Toroidal Grid Minors, Embedding Stretch, and Crossing Number

Petr Hliněný

Faculty of Informatics, Masaryk University, Czech Rep.

based on joint work with

Sergio Cabello, Markus Chimani and Gelasio Salazar

Foreword

Purpose of the talk

To outline and promote some tools for topologically-restricted graphs which turned out very useful in our crossing-number-related research...

Foreword

Purpose of the talk

To outline and promote some tools for topologically-restricted graphs which turned out very useful in our crossing-number-related research...

Related papers

- P. Hliněný and G. Salazar. Approximating the crossing number of toroidal graphs. In: ISAAC 2007, LNCS 4835, 148–159.
- M. Chimani and P. Hliněný. Approximating the crossing number of graphs embeddable in any orientable surface. In: SODA 2010, 918–927.
- S. Cabello, M. Chimani and P. Hliněný. Computing the stretch of an embedded graph. SIAM J. Discrete Math. 28 (2014), 1391–1401.
- M. Chimani, P. Hliněný and G. Salazar. Toroidal Grid Minors and Stretch in Embedded Graphs. Submitted (2014), 32 p.

1 Toroidal Grids

• The toroidal $p \times q$ -grid = the cartesian product $C_p \Box C_q$:

Toroidal Grids

- The toroidal p × q -grid =
 the cartesian product C_p□C_q:
- Motivation:

Theorem. [Robertson and Seymour] For any graph H embedded on a surface Σ , there exists a constant c := c(H) such that every graph G that embeds in Σ with face-width at least c contains H as a minor.

Toroidal Grids

- The toroidal p × q -grid =
 the cartesian product C_p□C_q:
- Motivation:

Theorem. [Robertson and Seymour] For any graph H embedded on a surface Σ , there exists a constant c := c(H) such that every graph G that embeds in Σ with face-width at least c contains H as a minor.

Theorem. [de Graaf and Schrijver] Let G be a graph embedded in the torus with face-width $fw(G) = r \ge 5$. Then G contains the toroidal

$$\lfloor 2r/3 \rfloor \times \lfloor 2r/3 \rfloor$$
 -grid

as a minor (and this is tight).

• What is the size of a largest tor. grid minor we find in our graph?

What is the size of a largest tor. grid minor we find in our graph?
 While [de Graaf and Schrijver] give a tight answer (for torus) for the smaller grid dimension, there is a diff. between 5 × 1000 and 50 × 50...

- What is the size of a largest tor. grid minor we find in our graph?
 While [de Graaf and Schrijver] give a tight answer (for torus) for the smaller grid dimension, there is a diff. between 5 × 1000 and 50 × 50...
- Toroidal expanse of G defined as

 $Tex(G) := \max \{ p \cdot q : p, q \ge 3 \text{ and } G \text{ has a } C_p \Box C_q \text{-minor} \}.$

- What is the size of a largest tor. grid minor we find in our graph?
 While [de Graaf and Schrijver] give a tight answer (for torus) for the smaller grid dimension, there is a diff. between 5 × 1000 and 50 × 50...
- Toroidal expanse of G defined as

 $Tex(G) := \max \{ p \cdot q : p, q \ge 3 \text{ and } G \text{ has a } C_p \square C_q \text{-minor} \}.$

- Relation to the crossing number:
 - Known $\operatorname{cr}(C_p \Box C_q) \geq \frac{1}{2}(p-2)q$ for $p \leq q$, and conjectured $\operatorname{cr}(C_p \Box C_q) = (p-2)q$ which is known for p = 3, 4, 5.

- What is the size of a largest tor. grid minor we find in our graph?
 While [de Graaf and Schrijver] give a tight answer (for torus) for the smaller grid dimension, there is a diff. between 5 × 1000 and 50 × 50...
- Toroidal expanse of G defined as

 $Tex(G) := \max \{ p \cdot q : p, q \ge 3 \text{ and } G \text{ has a } C_p \square C_q \text{-minor} \}.$

- Relation to the crossing number:
 - Known $\operatorname{cr}(C_p \Box C_q) \geq \frac{1}{2}(p-2)q$ for $p \leq q$, and conjectured $\operatorname{cr}(C_p \Box C_q) = (p-2)q$ which is known for p = 3, 4, 5.
 - Consequently, $\operatorname{cr}(C_p \Box C_q) \geq \frac{1}{3}pq$, and hence in general

$$\operatorname{cr}(G) \ge \frac{1}{12}\operatorname{Tex}(G).$$

- What is the size of a largest tor. grid minor we find in our graph?
 While [de Graaf and Schrijver] give a tight answer (for torus) for the smaller grid dimension, there is a diff. between 5 × 1000 and 50 × 50...
- Toroidal expanse of G defined as

 $Tex(G) := \max \{ p \cdot q : p, q \ge 3 \text{ and } G \text{ has a } C_p \Box C_q \text{-minor} \}.$

- Relation to the crossing number:
 - Known $\operatorname{cr}(C_p \Box C_q) \geq \frac{1}{2}(p-2)q$ for $p \leq q$, and conjectured $\operatorname{cr}(C_p \Box C_q) = (p-2)q$ which is known for p = 3, 4, 5.
 - Consequently, $\operatorname{cr}(C_p \Box C_q) \geq \frac{1}{3}pq$, and hence in general

$$\operatorname{cr}(G) \ge \frac{1}{12}\operatorname{Tex}(G).$$

Specifically, on the torus;

$$\operatorname{cr}(G) = \mathcal{O}(\Delta(G)^2 \cdot \operatorname{Tex}(G)).$$

• Cut toroidal G along shortest nonsep. dual cycle – length k.

- Cut toroidal G along shortest nonsep. dual cycle – length k.
- Re-route the k cut edges along a shortest dual path − length l ≥ k/2.
- Consequently;

$$\operatorname{cr}(G) \le k \cdot \ell + \ast \le \frac{3}{2}k\ell.$$

- Cut toroidal G along shortest nonsep. dual cycle length k.
- Re-route the k cut edges along a shortest dual path − length l ≥ k/2.
- Consequently;

$$\operatorname{cr}(G) \le k \cdot \ell + \ast \le \frac{3}{2}k\ell.$$

• How about a toroidal grid in G?

Lemma. Assume G on the torus contains $p \ge 3$ disjoint cycles of one homotopy class and $q \ge 3$ disjoint cycles of another homotopy, then G has a $C_p \Box C_q$ -minor.

- Cut toroidal G along shortest nonsep. dual cycle length k.
- Re-route the k cut edges along a shortest dual path − length l ≥ k/2.
- Consequently;

$$\operatorname{cr}(G) \le k \cdot \ell + * \le \frac{3}{2}k\ell.$$

• How about a toroidal grid in G?

Lemma. Assume G on the torus contains $p \ge 3$ disjoint cycles of one homotopy class and $q \ge 3$ disjoint cycles of another homotopy, then G has a $C_p \Box C_q$ -minor.

• Consequently (only on the torus!);

$$\operatorname{Tex}(G) \ge \left\lceil \frac{\ell}{\lfloor \Delta(G)/2 \rfloor} \right\rceil \cdot \left\lfloor \frac{2}{3} \left\lceil \frac{k}{\lfloor \Delta(G)/2 \rfloor} \right\rceil \right\rfloor \ge \frac{16}{7\Delta(G)^2} \, k\ell \ge \frac{32}{21\Delta(G)^2} \operatorname{cr}(G).$$

Beyond the torus

- Considering only orientable surf.
- Do we need "higher grids" on surfaces beyond the torus?

Beyond the torus

- Considering only orientable surf.
- Do we need "higher grids" on surfaces beyond the torus?
 NO!

• Even for a high-genus grid, its "essential part" (note; fixed g!) can be captured by a suitable toroidal grid...

Beyond the torus

- Considering only orientable surf.
- Do we need "higher grids" on surfaces beyond the torus? NO!

- Even for a high-genus grid, its "essential part" (note; fixed g!) can be captured by a suitable toroidal grid...
- In fact, we can prove (under suitable density assumption);

 $c_0(\Delta, g) \cdot \operatorname{cr}(G) \leq \operatorname{Tex}(G) \leq c_1 \cdot \operatorname{cr}(G).$

• What property of an embedding forces large toroidal grids?

• What property of an embedding forces large toroidal grids?

It is the *face-width* in [R+S], [dG+S].

• What property of an embedding forces large toroidal grids?

It is the *face-width* in [R+S], [dG+S].

 For us (and for crossing-number), the dual edge-width seems technically more suitable:

= how many edges of G we have to cross by a non-contractible loop.

 What property of an embedding forces large toroidal grids?
 It is the *face-width* in [R+S], [dG+S].

• For us (and for crossing-number), the *dual edge-width* seems technically more suitable:

- = how many edges of G we have to cross by a non-contractible loop.
- Actually, we want the loop to be non-separating, and capture also "the other dimension" (cf. "k × ℓ") to lower-bound the grid size.

- What property of an embedding forces large toroidal grids?
 It is the *face-width* in [R+S], [dG+S].
- For us (and for crossing-number), the dual edge-width seems technically more suitable:

- = how many edges of G we have to cross by a non-contractible loop.
- Actually, we want the loop to be non-separating, and capture also "the other dimension" (cf. " $k \times \ell$ ") to lower-bound the grid size.

Of course, would be nice to have the definition symmetric (in "k and ℓ ").

• Geometric intersection number of loops α and β

$$= \min_{\alpha' \sim \alpha, \, \beta' \sim \beta} |\alpha' \cap \beta'|.$$

• Geometric intersection number of loops α and β

$$= \min_{\alpha' \sim \alpha, \, \beta' \sim \beta} |\alpha' \cap \beta'|.$$

• α, β are *k*-crossing if this geom. intersection number is *k*.

• Geometric intersection number of loops α and β

$$= \min_{\alpha' \sim \alpha, \, \beta' \sim \beta} |\alpha' \cap \beta'|.$$

• α, β are *k*-crossing if this geom. intersection number is *k*.

Definition. The stretch of an embedded graph G is defined by $Str(G) := \min \{ |A| \cdot |B| : A, B \subseteq G \text{ cycles and 1-crossing} \}.$

• Geometric intersection number of loops α and β

$$= \min_{\alpha' \sim \alpha, \, \beta' \sim \beta} |\alpha' \cap \beta'|.$$

• α, β are *k*-crossing if this geom. intersection number is *k*.

Definition. The stretch of an embedded graph G is defined by $Str(G) := \min \{ |A| \cdot |B| : A, B \subseteq G \text{ cycles and 1-crossing} \}.$

• Note; 1-crossing loops \Rightarrow non-contractible & non-separating.

• Geometric intersection number of loops α and β

$$= \min_{\alpha' \sim \alpha, \, \beta' \sim \beta} |\alpha' \cap \beta'|.$$

• α, β are *k*-crossing if this geom. intersection number is *k*.

Definition. The stretch of an embedded graph G is defined by $Str(G) := \min \{ |A| \cdot |B| : A, B \subseteq G \text{ cycles and 1-crossing} \}.$

- Note; 1-crossing loops \Rightarrow non-contractible & non-separating.
- Relation to the crossing number:

 $\operatorname{cr}(G) \leq \operatorname{Str}(G^*)$ on the torus – trivial

 $\operatorname{cr}(G) \ge c_2(\Delta, g) \cdot \operatorname{Str}(G^*)$ in general – not so easy

• Let $C \subseteq G$ be a shortest non-separating cycle. Then $Str(G//C) \ge \frac{1}{4}Str(G).$

• Let $C \subseteq G$ be a shortest non-separating cycle. Then $Str(G//C) \ge \frac{1}{4}Str(G).$

 Let A, B ⊆ G be a cycle pair witnessing Str(G) and |A| ≤ |B|. Then ew_n(G//A) ≥ ¹/₂ ew_n(G).

• Let $C \subseteq G$ be a shortest non-separating cycle. Then $Str(G//C) \ge \frac{1}{4}Str(G).$

- Let A, B ⊆ G be a cycle pair witnessing Str(G) and |A| ≤ |B|. Then ew_n(G//A) ≥ ¹/₂ ew_n(G).
- For a cycle $C \subseteq G$, all the cycles odd-crossing C in G satisfy the "3-path condition".

• Let $C \subseteq G$ be a shortest non-separating cycle. Then $Str(G//C) \ge \frac{1}{4}Str(G).$

- Let A, B ⊆ G be a cycle pair witnessing Str(G) and |A| ≤ |B|. Then ew_n(G//A) ≥ ¹/₂ ew_n(G).
- For a cycle $C \subseteq G$, all the cycles odd-crossing C in G satisfy the "3-path condition".

Consequently, odd-Str(G) = Str(G) (allowing odd-crossing pairs A, B).

• Let $C \subseteq G$ be a shortest non-separating cycle. Then $Str(G//C) \ge \frac{1}{4}Str(G).$

- Let A, B ⊆ G be a cycle pair witnessing Str(G) and |A| ≤ |B|. Then ew_n(G//A) ≥ ¹/₂ ew_n(G).
- For a cycle $C \subseteq G$, all the cycles odd-crossing C in G satisfy the "3-path condition".

Consequently, odd-Str(G) = Str(G) (allowing odd-crossing pairs A, B).

• Note; above the torus, we cannot directly relate cr(G) to $Str(G^*)$!

• Recall what we want to prove... $c_0(\Delta, g) \cdot \operatorname{cr}(G) \leq \operatorname{Tex}(G) \leq c_1 \cdot \operatorname{cr}(G).$

• We have already seen $Tex(G) \le 12 \operatorname{cr}(G)$. OK

• Recall what we want to prove... $c_0(\Delta, g) \cdot \operatorname{cr}(G) \leq \operatorname{Tex}(G) \leq c_1 \cdot \operatorname{cr}(G).$

 We have already seen Tex(G) ≤ 12 cr(G). OK The left-hand inequality? So far only for the torus!

• Recall what we want to prove... $c_0(\Delta, g) \cdot \operatorname{cr}(G) \leq \operatorname{Tex}(G) \leq c_1 \cdot \operatorname{cr}(G).$

- We have already seen Tex(G) ≤ 12 cr(G). OK The left-hand inequality? So far only for the torus!
- The strategy: to draw G with few crossing unless encounter a large grid.
 Imagine we cut G₀ = G along a shortest non-sep. dual cycle of length k₁ to G₁, with dual distance l₁ between the sides in G₁.

• Recall what we want to prove... $c_0(\Delta, g) \cdot \operatorname{cr}(G) \leq \operatorname{Tex}(G) \leq c_1 \cdot \operatorname{cr}(G).$

- We have already seen Tex(G) ≤ 12 cr(G). OK The left-hand inequality? So far only for the torus!
- The strategy: to draw G with few crossing unless encounter a large grid.
 Imagine we cut G₀ = G along a shortest non-sep. dual cycle of length k₁ to G₁, with dual distance l₁ between the sides in G₁.
- Continue this G_1 to G_2 , ..., to G_g , getting pairs (k_i, ℓ_i) for i = 1, ..., g.

• Recall what we want to prove... $c_0(\Delta, g) \cdot \operatorname{cr}(G) \leq \operatorname{Tex}(G) \leq c_1 \cdot \operatorname{cr}(G).$

- We have already seen Tex(G) ≤ 12 cr(G). OK The left-hand inequality? So far only for the torus!
- The strategy: to draw G with few crossing unless encounter a large grid.
 Imagine we cut G₀ = G along a shortest non-sep. dual cycle of length k₁ to G₁, with dual distance l₁ between the sides in G₁.
- Continue this G_1 to G_2 , ..., to G_g , getting pairs (k_i, ℓ_i) for i = 1, ..., g.
- In plane G_g , reconnect the $k_1 + \cdots + k_g$ cut edges, costing only

 $c_3(g) \cdot \max_i(k_i\ell_i)$ crossings.

• We need to "relate" $Tex(g) \sim \max_i(k_i\ell_i).$

- We need to "relate" $Tex(g) \sim \max_i(k_i\ell_i).$
- Can assume $\max_i(k_i\ell_i) = k_1\ell_1$.

- We need to "relate" $Tex(g) \sim \max_i(k_i\ell_i).$
- Can assume $\max_i(k_i\ell_i) = k_1\ell_1$.

 If k₁ℓ₁ ~ Str(G), then we recursively apply prev. Str(G//C) ≥ ¹/₄Str(G). Relatively easy.

- We need to "relate" $Tex(g) \sim \max_i(k_i\ell_i).$
- Can assume $\max_i(k_i\ell_i) = k_1\ell_1$.

- If k₁ℓ₁ ~ Str(G), then we recursively apply prev. Str(G//C) ≥ ¹/₄Str(G). Relatively easy.
- If k₁l₁ >> Str(G), then we need to "cut off" the handle(s) causing small stretch...

- We need to "relate" $Tex(g) \sim \max_i(k_i\ell_i).$
- Can assume $\max_i(k_i\ell_i) = k_1\ell_1$.

- If $k_1\ell_1 \sim Str(G)$, then we recursively apply prev. $Str(G//C) \ge \frac{1}{4}Str(G)$. Relatively easy.
- If k₁l₁ >> Str(G), then we need to "cut off" the handle(s) causing small stretch...

We can use prev. $ew_n(G/A) \ge \frac{1}{2} ew_n(G)$ and a complicated induction setup to "preserve" much of the handle contributing $k_1\ell_1$ – till a torus.

- We need to "relate" $Tex(g) \sim \max_i(k_i\ell_i).$
- Can assume $\max_i(k_i\ell_i) = k_1\ell_1$.

- If $k_1\ell_1 \sim Str(G)$, then we recursively apply prev. $Str(G//C) \ge \frac{1}{4}Str(G)$. Relatively easy.
- If k₁l₁ >> Str(G), then we need to "cut off" the handle(s) causing small stretch...

We can use prev. $ew_n(G/A) \ge \frac{1}{2} ew_n(G)$ and a complicated induction setup to "preserve" much of the handle contributing $k_1\ell_1$ – till a torus.

• After all; $Tex(G) \sim k_1 \ell_1 \geq c_0(\Delta, g) \cdot cr(G)$.

Theorem. $c_0(\Delta, g) \cdot \operatorname{cr}(G) \leq \operatorname{Tex}(G) \leq c_1 \cdot \operatorname{cr}(G)$ for G densely embedded on an orientable surface.

4 Algorithmic Corner

Crossing Approximation Algorithm

- Algorithm CROSSINGAPPROXIMATION **Input:** graph G embedded in a surface Σ of fixed genus q **Output:** a drawing of G with $c(\Delta(G), g) \cdot cr(G)$ crossings 1. $(G_0, \Sigma_0) \leftarrow (G, \Sigma)$ 2. $F \leftarrow \emptyset$ 3. for i = 1, 2, ..., q do 4. $\gamma_i \leftarrow$ shortest non-separating dual cycle in G_{i-1} $F \leftarrow F \cup E^*(\gamma_i)$ 5. $(G_i, \Sigma_i) \leftarrow \mathsf{cut} (G_{i-1}, \Sigma_{i-1}) \mathsf{through} \gamma_i$ 6. 7. for $f = uv \in F$ do 8. $\pi_f \leftarrow \text{shortest dual } u\text{-}v \text{ path in } (G_q, \mathcal{S}_0)$ 9. draw f along π_f (avoid multi-crossings) 10. return $(G_a + F, \mathcal{S}_0)$
- Runtime $\mathcal{O}(n \log n)$

Stretch Algorithm

Algorithm COMPUTESTRETCHSURGERY
 Input: graph G embedded in a surface Σ of genus g
 Output: the stretch of G

1.
$$i \leftarrow 1$$

2. $(G_1, \Sigma_1) \leftarrow (G, \Sigma)$
3. $\operatorname{str} \leftarrow \infty$
4. while Σ_i not the sphere and $|V(G_i)| \leq g \cdot |V(G)|$ do
5. $\alpha_i \leftarrow \operatorname{shortest}$ non-separating cycle in G_i
6. $\beta_i \leftarrow \operatorname{shortest}$ cycle crossing α_i exactly once
7. $\operatorname{str} \leftarrow \min\{\operatorname{str}, \operatorname{len}(\alpha_i) \cdot \operatorname{len}(\beta_i)\}$
8. $(G_{i+1}, \Sigma_{i+1}) \leftarrow \operatorname{cut} (G_i, \Sigma_i)$ along α_i
9. and attach disks to the boundaries
10. $i \leftarrow i + 1$
11. return str

• Runtime $\mathcal{O}(g^4n\log^2 n)$ – but watch $|V(G_i)|$ carefully...

• Removing $\Delta(G)$ from the estimates?

• Removing $\Delta(G)$ from the estimates?

Not possible with the above definitions of expanse and stretch, but...

• Removing $\Delta(G)$ from the estimates?

Not possible with the above definitions of expanse and stretch, but...

• Extending stretch and the estimates to the nonorientable case?

• Removing $\Delta(G)$ from the estimates?

Not possible with the above definitions of expanse and stretch, but...

• Extending stretch and the estimates to the nonorientable case?

Yes, no major obstacle, but having now three kinds of stretch certificates and three kinds of grids to consider!

• Removing $\Delta(G)$ from the estimates?

Not possible with the above definitions of expanse and stretch, but...

• Extending stretch and the estimates to the nonorientable case?

Yes, no major obstacle, but having now three kinds of stretch certificates and three kinds of grids to consider!

• Replacing stretch by face-stretch and handling minor crossing number?

• Removing $\Delta(G)$ from the estimates?

Not possible with the above definitions of expanse and stretch, but...

• Extending stretch and the estimates to the nonorientable case?

Yes, no major obstacle, but having now three kinds of stretch certificates and three kinds of grids to consider!

• Replacing stretch by face-stretch and handling minor crossing number? Again, no major obstacle, just nasty technical problems...

• Removing $\Delta(G)$ from the estimates?

Not possible with the above definitions of expanse and stretch, but...

• Extending stretch and the estimates to the nonorientable case?

Yes, no major obstacle, but having now three kinds of stretch certificates and three kinds of grids to consider!

- Replacing stretch by face-stretch and handling minor crossing number? Again, no major obstacle, just nasty technical problems...
- Finding other applications of stretch in algorithms...
 Any suggestions?

Thank you for your attention.