Inserting Multiple Edges into a Planar Graph

Petr Hliněný

Faculty of Informatics, Masaryk University Brno, Czech Republic
joint work with Markus Chimani
Osnabrück University, Germany

1 Drawing Graphs with Crossings

- The crossing minimization problem:

1 Drawing Graphs with Crossings

- The crossing minimization problem:

1 Drawing Graphs with Crossings

- The crossing minimization problem:

1 Drawing Graphs with Crossings

- The crossing minimization problem:

- Crossing number $\operatorname{cr}(G)=$ the minimum number of edge crossings in G, over all possible good drawings of G,

1 Drawing Graphs with Crossings

- The crossing minimization problem:

- Crossing number $\operatorname{cr}(G)=$ the minimum number of edge crossings in G, over all possible good drawings of G, where good means, in particular,

1 Drawing Graphs with Crossings

- The crossing minimization problem:

- Crossing number $\operatorname{cr}(G)=$ the minimum number of edge crossings in G, over all possible good drawings of G, where good means, in particular,

Planar Insertion Problems

Definition. Given graphs G (planar) and H, the task of insertion of H into G is to find a crossing-minimal drawing of $G \cup H$ such that G itself is planar in the drawing.

Planar Insertion Problems

Definition. Given graphs G (planar) and H, the task of insertion of H into G is to find a crossing-minimal drawing of $G \cup H$ such that G itself is planar in the drawing.

- Note; $G=\emptyset \Rightarrow$ ordinary $\operatorname{cr}(H) \ldots$

Planar Insertion Problems

Definition. Given graphs G (planar) and H, the task of insertion of H into G is to find a crossing-minimal drawing of $G \cup H$ such that G itself is planar in the drawing.

- Note; $G=\emptyset \Rightarrow$ ordinary $\operatorname{cr}(H) \ldots$

- Optimal insertion can be very far from crossing minimization $(G+u v)$:

Planar Insertion Problems

Definition. Given graphs G (planar) and H, the task of insertion of H into G is to find a crossing-minimal drawing of $G \cup H$ such that G itself is planar in the drawing.

- Note; $G=\emptyset \Rightarrow$ ordinary $\operatorname{cr}(H) \ldots$

- Optimal insertion can be very far from crossing minimization $(G+u v)$:

$v s$.

Planar Insertion Problems

Definition. Given graphs G (planar) and H, the task of insertion of H into G is to find a crossing-minimal drawing of $G \cup H$ such that G itself is planar in the drawing.

- Note; $G=\emptyset \Rightarrow$ ordinary $\operatorname{cr}(H) \ldots$

- Optimal insertion can be very far from crossing minimization $(G+u v)$:

$v s$.

- Though, sometimes useful as an approximation of the crossing number.

Why insertion problems?

- Crossing minimization is very hard in general, and insertion seems easier.

Why insertion problems?

- Crossing minimization is very hard in general, and insertion seems easier. Actually, solving insertion subproblems is the base of established crossingnumber heuristics.

Why insertion problems?

- Crossing minimization is very hard in general, and insertion seems easier. Actually, solving insertion subproblems is the base of established crossingnumber heuristics.
- There are well-studied special cases of insertion:
- single-edge insertion $(H=e)$ [Gutwenger et al, 2005],

Why insertion problems?

- Crossing minimization is very hard in general, and insertion seems easier. Actually, solving insertion subproblems is the base of established crossingnumber heuristics.
- There are well-studied special cases of insertion:
- single-edge insertion $(H=e)$ [Gutwenger et al, 2005],
- single-vertex insertion ($H=$ star) [Chimani et al, 2009].

Why insertion problems?

- Crossing minimization is very hard in general, and insertion seems easier. Actually, solving insertion subproblems is the base of established crossingnumber heuristics.
- There are well-studied special cases of insertion:
- single-edge insertion $(H=e)$ [Gutwenger et al, 2005],
- single-vertex insertion ($H=$ star) [Chimani et al, 2009].
- Yet, the problem is NP-hard even with $V(H) \subseteq V(G)$ and rigid G.

Why insertion problems?

- Crossing minimization is very hard in general, and insertion seems easier. Actually, solving insertion subproblems is the base of established crossingnumber heuristics.
- There are well-studied special cases of insertion:
- single-edge insertion $(H=e)$ [Gutwenger et al, 2005],
- single-vertex insertion ($H=$ star) [Chimani et al, 2009].
- Yet, the problem is NP-hard even with $V(H) \subseteq V(G)$ and rigid G.
- A bit restricted case - $V(H) \subseteq V(G)$, called multiple-edge insertion of $F=E(H)$, is thus a natural problem for further study.

Why insertion problems?

- Crossing minimization is very hard in general, and insertion seems easier. Actually, solving insertion subproblems is the base of established crossingnumber heuristics.
- There are well-studied special cases of insertion:
- single-edge insertion $(H=e)$ [Gutwenger et al, 2005],
- single-vertex insertion ($H=$ star) [Chimani et al, 2009].
- Yet, the problem is NP-hard even with $V(H) \subseteq V(G)$ and rigid G.
- A bit restricted case - $V(H) \subseteq V(G)$, called multiple-edge insertion of $F=E(H)$, is thus a natural problem for further study.
- This problem has a (practically usable!) polynomial time approximation algorithm, with only an additive error depending on $|F|$ and $\Delta(G)$.
[Chimani and Hliněný, 2011]

2 New Contribution: Exact FPT Algorithm

- Recalling the problem...
$\operatorname{MEI}(G, F)$: to find a crossing-minimal drawing of $G+F$ such that G is drawn plane.
Input: G and F
Parameter: $k=|F|$

2 New Contribution: Exact FPT Algorithm

- Recalling the problem...
$\operatorname{MEI}(G, F)$: to find a crossing-minimal drawing of $G+F$ such that G is drawn plane.
Input: G and F
Parameter: $k=|F|$

Theorem. Let G be a 2-connected planar graph and F a set of new edges.
The $\operatorname{MEI}(G, F)$ problem is solvable to optimality in FPT time $\mathcal{O}\left(2^{q(k)} \cdot|V(G)|\right)$ where q is a polynomial.

2 New Contribution: Exact FPT Algorithm

- Recalling the problem...
$\operatorname{MEI}(G, F)$: to find a crossing-minimal drawing of $G+F$ such that G is drawn plane.
Input: G and F
Parameter: $k=|F|$

Theorem. Let G be a 2-connected planar graph and F a set of new edges.
The $\operatorname{MEI}(G, F)$ problem is solvable to optimality in FPT time $\mathcal{O}\left(2^{q(k)} \cdot|V(G)|\right)$ where q is a polynomial.

For connected G the same is true as long as degrees of the cutvertices of G are bounded.

Relation to previous research

- Our result directly extends the single-edge insertion algorithm [Gutwenger et al, 2005], but it is incomparable with the single-vertex insertion.

Relation to previous research

- Our result directly extends the single-edge insertion algorithm [Gutwenger et al, 2005], but it is incomparable with the single-vertex insertion.
- The crossing number problem problem $\operatorname{cr}(G) \leq r$ is known to be in FPT with the parameter r : [Grohe, 2001] and [Kawarabayashi and Reed, 2007].

Relation to previous research

- Our result directly extends the single-edge insertion algorithm [Gutwenger et al, 2005], but it is incomparable with the single-vertex insertion.
- The crossing number problem problem $\operatorname{cr}(G) \leq r$ is known to be in FPT with the parameter r : [Grohe, 2001] and [Kawarabayashi and Reed, 2007]. Though, this is again incomparable to our result since
- in one direction, even adding one edge to a planar graph may result in arbitrarily large crossing number, and
- in the other direction, we are not able to efficiently guess which edges will be crossed $(\rightarrow F)$ even if the crossing number is bounded.

Relation to previous research

- Our result directly extends the single-edge insertion algorithm [Gutwenger et al, 2005], but it is incomparable with the single-vertex insertion.
- The crossing number problem problem $\operatorname{cr}(G) \leq r$ is known to be in FPT with the parameter r : [Grohe, 2001] and [Kawarabayashi and Reed, 2007].
Though, this is again incomparable to our result since
- in one direction, even adding one edge to a planar graph may result in arbitrarily large crossing number, and
- in the other direction, we are not able to efficiently guess which edges will be crossed $(\rightarrow F)$ even if the crossing number is bounded.
- Moreover, computing $\operatorname{cr}(G+e)$ where G is planar, is NP-hard!
[Cabello and Mohar, 2010]

Relation to previous research

- Our result directly extends the single-edge insertion algorithm [Gutwenger et al, 2005], but it is incomparable with the single-vertex insertion.
- The crossing number problem problem $\operatorname{cr}(G) \leq r$ is known to be in FPT with the parameter r : [Grohe, 2001] and [Kawarabayashi and Reed, 2007]. Though, this is again incomparable to our result since
- in one direction, even adding one edge to a planar graph may result in arbitrarily large crossing number, and
- in the other direction, we are not able to efficiently guess which edges will be crossed $(\rightarrow F)$ even if the crossing number is bounded.
- Moreover, computing $\operatorname{cr}(G+e)$ where G is planar, is NP-hard!
[Cabello and Mohar, 2010]
- Also not comparable to prev. approximation [Chimani and Hliněný, 2011]: the approximation was polynomial-time also in $|F| \ldots$

3 Breakdown of the Problem

(a) G may not have a unique embedding

- Note that we cannot process all non-equivalent embeddings in FPT time.

3 Breakdown of the Problem

(a) G may not have a unique embedding

- Note that we cannot process all non-equivalent embeddings in FPT time.
- Using an established tool - so called SPQR trees:

- G broken into series, parallel, and rigid (3-conn.) components.

3 Breakdown of the Problem

(a) G may not have a unique embedding

- Note that we cannot process all non-equivalent embeddings in FPT time.
- Using an established tool - so called SPQR trees:

- G broken into series, parallel, and rigid (3-conn.) components.
- Then, G is glued back together along virtual edges.

Dynamic programming over an $\mathrm{SP}(\mathrm{Q}) \mathrm{R}$ tree

Consider processing one $\mathrm{SP}(\mathrm{Q}) \mathrm{R}$ tree node:

- Embedding flexibility coming from flipping components at 2-cuts.

Dynamic programming over an $\operatorname{SP}(\mathrm{Q}) \mathrm{R}$ tree

Consider processing one $\mathrm{SP}(\mathrm{Q}) \mathrm{R}$ tree node:

- Embedding flexibility coming from flipping components at 2-cuts.

- Flipping comps. incident with edge(s) of F are dirty - at most $2 k$ such. \rightarrow bound the number of essential embeddings (at this node only!) in k.

Dynamic programming over an $\mathrm{SP}(\mathrm{Q}) \mathrm{R}$ tree

Consider processing one $S P(Q) R$ tree node:

- Embedding flexibility coming from flipping components at 2-cuts.

- Flipping comps. incident with edge(s) of F are dirty - at most $2 k$ such. \rightarrow bound the number of essential embeddings (at this node only!) in k.
- Bound the number of crossings of one flip. component as well.

Dynamic programming over an $\mathrm{SP}(\mathrm{Q}) \mathrm{R}$ tree

Consider processing one $\mathrm{SP}(\mathrm{Q}) \mathrm{R}$ tree node:

- Embedding flexibility coming from flipping components at 2-cuts.

- Flipping comps. incident with edge(s) of F are dirty - at most $2 k$ such. \rightarrow bound the number of essential embeddings (at this node only!) in k.
- Bound the number of crossings of one flip. component as well.
- \Rightarrow At most $f(k)$ rigid cases to consider here, for some (exp.) f.

(b) G is uniquely embedded - rigid

- Generalized to cover both the primary case of 3 -connected G and the rigid subcases at SPQR...
$\mathrm{r}-\mathrm{MEI}\left(G_{0}, \boldsymbol{F}\right)$: given embedding G_{0} stays fixed!

(b) G is uniquely embedded - rigid

- Generalized to cover both the primary case of 3 -connected G and the rigid subcases at SPQR...
r-MEI $\left(G_{0}, \boldsymbol{F}\right)$: given embedding G_{0} stays fixed!
- plus integer-weighted edges of G (but not F).

(b) G is uniquely embedded - rigid

- Generalized to cover both the primary case of 3 -connected G and the rigid subcases at SPQR...
r-MEI $\left(G_{0}, \boldsymbol{F}\right)$: given embedding G_{0} stays fixed!
- plus integer-weighted edges of G (but not F).
- Modeling the virtual edges (flipping comps.):
- non-dirty \rightarrow pertinent weights (= edge cut),
- dirty ones $\rightarrow \infty$-weight plus connectors.

(b) G is uniquely embedded - rigid

- Generalized to cover both the primary case of 3 -connected G and the rigid subcases at SPQR...
$\mathrm{r}-\mathrm{MEI}\left(\boldsymbol{G}_{0}, \boldsymbol{F}\right)$: given embedding G_{0} stays fixed!
- plus integer-weighted edges of G (but not F).
- Modeling the virtual edges (flipping comps.):
- non-dirty \rightarrow pertinent weights (= edge cut),
- dirty ones $\rightarrow \infty$-weight plus connectors.

- Altogether, a rigid model instance with $\mathcal{O}(|V(G)|)+\operatorname{poly}(k)$ vertices:
- $\leq k F$-edges, and $\leq 2 k$ dirty virtual edges at this SPQR node,
- each virtual edge crossed by an F-edge $\leq\binom{ k}{2}$ times.

(b) G is uniquely embedded - rigid

- Generalized to cover both the primary case of 3 -connected G and the rigid subcases at SPQR...
r-MEI $\left(G_{0}, \boldsymbol{F}\right)$: given embedding G_{0} stays fixed!
- plus integer-weighted edges of G (but not F).
- Modeling the virtual edges (flipping comps.):
- non-dirty \rightarrow pertinent weights (= edge cut),
- dirty ones $\rightarrow \infty$-weight plus connectors.

- Altogether, a rigid model instance with $\mathcal{O}(|V(G)|)+\operatorname{poly}(k)$ vertices:
- $\leq k F$-edges, and $\leq 2 k$ dirty virtual edges at this SPQR node,
- each virtual edge crossed by an F-edge $\leq\binom{ k}{2}$ times.
- Have to find routes (dual walks) for the missing segments of F-edges.

4 Solving Rigid MEI

(a) Route homotopy
(w.r.t. the ends and connectors of F-edges)

- Classical ap. - need to "triangulate" G :

4 Solving Rigid MEI

(a) Route homotopy

(w.r.t. the ends and connectors of F-edges)

- Classical ap. - need to "triangulate" G :

Definition. Trinet; $G \rightarrow\left(G^{\prime}, T\right)$.
Trinodes - ends (and conn.) of F-edges; triedges - subdividing paths btw. trinodes; altogether giving all triangular cells of T.

4 Solving Rigid MEI

(a) Route homotopy

(w.r.t. the ends and connectors of F-edges)

- Classical ap. - need to "triangulate" G :

Definition. Trinet; $G \rightarrow\left(G^{\prime}, T\right)$.
Trinodes - ends (and conn.) of F-edges; triedges - subdividing paths btw. trinodes; altogether giving all triangular cells of T.

- A shortest-spanning trinet: demand the triedges to be locally (in part globally) shortest dual walks.

4 Solving Rigid MEI

(a) Route homotopy

(w.r.t. the ends and connectors of F-edges)

- Classical ap. - need to "triangulate" G :

Definition. Trinet; $G \rightarrow\left(G^{\prime}, T\right)$.
Trinodes - ends (and conn.) of F-edges; triedges - subdividing paths btw. trinodes; altogether giving all triangular cells of T.

- A shortest-spanning trinet: demand the triedges to be locally (in part globally) shortest dual walks.

Definition. T-sequence over a trinet.
For $f \in F$, a sequence of intersected triedges from u to v.

4 Solving Rigid MEI

(a) Route homotopy

(w.r.t. the ends and connectors of F-edges)

- Classical ap. - need to "triangulate" G :

Definition. Trinet; $G \rightarrow\left(G^{\prime}, T\right)$.
Trinodes - ends (and conn.) of F-edges; triedges - subdividing paths btw. trinodes; altogether giving all triangular cells of T.

- A shortest-spanning trinet: demand the triedges to be locally (in part globally) shortest dual walks.

Definition. T-sequence over a trinet.
For $f \in F$, a sequence of intersected triedges from u to v.
Lemma. *** In a shortest-spanning trinet, the T-sequence of an optimal $\mathrm{r}-\mathrm{MEI}(G, F)$ solution repeats every triedge at most $8 k^{4}$ times, where $k=|F|$.

(b) Funnel algorithm

- A straightforward adaptation to our trinets.

(b) Funnel algorithm

- A straightforward adaptation to our trinets.
- only need nice "triangles" - OK,
- and prevent switching "there and back" - loc.-shortest.
- Finding a shortest route in a sleeve simply by dual BFS.

(b) Funnel algorithm

- A straightforward adaptation to our trinets.
- only need nice "triangles" - OK,
- and prevent switching "there and back" - loc.-shortest.
- Finding a shortest route in a sleeve simply by dual BFS.

(c) Crossing of routes

- Last to solve - when two homotopies "force" F-edges to cross each other?

(b) Funnel algorithm

- A straightforward adaptation to our trinets.
- only need nice "triangles" - OK,
- and prevent switching "there and back" - loc.-shortest.
- Finding a shortest route in a sleeve simply by dual BFS.

(c) Crossing of routes

- Last to solve - when two homotopies "force" F-edges to cross each other?
\rightarrow Defining a crossing certificate for two T-sequences.
Lemma. There exist non-crossing routes for $e, f \in F$, following T-sequences T_{e}, T_{f}, iff there is no crossing certificate for T_{e}, T_{f}.

(b) Funnel algorithm

- A straightforward adaptation to our trinets.
- only need nice "triangles" - OK,
- and prevent switching "there and back" - loc.-shortest.
- Finding a shortest route in a sleeve simply by dual BFS.

(c) Crossing of routes

- Last to solve - when two homotopies "force" F-edges to cross each other?
\rightarrow Defining a crossing certificate for two T-sequences.
Lemma. There exist non-crossing routes for $e, f \in F$, following T-sequences T_{e}, T_{f}, iff there is no crossing certificate for T_{e}, T_{f}.
- Have to similarly check also for "forcing to cross twice"...

The full "rigid" Algorithm

In: plane G, edge weights $w: E(G) \rightarrow \mathbb{N}_{+} \cup\{\infty\}$, new edge set F of $w(f)=1$. Out: an optimal solution to (w-weighted) $\mathbf{r - M E I}(\boldsymbol{G}, \boldsymbol{F})$.

The full "rigid" Algorithm

In: plane G, edge weights $w: E(G) \rightarrow \mathbb{N}_{+} \cup\{\infty\}$, new edge set F of $w(f)=1$.
Out: an optimal solution to (w-weighted) $\operatorname{r-MEI}(\boldsymbol{G}, \boldsymbol{F})$.

1. Compute a full trinet $\left(G^{\prime}, T\right)$ on the trinodes $N(T):=V(F)$, shortest-spanning;

- globally-shortest triedges from any selected trinode to all others, and
- then greedily add remaining triedges, each as locally-shortest.

The full "rigid" Algorithm

In: plane G, edge weights $w: E(G) \rightarrow \mathbb{N}_{+} \cup\{\infty\}$, new edge set F of $w(f)=1$.
Out: an optimal solution to (w-weighted) $\mathbf{r - M E I}(\boldsymbol{G}, \boldsymbol{F})$.

1. Compute a full trinet $\left(G^{\prime}, T\right)$ on the trinodes $N(T):=V(F)$, shortest-spanning;

- globally-shortest triedges from any selected trinode to all others, and
- then greedily add remaining triedges, each as locally-shortest.

2. For each $f=u v \in F$; let $\mathcal{S}_{f}:=$ all relevant T-sequences from u to v, and

- for $S \in \mathcal{S}_{f}$, compute a shortest $u-v$ route π_{S} in the trinet along S.

The full "rigid" Algorithm

In: plane G, edge weights $w: E(G) \rightarrow \mathbb{N}_{+} \cup\{\infty\}$, new edge set F of $w(f)=1$.
Out: an optimal solution to (w-weighted) $\mathbf{r - M E I}(\boldsymbol{G}, \boldsymbol{F})$.

1. Compute a full trinet $\left(G^{\prime}, T\right)$ on the trinodes $N(T):=V(F)$, shortest-spanning;

- globally-shortest triedges from any selected trinode to all others, and
- then greedily add remaining triedges, each as locally-shortest.

2. For each $f=u v \in F$; let $\mathcal{S}_{f}:=$ all relevant T-sequences from u to v, and

- for $S \in \mathcal{S}_{f}$, compute a shortest $u-v$ route π_{S} in the trinet along S.

3. For each possible system of representatives $\mathcal{P}=\left\{S_{f}\right\}_{f \in F}$ with $S_{f} \in \mathcal{S}_{f}$;

- Let $X_{\mathcal{P}}:=\left\{\left\{f, f^{\prime}\right\}\right.$: there exists a crossing certificate for $\left.S_{f}, S_{f^{\prime}}\right\}$
- For $\left\{f, f^{\prime}\right\} \in X_{\mathcal{P}}$, if two "indep." crossing certif. of $S_{f}, S_{f^{\prime}}$, then fail.

The full "rigid" Algorithm

In: plane G, edge weights $w: E(G) \rightarrow \mathbb{N}_{+} \cup\{\infty\}$, new edge set F of $w(f)=1$.
Out: an optimal solution to (w-weighted) $\mathbf{r - M E I}(\boldsymbol{G}, \boldsymbol{F})$.

1. Compute a full trinet $\left(G^{\prime}, T\right)$ on the trinodes $N(T):=V(F)$, shortest-spanning;

- globally-shortest triedges from any selected trinode to all others, and
- then greedily add remaining triedges, each as locally-shortest.

2. For each $f=u v \in F$; let $\mathcal{S}_{f}:=$ all relevant T-sequences from u to v, and

- for $S \in \mathcal{S}_{f}$, compute a shortest $u-v$ route π_{S} in the trinet along S.

3. For each possible system of representatives $\mathcal{P}=\left\{S_{f}\right\}_{f \in F}$ with $S_{f} \in \mathcal{S}_{f}$;

- Let $X_{\mathcal{P}}:=\left\{\left\{f, f^{\prime}\right\}\right.$: there exists a crossing certificate for $\left.S_{f}, S_{f^{\prime}}\right\}$
- For $\left\{f, f^{\prime}\right\} \in X_{\mathcal{P}}$, if two "indep." crossing certif. of $S_{f}, S_{f^{\prime}}$, then fail.
- Otherwise, let

$$
c r_{\mathcal{P}}:=\left|X_{\mathcal{P}}\right|+\sum_{f \in F} \operatorname{len}_{w}\left(\pi_{S_{f}}\right)
$$

where $\pi_{S_{f}}$ is the shortest route for f and S_{f}, computed above.

The full "rigid" Algorithm

In: plane G, edge weights $w: E(G) \rightarrow \mathbb{N}_{+} \cup\{\infty\}$, new edge set F of $w(f)=1$.
Out: an optimal solution to (w-weighted) $\mathbf{r - M E I}(\boldsymbol{G}, \boldsymbol{F})$.

1. Compute a full trinet $\left(G^{\prime}, T\right)$ on the trinodes $N(T):=V(F)$, shortest-spanning;

- globally-shortest triedges from any selected trinode to all others, and
- then greedily add remaining triedges, each as locally-shortest.

2. For each $f=u v \in F$; let $\mathcal{S}_{f}:=$ all relevant T-sequences from u to v, and

- for $S \in \mathcal{S}_{f}$, compute a shortest $u-v$ route π_{S} in the trinet along S.

3. For each possible system of representatives $\mathcal{P}=\left\{S_{f}\right\}_{f \in F}$ with $S_{f} \in \mathcal{S}_{f}$;

- Let $X_{\mathcal{P}}:=\left\{\left\{f, f^{\prime}\right\}\right.$: there exists a crossing certificate for $\left.S_{f}, S_{f^{\prime}}\right\}$
- For $\left\{f, f^{\prime}\right\} \in X_{\mathcal{P}}$, if two "indep." crossing certif. of $S_{f}, S_{f^{\prime}}$, then fail.
- Otherwise, let

$$
c r_{\mathcal{P}}:=\left|X_{\mathcal{P}}\right|+\sum_{f \in F} \operatorname{len}_{w}\left(\pi_{S_{f}}\right)
$$

where $\pi_{S_{f}}$ is the shortest route for f and S_{f}, computed above.
4. Pick \mathcal{P} with smallest $\operatorname{crp}_{p}<\infty$.

Realize routing of all F-edges according to this \mathcal{P}, and avoid unforced crossings.

5 Final Remarks

- Handling non-2-connected G, just connected:

5 Final Remarks

- Handling non-2-connected G, just connected:

The are problems with cutvertices of high degree - cannot enumerate possible rigid subcases in FPT, but subject to ongoing investigation.

5 Final Remarks

- Handling non-2-connected G, just connected:

The are problems with cutvertices of high degree - cannot enumerate possible rigid subcases in FPT, but subject to ongoing investigation.

- Handling non-unit weights on the edges of F :

5 Final Remarks

- Handling non-2-connected G, just connected:

The are problems with cutvertices of high degree - cannot enumerate possible rigid subcases in FPT, but subject to ongoing investigation.

- Handling non-unit weights on the edges of F :

We already handle edge weights on G, so why not for F ?

5 Final Remarks

- Handling non-2-connected G, just connected:

The are problems with cutvertices of high degree - cannot enumerate possible rigid subcases in FPT, but subject to ongoing investigation.

- Handling non-unit weights on the edges of F :

We already handle edge weights on G, so why not for F ? Because the " T-sequence repetition lemma" fails with weighted F ! Again subject to future investigation.

5 Final Remarks

- Handling non-2-connected G, just connected:

The are problems with cutvertices of high degree - cannot enumerate possible rigid subcases in FPT, but subject to ongoing investigation.

- Handling non-unit weights on the edges of F :

We already handle edge weights on G, so why not for F ? Because the " T-sequence repetition lemma" fails with weighted F ! Again subject to future investigation.

- New modes of parameterization for the crossing number?
- Known in FPT when parameterized by the solution size $\operatorname{cr}(G)$,

5 Final Remarks

- Handling non-2-connected G, just connected:

The are problems with cutvertices of high degree - cannot enumerate possible rigid subcases in FPT, but subject to ongoing investigation.

- Handling non-unit weights on the edges of F :

We already handle edge weights on G, so why not for F ? Because the " T-sequence repetition lemma" fails with weighted F ! Again subject to future investigation.

- New modes of parameterization for the crossing number?
- Known in FPT when parameterized by the solution size $\operatorname{cr}(G)$,
- but what if we parameterize by the number of edges which "cover" all the crossings?

5 Final Remarks

- Handling non-2-connected G, just connected:

The are problems with cutvertices of high degree - cannot enumerate possible rigid subcases in FPT, but subject to ongoing investigation.

- Handling non-unit weights on the edges of F :

We already handle edge weights on G, so why not for F ? Because the " T-sequence repetition lemma" fails with weighted F ! Again subject to future investigation.

- New modes of parameterization for the crossing number?
- Known in FPT when parameterized by the solution size $\operatorname{cr}(G)$,
- but what if we parameterize by the number of edges which "cover" all the crossings?

Thank you for your attention.

