Toroidal Grid Minors, Embedding Stretch, and Crossing Number

Petr Hliněný

Faculty of Informatics, Masaryk University, Czech Rep.
based on joint work with
Sergio Cabello, Markus Chimani and Gelasio Salazar

Foreword

Purpose of the talk

To outline and promote some tools for topologically-restricted graphs which turned out very useful in our crossing-number-related research. . .

Foreword

Purpose of the talk

To outline and promote some tools for topologically-restricted graphs which turned out very useful in our crossing-number-related research. .

Related papers

- P. Hliněný and G. Salazar. Approximating the crossing number of toroidal graphs. In: ISAAC 2007, LNCS 4835, 148-159.
- M. Chimani and P. Hliněný. Approximating the crossing number of graphs embeddable in any orientable surface. In: SODA 2010, 918-927.
- S. Cabello, M. Chimani and P. Hliněný. Computing the stretch of an embedded graph. SIAM J. Discrete Math. 28 (2014), 1391-1401.
- M. Chimani, P. Hliněný and G. Salazar. Toroidal Grid Minors and Stretch in Embedded Graphs. Submitted (2014), 32 p.

1 Toroidal Grids

- The toroidal $p \times q$-grid $=$ the cartesian product $C_{p} \square C_{q}$:

1 Toroidal Grids

- The toroidal $p \times q$-grid $=$ the cartesian product $C_{p} \square C_{q}$:
- Motivation:

Theorem. [Robertson and Seymour] For any graph H embedded on a surface Σ, there exists a constant $c:=c(H)$ such that every graph G that embeds in Σ with face-width at least c contains H as a minor.

1 Toroidal Grids

- The toroidal $p \times q$-grid $=$ the cartesian product $C_{p} \square C_{q}$:
- Motivation:

Theorem. [Robertson and Seymour] For any graph H embedded on a surface Σ, there exists a constant $c:=c(H)$ such that every graph G that embeds in Σ with face-width at least c contains H as a minor.

Theorem. [de Graaf and Schrijver] Let G be a graph embedded in the torus with face-width $f w(G)=r \geq 5$. Then G contains the toroidal

$$
\lfloor 2 r / 3\rfloor \times\lfloor 2 r / 3\rfloor \text {-grid }
$$

as a minor (and this is tight).

How large grid we have

- What is the size of a largest tor. grid minor we find in our graph?

How large grid we have

- What is the size of a largest tor. grid minor we find in our graph? While [de Graaf and Schrijver] give a tight answer (for torus) for the smaller grid dimension, there is a diff. between 5×1000 and $50 \times 50 \ldots$

How large grid we have

- What is the size of a largest tor. grid minor we find in our graph? While [de Graaf and Schrijver] give a tight answer (for torus) for the smaller grid dimension, there is a diff. between 5×1000 and $50 \times 50 \ldots$
- Toroidal expanse of G defined as
$\operatorname{Tex}(G):=\max \left\{p \cdot q: p, q \geq 3\right.$ and G has a $C_{p} \square C_{q}$-minor $\}$.

How large grid we have

- What is the size of a largest tor. grid minor we find in our graph? While [de Graaf and Schrijver] give a tight answer (for torus) for the smaller grid dimension, there is a diff. between 5×1000 and $50 \times 50 \ldots$
- Toroidal expanse of G defined as
$\operatorname{Tex}(G):=\max \left\{p \cdot q: p, q \geq 3\right.$ and G has a $C_{p} \square C_{q}$-minor $\}$.
- Relation to the crossing number:
- Known $\operatorname{cr}\left(C_{p} \square C_{q}\right) \geq \frac{1}{2}(p-2) q$ for $p \leq q$, and conjectured $\operatorname{cr}\left(C_{p} \square C_{q}\right)=(p-2) q$ which is known for $p=3,4,5$.

How large grid we have

- What is the size of a largest tor. grid minor we find in our graph? While [de Graaf and Schrijver] give a tight answer (for torus) for the smaller grid dimension, there is a diff. between 5×1000 and $50 \times 50 \ldots$
- Toroidal expanse of G defined as

$$
\operatorname{Tex}(G):=\max \left\{p \cdot q: p, q \geq 3 \text { and } G \text { has a } C_{p} \square C_{q} \text {-minor }\right\}
$$

- Relation to the crossing number:
- Known $\operatorname{cr}\left(C_{p} \square C_{q}\right) \geq \frac{1}{2}(p-2) q$ for $p \leq q$, and conjectured $\operatorname{cr}\left(C_{p} \square C_{q}\right)=(p-2) q$ which is known for $p=3,4,5$.
- Consequently, $\operatorname{cr}\left(C_{p} \square C_{q}\right) \geq \frac{1}{3} p q$, and hence in general

$$
\operatorname{cr}(G) \geq \frac{1}{12} \operatorname{Tex}(G)
$$

How large grid we have

- What is the size of a largest tor. grid minor we find in our graph? While [de Graaf and Schrijver] give a tight answer (for torus) for the smaller grid dimension, there is a diff. between 5×1000 and $50 \times 50 \ldots$
- Toroidal expanse of G defined as

$$
\operatorname{Tex}(G):=\max \left\{p \cdot q: p, q \geq 3 \text { and } G \text { has a } C_{p} \square C_{q} \text {-minor }\right\}
$$

- Relation to the crossing number:
- Known $\operatorname{cr}\left(C_{p} \square C_{q}\right) \geq \frac{1}{2}(p-2) q$ for $p \leq q$, and conjectured $\operatorname{cr}\left(C_{p} \square C_{q}\right)=(p-2) q$ which is known for $p=3,4,5$.
- Consequently, $\operatorname{cr}\left(C_{p} \square C_{q}\right) \geq \frac{1}{3} p q$, and hence in general

$$
\operatorname{cr}(G) \geq \frac{1}{12} \operatorname{Tex}(G)
$$

- Specifically, on the torus;

$$
\operatorname{cr}(G)=\mathcal{O}\left(\Delta(G)^{2} \cdot \operatorname{Tex}(G)\right)
$$

On the torus

- Cut toroidal G along shortest nonsep. dual cycle - length k.

On the torus

- Cut toroidal G along shortest nonsep. dual cycle - length k.
- Re-route the k cut edges along a shortest dual path - length $\ell \geq k / 2$.

- Consequently;

$$
\operatorname{cr}(G) \leq k \cdot \ell+* \leq \frac{3}{2} k \ell .
$$

On the torus

- Cut toroidal G along shortest nonsep. dual cycle - length k.
- Re-route the k cut edges along a shortest dual path - length $\ell \geq k / 2$.

- Consequently;

$$
\operatorname{cr}(G) \leq k \cdot \ell+* \leq \frac{3}{2} k \ell .
$$

- How about a toroidal grid in G ?

Lemma. Assume G on the torus contains $p \geq 3$ disjoint cycles of one homotopy class and $q \geq 3$ disjoint cycles of another homotopy, then G has a $C_{p} \square C_{q}$-minor.

On the torus

- Cut toroidal G along shortest nonsep. dual cycle - length k.
- Re-route the k cut edges along a shortest dual path - length $\ell \geq k / 2$.

- Consequently;

$$
\operatorname{cr}(G) \leq k \cdot \ell+* \leq \frac{3}{2} k \ell .
$$

- How about a toroidal grid in G ?

Lemma. Assume G on the torus contains $p \geq 3$ disjoint cycles of one homotopy class and $q \geq 3$ disjoint cycles of another homotopy, then G has a $C_{p} \square C_{q}$-minor.

- Consequently (only on the torus!);
$\operatorname{Tex}(G) \geq\left\lceil\frac{\ell}{\lfloor\Delta(G) / 2\rfloor}\right\rceil \cdot\left\lfloor\frac{2}{3}\left[\frac{k}{\lfloor\Delta(G) / 2\rfloor}\right\rceil\right\rfloor \geq \frac{16}{7 \Delta(G)^{2}} k \ell \geq \frac{32}{21 \Delta(G)^{2}} \operatorname{cr}(G)$.

Beyond the torus

- Considering only orientable surf.
- Do we need "higher grids" on surfaces beyond the torus?

Beyond the torus

- Considering only orientable surf.
- Do we need "higher grids" on surfaces beyond the torus? NO!

- Even for a high-genus grid, its "essential part" (note; fixed g !) can be captured by a suitable toroidal grid. . .

Beyond the torus

- Considering only orientable surf.
- Do we need "higher grids" on surfaces beyond the torus? NO!

- Even for a high-genus grid, its "essential part" (note; fixed g !) can be captured by a suitable toroidal grid. . .
- In fact, we can prove (under suitable density assumption);

$$
c_{0}(\Delta, g) \cdot \operatorname{cr}(G) \leq \operatorname{Tex}(G) \leq c_{1} \cdot \operatorname{cr}(G)
$$

2 Stretch of an Embedding

- What property of an embedding forces large toroidal grids?

2 Stretch of an Embedding

- What property of an embedding forces large toroidal grids?
It is the face-width in $[\mathrm{R}+\mathrm{S}],[\mathrm{dG}+\mathrm{S}]$.

2 Stretch of an Embedding

- What property of an embedding forces large toroidal grids?
It is the face-width in $[\mathrm{R}+\mathrm{S}],[\mathrm{dG}+\mathrm{S}]$.
- For us (and for crossing-number), the
 dual edge-width seems technically more suitable:
$=$ how many edges of G we have to cross by a non-contractible loop.

2 Stretch of an Embedding

- What property of an embedding forces large toroidal grids?
It is the face-width in $[\mathrm{R}+\mathrm{S}],[\mathrm{dG}+\mathrm{S}]$.
- For us (and for crossing-number), the
 dual edge-width seems technically more suitable:
= how many edges of G we have to cross by a non-contractible loop.
- Actually, we want the loop to be non-separating, and capture also "the other dimension" (cf. " $k \times \ell$ ") to lower-bound the grid size.

2 Stretch of an Embedding

- What property of an embedding forces large toroidal grids?
It is the face-width in $[\mathrm{R}+\mathrm{S}],[\mathrm{dG}+\mathrm{S}]$.
- For us (and for crossing-number), the
 dual edge-width seems technically more suitable:
$=$ how many edges of G we have to cross by a non-contractible loop.
- Actually, we want the loop to be non-separating, and capture also "the other dimension" (cf. " $k \times \ell$ ") to lower-bound the grid size.
Of course, would be nice to have the definition symmetric (in " k and ℓ ").

Defining stretch

- Geometric intersection number of loops α and β

$$
=\min _{\alpha^{\prime} \sim \alpha, \beta^{\prime} \sim \beta}\left|\alpha^{\prime} \cap \beta^{\prime}\right| .
$$

Defining stretch

- Geometric intersection number of loops α and β

$$
=\min _{\alpha^{\prime} \sim \alpha, \beta^{\prime} \sim \beta}\left|\alpha^{\prime} \cap \beta^{\prime}\right| .
$$

- α, β are k-crossing if this geom. intersection number is k.

Defining stretch

- Geometric intersection number of loops α and β

$$
=\min _{\alpha^{\prime} \sim \alpha, \beta^{\prime} \sim \beta}\left|\alpha^{\prime} \cap \beta^{\prime}\right| .
$$

- α, β are k-crossing if this geom. intersection number is k.

Definition. The stretch of an embedded graph G is defined by

$$
\operatorname{Str}(G):=\min \{|A| \cdot|B|: A, B \subseteq G \text { cycles and 1-crossing }\} .
$$

Defining stretch

- Geometric intersection number of loops α and β

$$
=\min _{\alpha^{\prime} \sim \alpha, \beta^{\prime} \sim \beta}\left|\alpha^{\prime} \cap \beta^{\prime}\right| .
$$

- α, β are k-crossing if this geom. intersection number is k.

Definition. The stretch of an embedded graph G is defined by

$$
\operatorname{Str}(G):=\min \{|A| \cdot|B|: A, B \subseteq G \text { cycles and 1-crossing }\} .
$$

- Note; 1-crossing loops \Rightarrow non-contractible \& non-separating.

Defining stretch

- Geometric intersection number of loops α and β

$$
=\min _{\alpha^{\prime} \sim \alpha, \beta^{\prime} \sim \beta}\left|\alpha^{\prime} \cap \beta^{\prime}\right| .
$$

- α, β are k-crossing if this geom. intersection number is k.

Definition. The stretch of an embedded graph G is defined by

$$
\operatorname{Str}(G):=\min \{|A| \cdot|B|: A, B \subseteq G \text { cycles and 1-crossing }\} .
$$

- Note; 1-crossing loops \Rightarrow non-contractible \& non-separating.
- Relation to the crossing number:

$$
\begin{gathered}
\operatorname{cr}(G) \leq \operatorname{Str}\left(G^{*}\right) \quad \text { on the torus - trivial } \\
\operatorname{cr}(G) \geq c_{2}(\Delta, g) \cdot \operatorname{Str}\left(G^{*}\right) \quad \text { in general - not so easy }
\end{gathered}
$$

Some properties of stretch

- Let $C \subseteq G$ be a shortest non-separating cycle. Then $\operatorname{Str}(G / / C) \geq \frac{1}{4} \operatorname{Str}(G)$.

Some properties of stretch

- Let $C \subseteq G$ be a shortest non-separating cycle. Then $\operatorname{Str}(G / / C) \geq \frac{1}{4} \operatorname{Str}(G)$.
- Let $A, B \subseteq G$ be a cycle pair witnessing $\operatorname{Str}(G)$ and $|A| \leq|B|$. Then ewn $(G / / A) \geq \frac{1}{2} \operatorname{ew}_{n}(G)$.

Some properties of stretch

- Let $C \subseteq G$ be a shortest non-separating cycle. Then $\operatorname{Str}(G / / C) \geq \frac{1}{4} \operatorname{Str}(G)$.
- Let $A, B \subseteq G$ be a cycle pair witnessing $\operatorname{Str}(G)$ and $|A| \leq|B|$. Then ewn $(G / / A) \geq \frac{1}{2} \operatorname{ew}_{n}(G)$.
- For a cycle $C \subseteq G$, all the cycles odd-crossing C in G satisfy the "3-path condition".

Some properties of stretch

- Let $C \subseteq G$ be a shortest non-separating cycle. Then $\operatorname{Str}(G / / C) \geq \frac{1}{4} \operatorname{Str}(G)$.
- Let $A, B \subseteq G$ be a cycle pair witnessing $\operatorname{Str}(G)$ and $|A| \leq|B|$. Then ew $(G / / A) \geq \frac{1}{2} \operatorname{ew}_{n}(G)$.
- For a cycle $C \subseteq G$, all the cycles odd-crossing C in G satisfy the "3-path condition".

Consequently, odd-Str($G)=\operatorname{Str}(G)$ (allowing odd-crossing pairs A, B).

Some properties of stretch

- Let $C \subseteq G$ be a shortest non-separating cycle. Then $\operatorname{Str}(G / / C) \geq \frac{1}{4} \operatorname{Str}(G)$.
- Let $A, B \subseteq G$ be a cycle pair witnessing $\operatorname{Str}(G)$ and $|A| \leq|B|$. Then ew ${ }_{n}(G / / A) \geq \frac{1}{2} \operatorname{ew}_{n}(G)$.
- For a cycle $C \subseteq G$, all the cycles odd-crossing C in G satisfy the "3-path condition".

Consequently, odd-Str(G) $=\operatorname{Str}(G)$ (allowing odd-crossing pairs A, B).

- Note; above the torus, we cannot directly relate $\operatorname{cr}(G)$ to $\operatorname{Str}\left(G^{*}\right)$!

3 Tie Up the Ends

- Recall what we want to prove... $c_{0}(\Delta, g) \cdot \operatorname{cr}(G) \leq \operatorname{Tex}(G) \leq c_{1} \cdot \operatorname{cr}(G)$.
- We have already seen $\operatorname{Tex}(G) \leq 12 \operatorname{cr}(G)$. OK

3 Tie Up the Ends

- Recall what we want to prove. . . $c_{0}(\Delta, g) \cdot \operatorname{cr}(G) \leq \operatorname{Tex}(G) \leq c_{1} \cdot \operatorname{cr}(G)$.
- We have already seen $\operatorname{Tex}(G) \leq 12 \mathrm{cr}(G)$. OK

The left-hand inequality? So far only for the torus!

3 Tie Up the Ends

- Recall what we want to prove... $c_{0}(\Delta, g) \cdot \operatorname{cr}(G) \leq \operatorname{Tex}(G) \leq c_{1} \cdot \operatorname{cr}(G)$.
- We have already seen $\operatorname{Tex}(G) \leq 12 \operatorname{cr}(G)$. OK

The left-hand inequality? So far only for the torus!

- The strategy: to draw G with few crossing unless encounter a large grid. Imagine we cut $G_{0}=G$ along a shortest non-sep. dual cycle of length k_{1} to G_{1}, with dual distance ℓ_{1} between the sides in G_{1}.

3 Tie Up the Ends

- Recall what we want to prove... $c_{0}(\Delta, g) \cdot \operatorname{cr}(G) \leq \operatorname{Tex}(G) \leq c_{1} \cdot \operatorname{cr}(G)$.
- We have already seen $\operatorname{Tex}(G) \leq 12 \operatorname{cr}(G)$. OK

The left-hand inequality? So far only for the torus!

- The strategy: to draw G with few crossing unless encounter a large grid. Imagine we cut $G_{0}=G$ along a shortest non-sep. dual cycle of length k_{1} to G_{1}, with dual distance ℓ_{1} between the sides in G_{1}.
- Continue this G_{1} to G_{2}, \ldots, to G_{g}, getting pairs $\left(k_{i}, \ell_{i}\right)$ for $i=1, \ldots, g$.

3 Tie Up the Ends

- Recall what we want to prove... $c_{0}(\Delta, g) \cdot \operatorname{cr}(G) \leq \operatorname{Tex}(G) \leq c_{1} \cdot \operatorname{cr}(G)$.
- We have already seen $\operatorname{Tex}(G) \leq 12 \operatorname{cr}(G)$. OK The left-hand inequality? So far only for the torus!
- The strategy: to draw G with few crossing unless encounter a large grid. Imagine we cut $G_{0}=G$ along a shortest non-sep. dual cycle of length k_{1} to G_{1}, with dual distance ℓ_{1} between the sides in G_{1}.
- Continue this G_{1} to G_{2}, \ldots, to G_{g}, getting pairs $\left(k_{i}, \ell_{i}\right)$ for $i=1, \ldots, g$.
- In plane G_{g}, reconnect the $k_{1}+\cdots+k_{g}$ cut edges, costing only

$$
c_{3}(g) \cdot \max _{i}\left(k_{i} \ell_{i}\right) \text { crossings. }
$$

The tough guy

- We need to "relate"

$$
\operatorname{Tex}(g) \sim \max _{i}\left(k_{i} \ell_{i}\right) .
$$

The tough guy

- We need to "relate"

$$
\operatorname{Tex}(g) \sim \max _{i}\left(k_{i} \ell_{i}\right) .
$$

- Can assume $\max _{i}\left(k_{i} \ell_{i}\right)=k_{1} \ell_{1}$.

The tough guy

- We need to "relate"

$$
\operatorname{Tex}(g) \sim \max _{i}\left(k_{i} \ell_{i}\right) .
$$

- Can assume $\max _{i}\left(k_{i} \ell_{i}\right)=k_{1} \ell_{1}$.
- If $k_{1} \ell_{1} \sim \operatorname{Str}(G)$, then we recursively apply prev. $\operatorname{Str}(G / / C) \geq \frac{1}{4} \operatorname{Str}(G)$. Relatively easy.

The tough guy

- We need to "relate"

$$
\operatorname{Tex}(g) \sim \max _{i}\left(k_{i} \ell_{i}\right) .
$$

- Can assume $\max _{i}\left(k_{i} \ell_{i}\right)=k_{1} \ell_{1}$.
- If $k_{1} \ell_{1} \sim \operatorname{Str}(G)$, then we recursively apply prev. $\operatorname{Str}(G / / C) \geq \frac{1}{4} \operatorname{Str}(G)$. Relatively easy.
- If $k_{1} \ell_{1} \gg \operatorname{Str}(G)$, then we need to "cut off" the handle(s) causing small stretch. . .

The tough guy

- We need to "relate"

$$
\operatorname{Tex}(g) \sim \max _{i}\left(k_{i} \ell_{i}\right) .
$$

- Can assume $\max _{i}\left(k_{i} \ell_{i}\right)=k_{1} \ell_{1}$.

- If $k_{1} \ell_{1} \sim \operatorname{Str}(G)$, then we recursively apply prev. $\operatorname{Str}(G / / C) \geq \frac{1}{4} \operatorname{Str}(G)$. Relatively easy.
- If $k_{1} \ell_{1} \gg \operatorname{Str}(G)$, then we need to "cut off" the handle(s) causing small stretch. . .

We can use prev. $\mathrm{ew}_{n}(G / / A) \geq \frac{1}{2} e w_{n}(G)$ and a complicated induction setup to "preserve" much of the handle contributing $k_{1} \ell_{1}$ - till a torus.

The tough guy

- We need to "relate"

$$
\operatorname{Tex}(g) \sim \max _{i}\left(k_{i} \ell_{i}\right) .
$$

- Can assume $\max _{i}\left(k_{i} \ell_{i}\right)=k_{1} \ell_{1}$.

- If $k_{1} \ell_{1} \sim \operatorname{Str}(G)$, then we recursively apply prev. $\operatorname{Str}(G / / C) \geq \frac{1}{4} \operatorname{Str}(G)$. Relatively easy.
- If $k_{1} \ell_{1} \gg \operatorname{Str}(G)$, then we need to "cut off" the handle(s) causing small stretch. . .

We can use prev. $e w_{n}(G / / A) \geq \frac{1}{2} e w_{n}(G)$ and a complicated induction setup to "preserve" much of the handle contributing $k_{1} \ell_{1}$ - till a torus.

- After all; $\operatorname{Tex}(G) \sim k_{1} \ell_{1} \geq c_{0}(\Delta, g) \cdot \operatorname{cr}(G)$.

Theorem. $c_{0}(\Delta, g) \cdot \operatorname{cr}(G) \leq \operatorname{Tex}(G) \leq c_{1} \cdot \operatorname{cr}(G)$ for G densely embedded on an orientable surface.

4 Algorithmic Corner

Crossing Approximation Algorithm

- Algorithm CrossingApproximation Input: graph G embedded in a surface Σ of fixed genus g Output: a drawing of G with $c(\Delta(G), g) \cdot \operatorname{cr}(G)$ crossings 1. $\left(G_{0}, \Sigma_{0}\right) \leftarrow(G, \Sigma)$

2. $F \leftarrow \emptyset$
3. for $i=1,2, \ldots, g$ do
4. $\quad \gamma_{i} \leftarrow$ shortest non-separating dual cycle in G_{i-1}
5. $\quad F \leftarrow F \cup E^{*}\left(\gamma_{i}\right)$
6. $\left(G_{i}, \Sigma_{i}\right) \leftarrow$ cut $\left(G_{i-1}, \Sigma_{i-1}\right)$ through γ_{i}
7. for $f=u v \in F$ do
8. $\pi_{f} \leftarrow$ shortest dual $u-v$ path in $\left(G_{g}, \mathcal{S}_{0}\right)$
9. draw f along π_{f} (avoid multi-crossings)
10. return $\left(G_{g}+F, \mathcal{S}_{0}\right)$

- Runtime $\mathcal{O}(n \log n)$

Stretch Algorithm

- Algorithm ComputeStretchSurgery

Input: graph G embedded in a surface Σ of genus g
Output: the stretch of G

1. $i \leftarrow 1$
2. $\left(G_{1}, \Sigma_{1}\right) \leftarrow(G, \Sigma)$
3. $\operatorname{str} \leftarrow \infty$
4. while Σ_{i} not the sphere and $\left|V\left(G_{i}\right)\right| \leq g \cdot|V(G)|$ do
5. $\quad \alpha_{i} \leftarrow$ shortest non-separating cycle in G_{i}
6. $\quad \beta_{i} \leftarrow$ shortest cycle crossing α_{i} exactly once
7. $\operatorname{str} \leftarrow \min \left\{\operatorname{str}, \operatorname{len}\left(\alpha_{i}\right) \cdot \operatorname{len}\left(\beta_{i}\right)\right\}$
8. $\left(G_{i+1}, \Sigma_{i+1}\right) \leftarrow \operatorname{cut}\left(G_{i}, \Sigma_{i}\right)$ along α_{i}
9. and attach disks to the boundaries
10. $\quad i \leftarrow i+1$
11. return str

- Runtime $\mathcal{O}\left(g^{4} n \log ^{2} n\right)$ - but watch $\left|V\left(G_{i}\right)\right|$ carefully...

5 Conclusions

- Removing $\Delta(G)$ from the estimates?

5 Conclusions

- Removing $\Delta(G)$ from the estimates?

Not possible with the above definitions of expanse and stretch, but...

5 Conclusions

- Removing $\Delta(G)$ from the estimates?

Not possible with the above definitions of expanse and stretch, but...

- Extending stretch and the estimates to the nonorientable case?

5 Conclusions

- Removing $\Delta(G)$ from the estimates?

Not possible with the above definitions of expanse and stretch, but. . .

- Extending stretch and the estimates to the nonorientable case?

Yes, no major obstacle, but having now three kinds of stretch certificates and three kinds of grids to consider!

5 Conclusions

- Removing $\Delta(G)$ from the estimates?

Not possible with the above definitions of expanse and stretch, but. . .

- Extending stretch and the estimates to the nonorientable case?

Yes, no major obstacle, but having now three kinds of stretch certificates and three kinds of grids to consider!

- Replacing stretch by face-stretch and handling minor crossing number?

5 Conclusions

- Removing $\Delta(G)$ from the estimates? Not possible with the above definitions of expanse and stretch, but...
- Extending stretch and the estimates to the nonorientable case?

Yes, no major obstacle, but having now three kinds of stretch certificates and three kinds of grids to consider!

- Replacing stretch by face-stretch and handling minor crossing number? Again, no major obstacle, just nasty technical problems...

5 Conclusions

- Removing $\Delta(G)$ from the estimates? Not possible with the above definitions of expanse and stretch, but...
- Extending stretch and the estimates to the nonorientable case?

Yes, no major obstacle, but having now three kinds of stretch certificates and three kinds of grids to consider!

- Replacing stretch by face-stretch and handling minor crossing number? Again, no major obstacle, just nasty technical problems...
- Finding other applications of stretch in algorithms. . .

Any suggestions?

Thank you for your attention.

