(\mathcal{P})$.

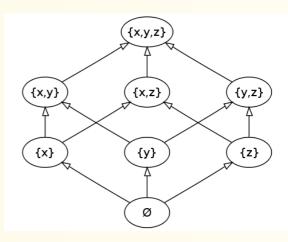
QUESTION: Is there an embedding from Q into P?

- An embedding from $\mathcal Q$ into $\mathcal P$
 - an injective mapping $e: Q \to P$ such that $q \leq_Q q'$ iff $e(q) \leq_P e(q')$, for every $q, q' \in Q$.
- Technically easier (with $width(\mathcal{P})^{|Q|}$ blow-up) to consider:

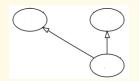
Compatible Embedding

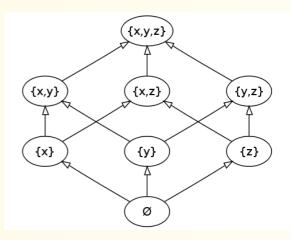
... \mathcal{P} with a chain partition (C_1, \ldots, C_w) , $w = width(\mathcal{P})$, and \mathcal{Q} with a mapping $f : Q \to \{1, \ldots, w\}$. QUESTION: Is there an embedding $e : Q \to P$ such that $e(q) \in C_{f(q)}$, for every $q \in Q$?

Does it embed?

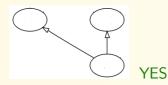


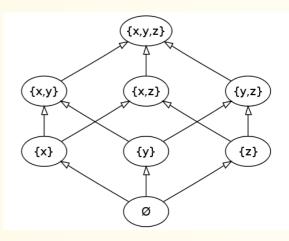
Does it embed?

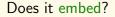


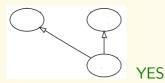


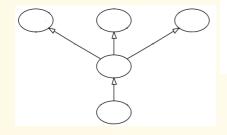
Does it embed?

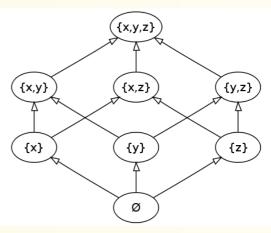


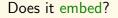


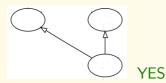


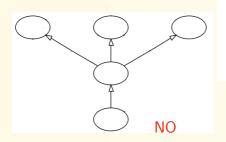


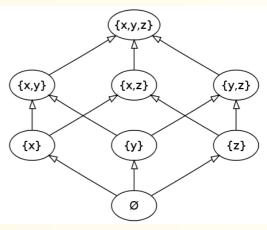












POSET \exists -FO MODEL CHECKING on $\mathcal{P} = (P, \leq)$ solvable in time

$$h(|\phi|, width(\mathcal{P})) \cdot |P|^2.$$

POSET \exists -FO MODEL CHECKING on $\mathcal{P} = (P, \leq)$ solvable in time

 $h(|\phi|, width(\mathcal{P})) \cdot |P|^2.$

POSET \exists -FO MODEL CHECKING on $\mathcal{P} = (P, \leq)$ solvable in time

 $h(|\phi|, width(\mathcal{P})) \cdot |P|^2.$

Note, this is now an FPT algorithm with respect to both $|\phi|$, $width(\mathcal{P})$.

• Step 1. The same FPT reduction (as [BGS]) to many instances of COMPATIBLE EMBEDDING.

POSET \exists -FO MODEL CHECKING on $\mathcal{P} = (P, \leq)$ solvable in time

 $h(|\phi|, width(\mathcal{P})) \cdot |P|^2.$

- Step 1. The same FPT reduction (as [BGS]) to many instances of COMPATIBLE EMBEDDING.
- Step 2. (solution 1) Solving each COMP. EMBEDDING inst. as a CSP instance closed under a min-polymorhpism (poly but slow).

POSET \exists -FO MODEL CHECKING on $\mathcal{P} = (P, \leq)$ solvable in time

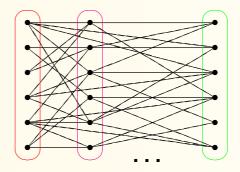
 $h(|\phi|, width(\mathcal{P})) \cdot |P|^2.$

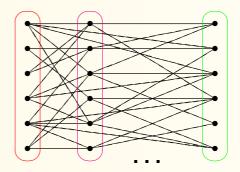
- Step 1. The same FPT reduction (as [BGS]) to many instances of COMPATIBLE EMBEDDING.
- Step 2. (solution 1) Solving each COMP. EMBEDDING inst. as a CSP instance closed under a min-polymorhpism (poly but slow).
 (solution 2) Further one-to-one reduction to a certain variant of well known MULTICOLOURED CLIQUE.

POSET \exists -FO MODEL CHECKING on $\mathcal{P} = (P, \leq)$ solvable in time

 $h(|\phi|, width(\mathcal{P})) \cdot |P|^2.$

- Step 1. The same FPT reduction (as [BGS]) to many instances of COMPATIBLE EMBEDDING.
- Step 2. (solution 1) Solving each COMP. EMBEDDING inst. as a CSP instance closed under a min-polymorhpism (poly but slow).
 (solution 2) Further one-to-one reduction to a certain variant of well known MULTICOLOURED CLIQUE.
- Step 3. Solving the (interval-monotone) variant of MULTICOL-OURED CLIQUE in polynomial time – overall quadratic in |P|.



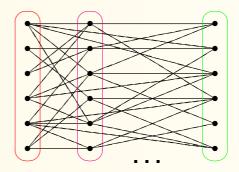


• Multicoloured Clique

INPUT: A graph G with a proper k-colouring.

PARAMETER: k.

QUESTION: Is there a clique (complete subgr.) of size k in G?



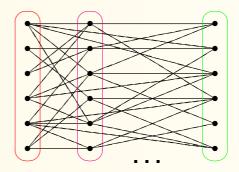
• Multicoloured Clique

INPUT: A graph G with a proper k-colouring.

PARAMETER: k.

QUESTION: Is there a clique (complete subgr.) of size k in G?

• A traditional "hard problem" in parameterized complexity, though,



• Multicoloured Clique

INPUT: A graph G with a proper k-colouring. PARAMETER: k.

QUESTION: Is there a clique (complete subgr.) of size k in G?

• A traditional "hard problem" in parameterized complexity, though, we are going to use the following special (polynomial) variant.

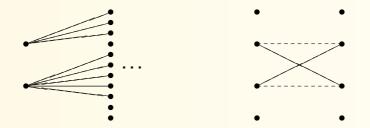
- Recall... Compatible Embedding
 - \mathcal{P} with a chain partition (C_1, \ldots, C_w) , $w = width(\mathcal{P})$,
 - and \mathcal{Q} with a "chain" mapping $f: Q \to \{1, \ldots, w\}$.

- Recall... Compatible Embedding
 - \mathcal{P} with a chain partition (C_1, \ldots, C_w) , $w = width(\mathcal{P})$,
 - and \mathcal{Q} with a "chain" mapping $f: Q \to \{1, \ldots, w\}$.
- \rightarrow our |Q|-COLOURED CLIQUE of G defined

- Recall... Compatible Embedding
 - \mathcal{P} with a chain partition (C_1, \ldots, C_w) , $w = width(\mathcal{P})$,
 - and \mathcal{Q} with a "chain" mapping $f: Q \to \{1, \ldots, w\}$.
- \rightarrow our |Q|-COLOURED CLIQUE of G defined
 - $V(G) = V_1 \cup \ldots \cup V_{|Q|}$ where V_i is a copy of $C_{f(i)}$,

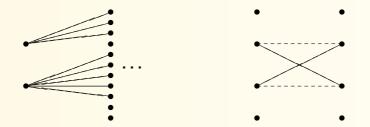
- Recall... Compatible Embedding
 - \mathcal{P} with a chain partition (C_1, \ldots, C_w) , $w = width(\mathcal{P})$,
 - and Q with a "chain" mapping $f: Q \to \{1, \ldots, w\}$.
- \rightarrow our |Q|-COLOURED CLIQUE of G defined
 - $V(G) = V_1 \cup \ldots \cup V_{|Q|}$ where V_i is a copy of $C_{f(i)}$,
 - for $p \in V_a, q \in V_b$ copies of $p' \in C_{f(a)}, q' \in C_{f(b)}, a \neq b$, $pq \in E(G)$ iff $p' \leq_P q' \leftrightarrow a \leq_Q b$ and $p' \geq_P q' \leftrightarrow a \geq_Q b$.

Using special properties of the reduction...



A MULTICOLOURED CLIQUE instance is called interval-monotone if

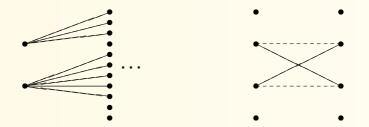
Using special properties of the reduction...



A MULTICOLOURED CLIQUE instance is called interval-monotone if

- the given colour classes are $V(G) = V_1 \cup \cdots \cup V_k$, E = E(G), and
- the vertex set V(G) can be linearly ordered as \prec such that;

Using special properties of the reduction...

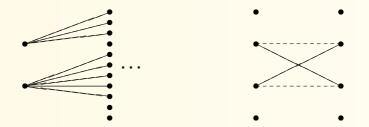


A MULTICOLOURED CLIQUE instance is called interval-monotone if

- the given colour classes are $V(G) = V_1 \cup \cdots \cup V_k$, E = E(G), and
- the vertex set V(G) can be linearly ordered as \prec such that;

 $- \forall p \in V_a, \ \forall q_1 \prec q_2 \prec q_3 \in V_b: \ pq_1, pq_3 \in E \to pq_2 \in E.$

Using special properties of the reduction...



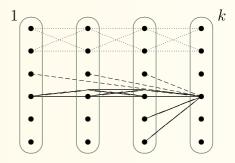
A MULTICOLOURED CLIQUE instance is called interval-monotone if

- the given colour classes are $V(G) = V_1 \cup \cdots \cup V_k$, E = E(G), and
- the vertex set V(G) can be linearly ordered as \prec such that;

 $- \forall p \in V_a, \forall q_1 \prec q_2 \prec q_3 \in V_b: pq_1, pq_3 \in E \rightarrow pq_2 \in E.$

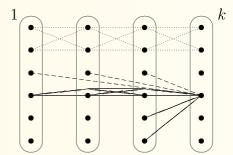
 $- \forall p_1 \prec p_2 \in V_a, \ \forall q_1 \prec q_2 \in V_b: \ p_1q_2, p_2q_1 \in E \to p_1q_1, p_2q_2 \in E.$

INPUT: G, coloured $V(G) = V_1 \cup \ldots$ $\cup V_k$, ordered by \prec .



INPUT: G, coloured $V(G) = V_1 \cup \ldots$ $\cup V_k$, ordered by \prec .

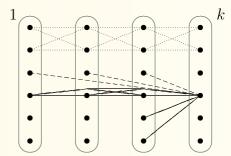
 Define MinKⁱ(v), MaxKⁱ(v) where 2 ≤ i ≤ k and v ∈ V_i:



- $MinK^{i}(v) :=$ the \prec -minimum of all the *i*-cliques which are contained in $V_{1} \cup \cdots \cup V_{i-1} \cup \{v\}$.

INPUT: G, coloured $V(G) = V_1 \cup \ldots$ $\cup V_k$, ordered by \prec .

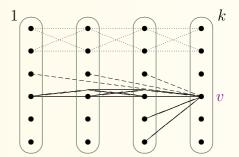
 Define MinKⁱ(v), MaxKⁱ(v) where 2 ≤ i ≤ k and v ∈ V_i:



- $MinK^{i}(v) :=$ the \prec -minimum of all the *i*-cliques which are contained in $V_{1} \cup \cdots \cup V_{i-1} \cup \{v\}$.
- Dynamically compute this information, for i = 2, 3, ..., k, as follows.

INPUT: G, coloured $V(G) = V_1 \cup \ldots$ $\cup V_k$, ordered by \prec .

 Define MinKⁱ(v), MaxKⁱ(v) where 2 ≤ i ≤ k and v ∈ V_i:

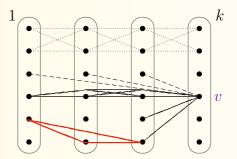


- $MinK^{i}(v) :=$ the \prec -minimum of all the *i*-cliques which are contained in $V_{1} \cup \cdots \cup V_{i-1} \cup \{v\}$.
- Dynamically compute this information, for i = 2, 3, ..., k, as follows.

- $x := \prec$ -min. neighbour of X in V_j such that $MaxK^j(x) \neq \emptyset$ is in or above the neighbs. of X in each of V_1, \ldots, V_{j-1} ;
- if x nonexistent, set $X := \emptyset$;

INPUT: G, coloured $V(G) = V_1 \cup \ldots$ $\cup V_k$, ordered by \prec .

 Define MinKⁱ(v), MaxKⁱ(v) where 2 ≤ i ≤ k and v ∈ V_i:

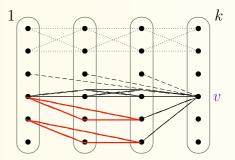


- *MinKⁱ(v)* := the ≺-minimum of all the *i*-cliques which are contained in V₁ ∪ · · · ∪ V_{i-1} ∪ {v}.
- Dynamically compute this information, for i = 2, 3, ..., k, as follows.

- x := →-min. neighbour of X in V_j such that $MaxK^j(x) \neq \emptyset$ is in or above the neighbs. of X in each of V_1, \ldots, V_{j-1} ;
- if x nonexistent, set $X := \emptyset$;

INPUT: G, coloured $V(G) = V_1 \cup \ldots$ $\cup V_k$, ordered by \prec .

 Define MinKⁱ(v), MaxKⁱ(v) where 2 ≤ i ≤ k and v ∈ V_i:

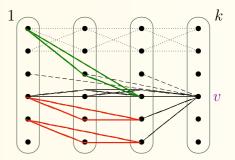


- $MinK^{i}(v) :=$ the \prec -minimum of all the *i*-cliques which are contained in $V_{1} \cup \cdots \cup V_{i-1} \cup \{v\}$.
- Dynamically compute this information, for i = 2, 3, ..., k, as follows.

- x := →-min. neighbour of X in V_j such that $MaxK^j(x) \neq \emptyset$ is in or above the neighbs. of X in each of V_1, \ldots, V_{j-1} ;
- if x nonexistent, set $X := \emptyset$;

INPUT: G, coloured $V(G) = V_1 \cup \ldots$ $\cup V_k$, ordered by \prec .

 Define MinKⁱ(v), MaxKⁱ(v) where 2 ≤ i ≤ k and v ∈ V_i:

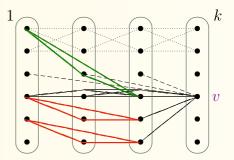


- $MinK^{i}(v) :=$ the \prec -minimum of all the *i*-cliques which are contained in $V_{1} \cup \cdots \cup V_{i-1} \cup \{v\}$.
- Dynamically compute this information, for i = 2, 3, ..., k, as follows.

- x := →-min. neighbour of X in V_j such that $MaxK^j(x) \neq \emptyset$ is in or above the neighbs. of X in each of V_1, \ldots, V_{j-1} ;
- if x nonexistent, set $X := \emptyset$;

INPUT: G, coloured $V(G) = V_1 \cup \ldots$ $\cup V_k$, ordered by \prec .

 Define MinKⁱ(v), MaxKⁱ(v) where 2 ≤ i ≤ k and v ∈ V_i:



- $MinK^{i}(v) :=$ the \prec -minimum of all the *i*-cliques which are contained in $V_{1} \cup \cdots \cup V_{i-1} \cup \{v\}$.
- Dynamically compute this information, for i = 2, 3, ..., k, as follows.

- x := →-min. neighbour of X in V_j such that $MaxK^j(x) \neq \emptyset$ is in or above the neighbs. of X in each of V_1, \ldots, V_{j-1} ;
- if x nonexistent, set $X := \emptyset$;
- $MinK^{i}(v) := X$ after finishing the iterations (of j).

4 Summary

• Improvement over [Bova, Ganian, Szeider, LICS 2014]

[BGS14] $O(f(\phi) \cdot n^{g(w)})$ Algorithm 1 (using CSP) $O(f'(\phi, w) \cdot n^4)$ Algorithm 2 (using mult. clique) $O(f''(\phi, w) \cdot n^2)$

4 Summary

• Improvement over [Bova, Ganian, Szeider, LICS 2014]

[BGS14] $O(f(\phi) \cdot n^{g(w)})$ Algorithm 1 (using CSP) $O(f'(\phi, w) \cdot n^4)$ Algorithm 2 (using mult. clique) $O(f''(\phi, w) \cdot n^2)$

- our algorithms are FPT both in ϕ the width of the poset.
- Straightforward, simpler, and self-contained proofs (Alg. 2).
 Non-complicated algorithm (Alg. 2) "implementable".

4 Summary

• Improvement over [Bova, Ganian, Szeider, LICS 2014]

[BGS14] $O(f(\phi) \cdot n^{g(w)})$ Algorithm 1 (using CSP) $O(f'(\phi, w) \cdot n^4)$

Algorithm 2 (using mult. clique) $O(f''(\phi, w) \cdot n^2)$

- our algorithms are FPT both in ϕ the width of the poset.
- Straightforward, simpler, and self-contained proofs (Alg. 2).
 Non-complicated algorithm (Alg. 2) "implementable".
- Current work:
 - extension to full FO logic.

I Summary

• Improvement over [Bova, Ganian, Szeider, LICS 2014]

[BGS14] $O(f(\phi) \cdot n^{g(w)})$ Algorithm 1 (using CSP) $O(f'(\phi, w) \cdot n^4)$

Algorithm 2 (using mult. clique) $O(f''(\phi, w) \cdot n^2)$

- our algorithms are FPT both in ϕ the width of the poset.
- Straightforward, simpler, and self-contained proofs (Alg. 2).
 Non-complicated algorithm (Alg. 2) "implementable".
- Current work:
 - extension to full FO logic.

THANK YOU FOR YOUR ATTENTION.