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Planar Insertion ProblemsPlanar Insertion Problems

Definition. Given graphs G (planar) and H,
the task of insertion of H into G is to find a
crossing-minimal drawing of G∪H such that G
itself is planar in the drawing.
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Petr Hliněný, SoCG, Boston, 2016 3 / 13 Inserting Multiple Edges into a Planar Graph

Planar Insertion ProblemsPlanar Insertion Problems

Definition. Given graphs G (planar) and H,
the task of insertion of H into G is to find a
crossing-minimal drawing of G∪H such that G
itself is planar in the drawing.

– Note; G = ∅ ⇒ ordinary cr(H). . .

G
H

• Optimal insertion can be very far from crossing minimization (G+ uv):

s

s
s

sss s
s s

s
s sss s su v

vs.
s

s
s

s ss s
s s

s
s sss s s uv



page.13
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• Though, sometimes useful as an approximation of the crossing number.
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Why insertion problems?Why insertion problems?

• Crossing minimization is very hard in general, and insertion seems easier.

Actually, solving insertion subproblems is the base of established crossing-
number heuristics.

• There are well-studied special cases of insertion:

– single-edge insertion (H = e) [Gutwenger et al, 2005],

– single-vertex insertion (H = star) [Chimani et al, 2009].

• Yet, the problem is NP-hard even with V (H) ⊆ V (G) and rigid G.

— — — —

• A bit restricted case – V (H) ⊆ V (G), called multiple-edge insertion of
F = E(H), is thus a natural problem for further study.

• This problem has a (practically usable!) polynomial time approximation
algorithm, with only an additive error depending on |F | and ∆(G).

[Chimani and Hliněný, 2011]
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2 New Contribution: Exact FPT Algorithm2 New Contribution: Exact FPT Algorithm

• Recalling the problem. . .

MEI(G,F ): to find a crossing-minimal draw-
ing of G+ F such that G is drawn plane.

Input: G and F
Parameter: k = |F | F

G
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MEI(G,F ): to find a crossing-minimal draw-
ing of G+ F such that G is drawn plane.

Input: G and F
Parameter: k = |F | F

G

Theorem. Let G be a 2-connected planar graph and F a set of new edges.

The MEI(G,F ) problem is solvable to optimality in FPT time O(2q(k) · |V (G)|)
where q is a polynomial.
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2 New Contribution: Exact FPT Algorithm2 New Contribution: Exact FPT Algorithm

• Recalling the problem. . .

MEI(G,F ): to find a crossing-minimal draw-
ing of G+ F such that G is drawn plane.

Input: G and F
Parameter: k = |F | F

G

Theorem. Let G be a 2-connected planar graph and F a set of new edges.

The MEI(G,F ) problem is solvable to optimality in FPT time O(2q(k) · |V (G)|)
where q is a polynomial.

For connected G the same is true as long as degrees of the cutvertices of G are
bounded.
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• Our result directly extends the single-edge insertion algorithm [Gutwenger
et al, 2005], but it is incomparable with the single-vertex insertion.
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Relation to previous researchRelation to previous research

• Our result directly extends the single-edge insertion algorithm [Gutwenger
et al, 2005], but it is incomparable with the single-vertex insertion.

• The crossing number problem problem cr(G) ≤ r is known to be in FPT
with the parameter r: [Grohe, 2001] and [Kawarabayashi and Reed, 2007].

Though, this is again incomparable to our result since

– in one direction, even adding one edge to a planar graph may result
in arbitrarily large crossing number, and

– in the other direction, we are not able to efficiently guess which edges
will be crossed (→ F ) even if the crossing number is bounded.

• Moreover, computing cr(G+ e) where G is planar, is NP-hard!
[Cabello and Mohar, 2010]

• Also not comparable to prev. approximation [Chimani and Hliněný, 2011]:

the approximation was polynomial-time also in |F |. . .
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3 Breakdown of the Problem3 Breakdown of the Problem

(a) G may not have a unique embedding

• Note that we cannot process all non-equivalent embeddings in FPT time.

• Using an established tool – so called SPQR trees:

– G broken into series, parallel, and rigid (3-conn.) components.

– Then, G is glued back together along virtual edges.



page.13
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Dynamic programming over an SP(Q)R treeDynamic programming over an SP(Q)R tree

Consider processing one SP(Q)R tree node:

• Embedding flexibility coming from flipping components at 2-cuts.
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• Flipping comps. incident with edge(s) of F are dirty – at most 2k such.

→ bound the number of essential embeddings (at this node only!) in k.
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Consider processing one SP(Q)R tree node:

• Embedding flexibility coming from flipping components at 2-cuts.
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• Flipping comps. incident with edge(s) of F are dirty – at most 2k such.

→ bound the number of essential embeddings (at this node only!) in k.

• Bound the number of crossings of one flip. component as well.

• ⇒ At most f(k) rigid cases to consider here, for some (exp.) f .
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(b) G is uniquely embedded – rigid(b) G is uniquely embedded – rigid

• Generalized to cover both the primary case of
3-connected G and the rigid subcases at SPQR. . .

r-MEI(G0, F ): given embedding G0 stays fixed!
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• Generalized to cover both the primary case of
3-connected G and the rigid subcases at SPQR. . .

r-MEI(G0, F ): given embedding G0 stays fixed!

– plus integer-weighted edges of G (but not F ).

• Modeling the virtual edges (flipping comps.):

– non-dirty → pertinent weights (= edge cut),

– dirty ones → ∞-weight plus connectors.

• Altogether, a rigid model instance with O(|V (G)|) + poly(k) vertices:

– ≤ k F -edges, and ≤ 2k dirty virtual edges at this SPQR node,

– each virtual edge crossed by an F -edge ≤
(
k
2

)
times.
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(b) G is uniquely embedded – rigid(b) G is uniquely embedded – rigid

• Generalized to cover both the primary case of
3-connected G and the rigid subcases at SPQR. . .

r-MEI(G0, F ): given embedding G0 stays fixed!

– plus integer-weighted edges of G (but not F ).

• Modeling the virtual edges (flipping comps.):

– non-dirty → pertinent weights (= edge cut),

– dirty ones → ∞-weight plus connectors.

• Altogether, a rigid model instance with O(|V (G)|) + poly(k) vertices:

– ≤ k F -edges, and ≤ 2k dirty virtual edges at this SPQR node,

– each virtual edge crossed by an F -edge ≤
(
k
2

)
times.

• Have to find routes (dual walks) for the missing segments of F -edges.
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(a) Route homotopy

(w.r.t. the ends and connectors of F -edges)

• Classical ap. – need to “triangulate” G:
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• A shortest-spanning trinet:
demand the triedges to be locally
(in part globally) shortest dual walks.



page.13
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Definition. T -sequence over a trinet.
For f ∈ F , a sequence of intersected triedges from u to v.
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(w.r.t. the ends and connectors of F -edges)

• Classical ap. – need to “triangulate” G:

Definition. Trinet; G → (G′, T ).
Trinodes – ends (and conn.) of F -edges;
triedges – subdividing paths btw. trinodes;
altogether giving all triangular cells of T .
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• A shortest-spanning trinet:
demand the triedges to be locally
(in part globally) shortest dual walks.

p

u

v

q

r

s

Definition. T -sequence over a trinet.
For f ∈ F , a sequence of intersected triedges from u to v.

Lemma. *** In a shortest-spanning trinet, the T -sequence of an optimal
r-MEI(G,F ) solution repeats every triedge at most 8k4 times, where k = |F |.
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– only need nice “triangles” – OK,

– and prevent switching “there and back” – loc.-shortest.

• Finding a shortest route in a sleeve simply by dual BFS.

(c) Crossing of routes(c) Crossing of routes

• Last to solve – when two homotopies “force” F -edges to cross each other?

→ Defining a crossing certificate for two T -sequences.

Lemma. There exist non-crossing routes for e, f ∈ F , following T -sequences
Te, Tf , iff there is no crossing certificate for Te, Tf .
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(b) Funnel algorithm(b) Funnel algorithm

• A straightforward adaptation to our trinets.

– only need nice “triangles” – OK,

– and prevent switching “there and back” – loc.-shortest.

• Finding a shortest route in a sleeve simply by dual BFS.

(c) Crossing of routes(c) Crossing of routes

• Last to solve – when two homotopies “force” F -edges to cross each other?

→ Defining a crossing certificate for two T -sequences.

Lemma. There exist non-crossing routes for e, f ∈ F , following T -sequences
Te, Tf , iff there is no crossing certificate for Te, Tf .

• Have to similarly check also for “forcing to cross twice”. . .
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The full “rigid” AlgorithmThe full “rigid” Algorithm

In: plane G, edge weights w:E(G)→ N+ ∪ {∞}, new edge set F of w(f) = 1.

Out: an optimal solution to (w-weighted) r-MEI(G,F ).
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In: plane G, edge weights w:E(G)→ N+ ∪ {∞}, new edge set F of w(f) = 1.

Out: an optimal solution to (w-weighted) r-MEI(G,F ).

1. Compute a full trinet (G′, T ) on the trinodes N(T ) := V (F ), shortest-spanning;

– globally-shortest triedges from any selected trinode to all others, and

– then greedily add remaining triedges, each as locally-shortest.
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The full “rigid” AlgorithmThe full “rigid” Algorithm

In: plane G, edge weights w:E(G)→ N+ ∪ {∞}, new edge set F of w(f) = 1.

Out: an optimal solution to (w-weighted) r-MEI(G,F ).

1. Compute a full trinet (G′, T ) on the trinodes N(T ) := V (F ), shortest-spanning;

– globally-shortest triedges from any selected trinode to all others, and

– then greedily add remaining triedges, each as locally-shortest.

2. For each f = uv ∈ F ; let Sf := all relevant T -sequences from u to v, and

– for S ∈ Sf , compute a shortest u–v route πS in the trinet along S.
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In: plane G, edge weights w:E(G)→ N+ ∪ {∞}, new edge set F of w(f) = 1.

Out: an optimal solution to (w-weighted) r-MEI(G,F ).

1. Compute a full trinet (G′, T ) on the trinodes N(T ) := V (F ), shortest-spanning;

– globally-shortest triedges from any selected trinode to all others, and

– then greedily add remaining triedges, each as locally-shortest.

2. For each f = uv ∈ F ; let Sf := all relevant T -sequences from u to v, and

– for S ∈ Sf , compute a shortest u–v route πS in the trinet along S.

3. For each possible system of representatives P = {Sf}f∈F with Sf ∈ Sf ;

– Let XP :=
{
{f, f ′} : there exists a crossing certificate for Sf , Sf ′

}
– For {f, f ′} ∈ XP, if two “indep.” crossing certif. of Sf , Sf ′ , then fail.
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{
{f, f ′} : there exists a crossing certificate for Sf , Sf ′

}
– For {f, f ′} ∈ XP, if two “indep.” crossing certif. of Sf , Sf ′ , then fail.

– Otherwise, let
crP := |XP|+

∑
f∈F

lenw(πSf
),

where πSf
is the shortest route for f and Sf , computed above.
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1. Compute a full trinet (G′, T ) on the trinodes N(T ) := V (F ), shortest-spanning;

– globally-shortest triedges from any selected trinode to all others, and

– then greedily add remaining triedges, each as locally-shortest.

2. For each f = uv ∈ F ; let Sf := all relevant T -sequences from u to v, and

– for S ∈ Sf , compute a shortest u–v route πS in the trinet along S.

3. For each possible system of representatives P = {Sf}f∈F with Sf ∈ Sf ;

– Let XP :=
{
{f, f ′} : there exists a crossing certificate for Sf , Sf ′

}
– For {f, f ′} ∈ XP, if two “indep.” crossing certif. of Sf , Sf ′ , then fail.

– Otherwise, let
crP := |XP|+

∑
f∈F

lenw(πSf
),

where πSf
is the shortest route for f and Sf , computed above.

4. Pick P with smallest crP <∞.
Realize routing of all F -edges according to this P, and avoid unforced crossings.
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• Handling non-2-connected G, just connected:

The are problems with cutvertices of high degree – cannot enumerate
possible rigid subcases in FPT, but subject to ongoing investigation.

• Handling non-unit weights on the edges of F :

We already handle edge weights on G, so why not for F?
Because the “T -sequence repetition lemma” fails with weighted F ! Again
subject to future investigation.

• New modes of parameterization for the crossing number?

– Known in FPT when parameterized by the solution size cr(G),

– but what if we parameterize by the number of edges which “cover”
all the crossings?

Thank you for your attention.
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