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1 FORESTS IN COGRAPHS

. – the first (simplified) step towards our algorithm. . .

Definition. Cograph is a graph constructed from vertices using

• a disjoint union (no added edges), or

• a “complete” union (adding all edges across).

Cographs have quite long history of research. . .

Fact. (folklore)

• All cliques are cographs.

• Precisely those graphs without induced P4.

• Cographs are closed on complements, contractions, induced subgraphs.

• Not closed on normal subgraphs / edge deletion.

• Recognizable in P.
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1.1 Enumerating Forests

• Enumeration of spanning trees in P - a determinant evaluation.

• Enumeration of spanning forests #P-hard [Jaeger, Vertigan, Welsh, 90].

• Enumeration of spanning forests in P on graphs of bounded tree-width
(cf. Tutte polynomial).

Theorem 1.1. Spanning forests can be enumerated on cographs in time

exp (O(n2/3)) .

Note: Subexponential algorithms – 2o(n)

For NP-complete problems, no better solutions than an exhaustive search are
expected to exist.

Hence, for naturally defined problems like the SAT with n variables, no 2o(n)

algorithm (called often subexponential) is expected to exist.
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1.2 Algorithm on Cographs

A forest signature α – a multiset of component sizes (positive integers);

• represented by a characteristic vector α = (a1, a2, . . . , an),

• size sα =
∑n

i=1 i · ai (and cardinality as usual |α| =
∑n

i=1 ai).

Lemma 1.2. (folklore) There are 2Θ(
√

n) signatures of size n (∼integer parts.).

A forest double-signature β – a multiset of ordered pairs of integers,
counting dual-labeled (nonempty) component sizes;

• a refinement of a forest signature,

• having a characteristic vector β = (b(0,1), b(0,2), . . . , b(1,0), b(1,1), . . .),

• size sβ =
∑

(x,y)(x + y) · b(x,y).

Lemma 1.3. There are exp (Θ(n2/3)) distinct double-signatures of size n.

– Quite difficult to prove, but easy a slightly worse bound exp (Θ(n2/3 log n)).
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We apply the following two exp (O(n2/3)) algorithms along the decomposition
scheme of the given cograph:

Algorithm 1.4. Combining the spanning forest signature tables of graphs F

and G into the one of the disjoint union H = F ∪̇G. (Simple.)

Input: Graphs F,G, and their forest signature tables T F ,T G.

Output: The forest signature table T H of H = F ∪̇G.

create empty table T H of forest signatures of size |V (H)|;

for all signatures αF ∈ ΣF , αG ∈ ΣG do exp (O(n2/3))×

set α = αF ] αG (a multiset union);

add T H [α] += T F [αF ] · T G[αG];

done.

Algorithm 1.5. Combining the spanning forest signature tables of graphs F

and G into the one of the complete union H = F ⊕ G. (Difficult.)

Input: Graphs F,G, and their forest signature tables T F ,T G.

Output: The forest signature table T H of H = F ⊕ G.

create empty table T H of forest signatures of size |V (H)|;
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for all signatures αF ∈ ΣF , αG ∈ ΣG do exp
(

O(n2/3)
)

×

set z = |V (F )|;

create empty table X of forest double-signatures of size z;

set X
[

double-signature {(a, 0) : a ∈ αF }
]

= 1;

for each c ∈ αG (with repetition) do O(n)×

create empty table X ′ of forest double-signatures of size z + c;

for all double signatures β of size z s.t. X [β] > 0 do exp
(

O(n2/3)
)

×

for(*) all submultisets γ ⊆ β (with repetition) do exp
(

O(n2/3)
)

×

set d1 =
∑

(x,y)∈γ x, d2 =
∑

(x,y)∈γ y;

set double-signature β′ = (β − γ) ] {(d1, d2 + c)};

add X ′[β′] += X[β] ·
∏

(x,y)∈γ cx; O(n)

done

done

copy X = X ′, z = z + c; dispose X ′;

done

for all double-signatures β of size |V (H)| do exp
(

O(n2/3)
)

×

set signature α0 = {x + y : (x, y) ∈ β};

add T H [α0] += X[β] · T F [αF ] · T G[αG];

done

done.
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2 THE TUTTE POLYNOMIAL

Definition. For a graph G = (V,E),

T (G;x, y) =
∑

F⊆E

(x − 1)r(E)−r(F )(y − 1)|F |−r(F ),

where r(F ) = |V |−k(F ) and k(F ) is the num. of components induc. by (V, F ).

Fact. (folklore)

• T (G; 1, 1) = # spanning trees,

• T (G; 2, 1) = # spanning forests,

• T (G; 1 − x, 0) · ∗ = the chromatic polynomial,

• T (G; 0, 1 − y) · ∗ = the flow polynomial.

Fact. Knowing T (G;x, y) ∼ knowing the number of spanning subgraphs
on edges F with |F | = i and k(F ) = j.
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2.1 Computing the Tutte Polynomial

Theorem 2.1. (Jaeger, Vertigan, and Welsh, 1990)
Evaluating the Tutte polynomial T (G;x, y) at (x, y) = (a, b) is #P -hard unless
(a−1)(b−1) = 1 or (a, b) ∈ {(1, 1), (−1,−1), (0,−1), (−1, 0), (i,−i), (−i, i),
(j, j2), (j2, j)}, where i2 = −1 and j = e2πi/3.

Theorem 2.2. (Andrzejak / Noble, 1998)
The Tutte polynomial T (G;x, y) can be computed in polynomial time on a
graph G of bounded tree-width.

(The version of Noble gives an FPT algorithm. . . )

Fact. A subexp. 2o(n) algorithm for the Tutte polynomial on an n-vertex graph

→ a 2o(n) algorithm for 3-colouring,

→ a 2o(n) algorithm for 3-SAT – unexpected!

So it is very unlikely to have a subexponential algorithm for the Tutte polynomial
on general graphs. . .

Theorem 2.3. The Tutte polynomial of a cograph can be computed in time

exp (O(n2/3)) .
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2.2 Extending the Algorithm

Extending Algorithms 1.4,1.5 for the Tutte polynomial is not difficult. . .

Extensions:

• Enumerate edge-subsets (spanning subgraphs) instead of forests.

• Subgraph signatures analogously record the component sizes.

Moreover, we record the total number of edges.

• When joining components, we may add many (≥ 1) edges between two
components, → computing “cellular selections”.

Definition. Cellular selection from C1, . . . , Ck:
Selecting an `-element subset L ⊆ C1 ∪ . . . Ck, st. L ∩ Ci 6= ∅ for all i.

A nice exercise:

Let di = |Ci|, and ui,j be the number of partial selections of j elements from
the first i cells. Then

ui,j =
r
∑

s=1

ui−1,j−s ·

(

di

s

)

.

Petr Hliněný, WG 2005 9 Tutte Polynomial on Bounded Clique-Width



3 CLIQUE-WIDTH

• Formal definition [Courcelle, Olariu, 00] (implicit [Courcelle et al, 93]).

Definition. Constructing a vertex-labeled graph G using the operations

– a new labeled vertex,

– a disjoint union of two graphs

– ρi→j relabeling of all i’s to j’s,

– ηi−j adding all edges between labels i and j.

(Called a k-expression.)

Clique-width = min number of labels needed to construct (unlabeled) G.

• Cographs have clique-width = 2, paths ≤ 3, cycles ≤ 4.

• Bounding the clique-width of a graph allows to efficiently solve all prob-
lems expressed in the MSO logic of adjacency graphs (MS1) – quantifying
over vertices and their sets. [Courcelle, Makowsky, Rotics, 00]

(Bounding the tree-width allows to efficiently solve all problems in MS2.)

• The chromatic number (and the chromatic polynomial) is polynomial
time (not FPT) for graphs of bounded clique-width. [Kobler, Rotics, 03]
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3.1 Algorithm on Bounded Clique-Width

A subgraph k-signature β – a multiset of ordered k-tuples of integers,
counting k-labeled (nonempty) component sizes.

(Analogous to double-signatures. . . )

Lemma 3.1. There are exp (Θ(nk/(k+1))) distinct k-signatures of size n.

Extending the algorithm – processing the ηi−j operation:

• Using only one signature table for the whole graph.

• Thus need an artificial new label 0 for iterative processing of components
intersecting label j (corresp. to the sign. table of the second graph).

• A new (easy) point of adding edges inside a component.

Our main result:

Theorem 3.2. Let G be a graph with n vertices of clique-width ≤ k along
with a k-expression for G as an input. Then the Tutte polynomial of G can be
computed in time

exp
(

O(n
1−

1
k+2 )

)

.
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3.2 Final Remarks

• Our signature table actually gives more – the so called U polynomial of G.

• Do we need a k-expression for G?

Clique-width is difficult to compute.
However, it is approximable by rank-width. [Oum, Seymour, 03]

• Computing rank-width (with an approx. decomposition) is FPT. [Oum]
Best asympt. O(n3) for fixed k. [Oum, 05] via matroid branch-width [PH,02]

Questions

• Is the Tutte polynomial on graphs of bounded clique-width in P, or #P-
hard, or between?

(#P-hardness is not yet excluded by a subexp. algorithm!)

• Is the chromatic number FPT wrt. clique-width?
(i.e. polynomial with a fixed exponent?)
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