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1 Drawing Graphs with Crossings

e The crossing minimization problem:
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Planar Insertion Problems

Definition. Given graphs G (planar) and H,
the task of insertion of H into GG is to find a
crossing-minimal drawing of GU H such that G
itself is planar in the drawing.
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Planar Insertion Problems

Definition. Given graphs G (planar) and H,
the task of insertion of H into GG is to find a
crossing-minimal drawing of GU H such that G
itself is planar in the drawing. H

— Note; G =0 = ordinary cr(H). ..

e Optimal insertion can be very far from crossing minimization (G + uv):

vSs.

e Though, sometimes useful as an approximation of the crossing number.
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Petr Hlinény, SoCG, Boston, 2016



Why insertion problems?

e Crossing minimization is very hard in general, and insertion seems easier.
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Why insertion problems?

Crossing minimization is very hard in general, and insertion seems easier.

Actually, solving insertion subproblems is the base of established crossing-
number heuristics.

There are well-studied special cases of insertion:

— single-edge insertion (H = e) [Gutwenger et al, 2005],
— single-vertex insertion (H =star) [Chimani et al, 2009].

Yet, the problem is NP-hard even with V/(H) C V(G) and rigid G.

A bit restricted case — V(H) C V(G), called multiple-edge insertion of
F = E(H), is thus a natural problem for further study.

This problem has a (practically usable!) polynomial time approximation
algorithm, with only an additive error depending on |F| and A(G).
[Chimani and Hlin&ny, 2011]
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2 New Contribution: Exact FPT Algorithm

o Recalling the problem. ..

MEI(G, F): to find a crossing-minimal draw-
ing of G + F such that G is drawn plane.

Input: G and F
Parameter: k = |F|
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2 New Contribution: Exact FPT Algorithm

e Recalling the problem. ..

MEI(G, F'): to find a crossing-minimal draw-
ing of G + F such that G is drawn plane.

Input: G and F
Parameter: k = |F| F

Theorem. Let G be a 2-connected planar graph and F' a set of new edges.

The MEI(G, F) problem is solvable to optimality in FPT time O(2¢%) .|V (G)])
where ¢ is a polynomial.

Petr Hlingny, SoCG, Boston, 2016 Inserting Multiple Edges into a Planar Graph



2 New Contribution: Exact FPT Algorithm

e Recalling the problem. ..

MEI(G, F'): to find a crossing-minimal draw-
ing of G + F such that G is drawn plane.

Input: G and F
Parameter: k = |F| F

Theorem. Let G be a 2-connected planar graph and F' a set of new edges.
The MEI(G, F) problem is solvable to optimality in FPT time O(2¢%) .|V (G)])
where ¢ is a polynomial.

For connected G the same is true as long as degrees of the cutvertices of G are
bounded.
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Relation to previous research

e Our result directly extends the single-edge insertion algorithm [Gutwenger
et al, 2005], but it is incomparable with the single-vertex insertion.
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e The crossing number problem problem c¢r(G) < r is known to be in FPT
with the parameter r: [Grohe, 2001] and [Kawarabayashi and Reed, 2007].
Though, this is again incomparable to our result since

— in one direction, even adding one edge to a planar graph may result
in arbitrarily large crossing number, and

— in the other direction, we are not able to efficiently guess which edges
will be crossed (— F') even if the crossing number is bounded.
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[Cabello and Mohar, 2010]

Petr Hlingny, SoCG, Boston, 2016 Inserting Multiple Edges into a Planar Graph



Relation to previous research

Our result directly extends the single-edge insertion algorithm [Gutwenger
et al, 2005], but it is incomparable with the single-vertex insertion.

The crossing number problem problem ¢r(G) < r is known to be in FPT
with the parameter r: [Grohe, 2001] and [Kawarabayashi and Reed, 2007].
Though, this is again incomparable to our result since

— in one direction, even adding one edge to a planar graph may result
in arbitrarily large crossing number, and

— in the other direction, we are not able to efficiently guess which edges
will be crossed (— F') even if the crossing number is bounded.

Moreover, computing c¢r(G + e) where G is planar, is NP-hard!
[Cabello and Mohar, 2010]

Also not comparable to prev. approximation [Chimani and Hlinény, 2011]:

the approximation was polynomial-time also in |F]...
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3 Breakdown of the Problem

(a) G may not have a unique embedding

e Note that we cannot process all non-equivalent embeddings in FPT time.
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e Note that we cannot process all non-equivalent embeddings in FPT time.

e Using an established tool — so called SPQR trees:

Re——| Re——o| [R

— G broken into series, parallel, and rigid (3-conn.) components.
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3 Breakdown of the Problem

(a) G may not have a unique embedding

e Note that we cannot process all non-equivalent embeddings in FPT time.

e Using an established tool — so called SPQR trees:

— G broken into series, parallel, and rigid (3-conn.) components.

— Then, G is glued back together along virtual edges.
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Dynamic programming over an SP(Q)R tree

Consider processing one SP(Q)R tree node:

e Embedding flexibility coming from flipping components at 2-cuts.
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e Flipping comps. incident with edge(s) of F' are dirty — at most 2k such.

— bound the number of essential embeddings (at this node only!) in k.
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Dynamic programming over an SP(Q)R tree

Consider processing one SP(Q)R tree node:

e Embedding flexibility coming from flipping components at 2-cuts.

e Flipping comps. incident with edge(s) of F' are dirty — at most 2k such.

— bound the number of essential embeddings (at this node only!) in k.
e Bound the number of crossings of one flip. component as well.

e = At most f(k) rigid cases to consider here, for some (exp.) f.
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(b) G is uniquely embedded - rigid

e Generalized to cover both the primary case of
3-connected G and the rigid subcases at SPQR. ..

r-MEI(Gy, F): given embedding G stays fixed!
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(b) G is uniquely embedded - rigid
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r-MEI(Gy, F): given embedding G stays fixed!
— plus integer-weighted edges of G (but not F).

e Modeling the virtual edges (flipping comps.):

— non-dirty — pertinent weights (= edge cut),

— dirty ones — oo-weight plus connectors.

e Altogether, a rigid model instance with O(|V(G)|) + poly(k) vertices:

— < k F-edges, and < 2k dirty virtual edges at this SPQR node,

— each virtual edge crossed by an F-edge < (£) times.
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(b) G is uniquely embedded - rigid
e Generalized to cover both the primary case of
3-connected G and the rigid subcases at SPQR. ..

r-MEI(Gy, F): given embedding G stays fixed!
— plus integer-weighted edges of G (but not F).

e Modeling the virtual edges (flipping comps.):

— non-dirty — pertinent weights (= edge cut),

— dirty ones — oo-weight plus connectors.

e Altogether, a rigid model instance with O(|V(G)|) + poly(k) vertices:

— < k F-edges, and < 2k dirty virtual edges at this SPQR node,

— each virtual edge crossed by an F-edge < (£) times.

e Have to find routes (dual walks) for the missing segments of F-edges.
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4 Solving Rigid MEI

(a) Route homotopy
(w.r.t. the ends and connectors of F-edges)

e Classical ap. — need to “triangulate” G:
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(w.r.t. the ends and connectors of F-edges)
e Classical ap. — need to “triangulate” G:

Definition. Trinet; G — (G',T).

Trinodes — ends (and conn.) of F-edges;

triedges — subdividing paths btw. trinodes;
altogether giving all triangular cells of 7.
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4 Solving Rigid MEI

(a) Route homotopy
(w.r.t. the ends and connectors of F-edges)

e Classical ap. — need to “triangulate” G:

Definition. Trinet; G — (G',T).
Trinodes — ends (and conn.) of F-edges;
triedges — subdividing paths btw. trinodes;
altogether giving all triangular cells of 7.

e A shortest-spanning trinet:
demand the triedges to be locally
(in part globally) shortest dual walks.

Definition. T'-sequence over a trinet.
For f € F', a sequence of intersected triedges from u to v.

Lemma. *** In a shortest-spanning trinet, the T-sequence of an optimal
r-MEI(G, F) solution repeats every triedge at most 8k* times, where k = |F|.
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(b) Funnel algorithm

e A straightforward adaptation to our trinets.
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(b) Funnel algorithm

e A straightforward adaptation to our trinets.
— only need nice “triangles” — OK,

— and prevent switching “there and back” — loc.-shortest.

e Finding a shortest route in a sleeve simply by dual BFS.
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(b) Funnel algorithm

e A straightforward adaptation to our trinets.
— only need nice “triangles” — OK,

— and prevent switching “there and back” — loc.-shortest.

e Finding a shortest route in a sleeve simply by dual BFS.

(c) Crossing of routes

e Last to solve —when two homotopies “force” F-edges to cross each other?

— Defining a crossing certificate for two T-sequences.

Lemma. There exist non-crossing routes for e, f € F, following T-sequences
Te, Ty, iff there is no crossing certificate for T¢, 7.
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(b) Funnel algorithm

e A straightforward adaptation to our trinets.
— only need nice “triangles” — OK,

— and prevent switching “there and back” — loc.-shortest.

e Finding a shortest route in a sleeve simply by dual BFS.

(c) Crossing of routes

e Last to solve —when two homotopies “force” F-edges to cross each other?

— Defining a crossing certificate for two T-sequences.

Lemma. There exist non-crossing routes for e, f € F, following T-sequences
Te, Ty, iff there is no crossing certificate for T¢, 7.

e Have to similarly check also for “forcing to cross twice”. ..
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The full “rigid” Algorithm

In: plane G, edge weights w: E(G) — N4 U {co}, new edge set F' of w(f) = 1.
Out: an optimal solution to (w-weighted) r-MEI(G, F').
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The full “rigid” Algorithm

In: plane G, edge weights w: E(G) — N3 U {co}, new edge set F' of w(f) = 1.
Out: an optimal solution to (w-weighted) r-MEI(G, F).
1. Compute a full trinet (G’,T") on the trinodes N(T') := V (F'), shortest-spanning;

— globally-shortest triedges from any selected trinode to all others, and
— then greedily add remaining triedges, each as locally-shortest.
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1. Compute a full trinet (G’,T") on the trinodes N(T') := V (F), shortest-spanning;

— globally-shortest triedges from any selected trinode to all others, and
— then greedily add remaining triedges, each as locally-shortest.

2. For each f =uv € F; let §; := all relevant T-sequences from u to v, and

— for S € 8§y, compute a shortest u—v route 7g in the trinet along S.
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The full “rigid” Algorithm

In: plane G, edge weights w: E(G) — N3 U {co}, new edge set F' of w(f) = 1.
Out: an optimal solution to (w-weighted) r-MEI(G, F).

1. Compute a full trinet (G’,T") on the trinodes N(T') := V (F), shortest-spanning;

— globally-shortest triedges from any selected trinode to all others, and
— then greedily add remaining triedges, each as locally-shortest.

2. For each f =uv € F; let §; := all relevant T-sequences from u to v, and
— for S € 8§y, compute a shortest u—v route 7g in the trinet along S.
3. For each possible system of representatives P = {Sy}ser with Sy € 8y;

— Let Xyp := {{f, f'} : there exists a crossing certificate for Sy, Sy }
— For {f, f'} € Xy, if two “indep.” crossing certif. of Sy, Sy, then fail.
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The full “rigid” Algorithm

In: plane G, edge weights w: E(G) — N3 U {co}, new edge set F' of w(f) = 1.
Out: an optimal solution to (w-weighted) r-MEI(G, F).

1. Compute a full trinet (G’,T") on the trinodes N(T') := V (F), shortest-spanning;

— globally-shortest triedges from any selected trinode to all others, and
— then greedily add remaining triedges, each as locally-shortest.

2. For each f =uv € F; let §; := all relevant T-sequences from u to v, and
— for S € 8§y, compute a shortest u—v route 7g in the trinet along S.
3. For each possible system of representatives P = {Sy}ser with Sy € 8y;

— Let Xyp := {{f, f'} : there exists a crossing certificate for Sy, Sy }
— For {f, f'} € Xy, if two “indep.” crossing certif. of Sy, Sy, then fail.
— Otherwise, let

cry —|Xy\+z leny (s, ),

where 7g, is the shortest route for f and Sy, computed above.
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The full “rigid” Algorithm

In:
Out:
. Compute a full trinet (G’, T') on the trinodes N(T') := V(F'), shortest-spanning;

plane G, edge weights w: E(G) — N4 U {oo}, new edge set F' of w(f) = 1.
an optimal solution to (w-weighted) r-MEI(G, F).

— globally-shortest triedges from any selected trinode to all others, and
— then greedily add remaining triedges, each as locally-shortest.

For each f = uv € F} let 8 := all relevant T-sequences from u to v, and
— for S € 8§y, compute a shortest u—v route 7g in the trinet along S.
For each possible system of representatives P = {Sy}ser with Sy € 8y;

— Let Xyp := {{f, f'} : there exists a crossing certificate for Sy, Sy }
— For {f, f'} € Xy, if two “indep.” crossing certif. of Sy, Sy, then fail.
— Otherwise, let

Crp = |XP‘ + Z l(’nu ﬂ—bf)

where 7g, is the shortest route for f and Sy, computed above.

Pick P with smallest crp < co.
Realize routing of all F-edges according to this P, and avoid unforced crossings.
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5 Final Remarks

e Handling non-2-connected (7, just connected:
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The are problems with cutvertices of high degree — cannot enumerate
possible rigid subcases in FPT, but subject to ongoing investigation.
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The are problems with cutvertices of high degree — cannot enumerate
possible rigid subcases in FPT, but subject to ongoing investigation.

e Handling non-unit weights on the edges of F"

We already handle edge weights on GG, so why not for F'?
Because the “T-sequence repetition lemma” fails with weighted F'! Again
subject to future investigation.
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5 Final Remarks

e Handling non-2-connected G, just connected:
The are problems with cutvertices of high degree — cannot enumerate
possible rigid subcases in FPT, but subject to ongoing investigation.

e Handling non-unit weights on the edges of F"

We already handle edge weights on GG, so why not for F'?
Because the “T-sequence repetition lemma” fails with weighted F'! Again
subject to future investigation.

e New modes of parameterization for the crossing number?

— Known in FPT when parameterized by the solution size cr(G),
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— but what if we parameterize by the number of edges which “cover”
all the crossings?
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5 Final Remarks

e Handling non-2-connected G, just connected:
The are problems with cutvertices of high degree — cannot enumerate
possible rigid subcases in FPT, but subject to ongoing investigation.

e Handling non-unit weights on the edges of F"

We already handle edge weights on GG, so why not for F'?
Because the “T-sequence repetition lemma” fails with weighted F'! Again
subject to future investigation.

e New modes of parameterization for the crossing number?

— Known in FPT when parameterized by the solution size cr(G),

— but what if we parameterize by the number of edges which “cover”
all the crossings?

Thank you for your attention.
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