THE TUTTE POLYNOMIAL ON GRAPHS OF BOUNDED CLIQUE-WIDTH

Presenting a subexponential algorithm for a special case of a notoriously hard (\#P-complete) graph invariant. . .

Petr Hliněný

Dept. of Computer Science FEI, VŠB - TU Ostrava
e-mail: petr.hlineny@vsb.cz
http://www.cs.vsb.cz/hlineny
Joint work with Omer Gimenez and Marc Noy
Dept. of Applied Mathematics UPC Barcelona

1 FORESTS IN COGRAPHS

- the first (simplified) step towards our algorithm. . .

Definition. Cograph is a graph constructed from vertices using

- a disjoint union (no added edges), or
- a "complete" union (adding all edges across).

Cographs have quite long history of research...
Fact. (folklore)

- All cliques are cographs.
- Precisely those graphs without induced P_{4}.
- Cographs are closed on complements, contractions, induced subgraphs.
- Not closed on normal subgraphs / edge deletion.
- Recognizable in P.

1.1 Enumerating Forests

- Enumeration of spanning trees in P - a determinant evaluation.
- Enumeration of spanning forests \#P-hard [Jaeger, Vertigan, Welsh, 90].
- Enumeration of spanning forests in P on graphs of bounded tree-width (cf. Tutte polynomial).

Theorem 1.1. Spanning forests can be enumerated on cographs in time

$$
\exp \left(O\left(n^{2 / 3}\right)\right)
$$

Note: Subexponential algorithms $-2^{o(n)}$
For NP-complete problems, no better solutions than an exhaustive search are expected to exist.
Hence, for naturally defined problems like the SAT with n variables, no $2^{o(n)}$ algorithm (called often subexponential) is expected to exist.

1.2 Algorithm on Cographs

A forest signature $\boldsymbol{\alpha}-\mathrm{a}$ multiset of component sizes (positive integers);

- represented by a characteristic vector $\boldsymbol{\alpha}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$,
- size $s_{\boldsymbol{\alpha}}=\sum_{i=1}^{n} i \cdot a_{i} \quad$ (and cardinality as usual $\left.|\boldsymbol{\alpha}|=\sum_{i=1}^{n} a_{i}\right)$.

Lemma 1.2. (folklore) There are $2^{\Theta(\sqrt{n})}$ signatures of size n (\sim integer parts.).
A forest double-signature $\boldsymbol{\beta}$ - a multiset of ordered pairs of integers, counting dual-labeled (nonempty) component sizes;

- a refinement of a forest signature,
- having a characteristic vector $\boldsymbol{\beta}=\left(b_{(0,1)}, b_{(0,2)}, \ldots, b_{(1,0)}, b_{(1,1)}, \ldots\right)$,
- size $s_{\boldsymbol{\beta}}=\sum_{(x, y)}(x+y) \cdot b_{(x, y)}$.

Lemma 1.3. There are $\exp \left(\Theta\left(n^{2 / 3}\right)\right)$ distinct double-signatures of size n.

- Quite difficult to prove, but easy a slightly worse bound $\exp \left(\Theta\left(n^{2 / 3} \log n\right)\right)$.

We apply the following two $\exp \left(O\left(n^{2 / 3}\right)\right)$ algorithms along the decomposition scheme of the given cograph:

Algorithm 1.4. Combining the spanning forest signature tables of graphs F and G into the one of the disjoint union $H=F \dot{\cup} G$. (Simple.)
Input: Graphs F, G, and their forest signature tables $\boldsymbol{T}_{F}, \boldsymbol{T}_{G}$.
Output: The forest signature table \boldsymbol{T}_{H} of $H=F \dot{\cup} G$.
create empty table \boldsymbol{T}_{H} of forest signatures of size $|V(H)|$;
for all signatures $\boldsymbol{\alpha}_{F} \in \Sigma_{F}, \boldsymbol{\alpha}_{G} \in \Sigma_{G}$ do
set $\boldsymbol{\alpha}=\boldsymbol{\alpha}_{F} \uplus \alpha_{G}$ (a multiset union);
add $\boldsymbol{T}_{H}[\boldsymbol{\alpha}]+=\boldsymbol{T}_{F}\left[\boldsymbol{\alpha}_{F}\right] \cdot \boldsymbol{T}_{G}\left[\boldsymbol{\alpha}_{G}\right]$;
done.

Algorithm 1.5. Combining the spanning forest signature tables of graphs F and G into the one of the complete union $H=F \oplus G$. (Difficult.)
Input: Graphs F, G, and their forest signature tables $\boldsymbol{T}_{F}, \boldsymbol{T}_{G}$.
Output: The forest signature table \boldsymbol{T}_{H} of $H=F \oplus G$.
create empty table \boldsymbol{T}_{H} of forest signatures of size $|V(H)|$;
for all signatures $\boldsymbol{\alpha}_{F} \in \Sigma_{F}, \boldsymbol{\alpha}_{G} \in \Sigma_{G}$ do set $z=|V(F)|$;
create empty table \boldsymbol{X} of forest double-signatures of size z;
set $\boldsymbol{X}\left[\right.$ double-signature $\left.\left\{(a, 0): a \in \boldsymbol{\alpha}_{F}\right\}\right]=1$;
for each $c \in \boldsymbol{\alpha}_{G}$ (with repetition) do
create empty table \boldsymbol{X}^{\prime} of forest double-signatures of size $z+c$;
for all double signatures $\boldsymbol{\beta}$ of size z s.t. $\boldsymbol{X}[\boldsymbol{\beta}]>0$ do
$\exp \left(O\left(n^{2 / 3}\right)\right) \times$
(*) for all submultisets $\gamma \subseteq \boldsymbol{\beta}$ (with repetition) do
$\exp \left(O\left(n^{2 / 3}\right)\right) \times$ set $d_{1}=\sum_{(x, y) \in \gamma} x, d_{2}=\sum_{(x, y) \in \gamma} y$;
set double-signature $\boldsymbol{\beta}^{\prime}=(\boldsymbol{\beta}-\boldsymbol{\gamma}) \uplus\left\{\left(d_{1}, d_{2}+c\right)\right\}$;
add $\boldsymbol{X}^{\prime}\left[\boldsymbol{\beta}^{\prime}\right]+=\boldsymbol{X}[\boldsymbol{\beta}] \cdot \prod_{(x, y) \in \boldsymbol{\gamma}} c x ;$ done
done copy $\boldsymbol{X}=\boldsymbol{X}^{\prime}, z=z+c$; dispose \boldsymbol{X}^{\prime};
done
for all double-signatures $\boldsymbol{\beta}$ of size $|V(H)|$ do
set signature $\boldsymbol{\alpha}_{0}=\{x+y:(x, y) \in \boldsymbol{\beta}\}$;
add $\boldsymbol{T}_{H}\left[\boldsymbol{\alpha}_{0}\right]+=\boldsymbol{X}[\boldsymbol{\beta}] \cdot \boldsymbol{T}_{F}\left[\boldsymbol{\alpha}_{F}\right] \cdot \boldsymbol{T}_{G}\left[\boldsymbol{\alpha}_{G}\right] ;$
done
done.

2 THE TUTTE POLYNOMIAL

Definition. For a graph $G=(V, E)$,

$$
T(G ; x, y)=\sum_{F \subseteq E}(x-1)^{r(E)-r(F)}(y-1)^{|F|-r(F)}
$$

where $r(F)=|V|-k(F)$ and $k(F)$ is the num. of components induc. by (V, F).
Fact. (folklore)

- $T(G ; 1,1)=\#$ spanning trees,
- $T(G ; 2,1)=\#$ spanning forests,
- $T(G ; 1-x, 0) \cdot *=$ the chromatic polynomial,
- $T(G ; 0,1-y) \cdot *=$ the flow polynomial.

Fact. Knowing $T(G ; x, y) \sim$ knowing the number of spanning subgraphs

$$
\text { on edges } F \text { with }|F|=i \text { and } k(F)=j
$$

2.1 Computing the Tutte Polynomial

Theorem 2.1. (Jaeger, Vertigan, and Welsh, 1990)
Evaluating the Tutte polynomial $T(G ; x, y)$ at $(x, y)=(a, b)$ is $\# P$-hard unless $(a-1)(b-1)=1$ or $(a, b) \in\{(1,1),(-1,-1),(0,-1),(-1,0),(i,-i),(-i, i)$, $\left.\left(j, j^{2}\right),\left(j^{2}, j\right)\right\}$, where $i^{2}=-1$ and $j=e^{2 \pi i / 3}$.

Theorem 2.2. (Andrzejak / Noble, 1998)
The Tutte polynomial $T(G ; x, y)$ can be computed in polynomial time on a graph G of bounded tree-width.
(The version of Noble gives an FPT algorithm...)
Fact. A subexp. $2^{o(n)}$ algorithm for the Tutte polynomial on an n-vertex graph \rightarrow a $2^{o(n)}$ algorithm for 3 -colouring,
\rightarrow a $2^{o(n)}$ algorithm for 3-SAT - unexpected!
So it is very unlikely to have a subexponential algorithm for the Tutte polynomial on general graphs...

Theorem 2.3. The Tutte polynomial of a cograph can be computed in time

$$
\exp \left(O\left(n^{2 / 3}\right)\right)
$$

2.2 Extending the Algorithm

Extending Algorithms 1.4,1.5 for the Tutte polynomial is not difficult. . .

Extensions:

- Enumerate edge-subsets (spanning subgraphs) instead of forests.
- Subgraph signatures analogously record the component sizes. Moreover, we record the total number of edges.
- When joining components, we may add many (≥ 1) edges between two components, \rightarrow computing "cellular selections".

Definition. Cellular selection from C_{1}, \ldots, C_{k} :
Selecting an ℓ-element subset $L \subseteq C_{1} \cup \ldots C_{k}$, st. $L \cap C_{i} \neq \emptyset$ for all i.
A nice exercise:
Let $d_{i}=\left|C_{i}\right|$, and $u_{i, j}$ be the number of partial selections of j elements from the first i cells. Then

$$
u_{i, j}=\sum_{s=1}^{r} u_{i-1, j-s} \cdot\binom{d_{i}}{s}
$$

3 CLIQUE-WIDTH

- Formal definition [Courcelle, Olariu, 00] (implicit [Courcelle et al, 93]).

Definition. Constructing a vertex-labeled graph G using the operations

- a new labeled vertex,
- a disjoint union of two graphs
- $\rho_{i \rightarrow j}$ relabeling of all i 's to j 's,
- η_{i-j} adding all edges between labels i and j.
(Called a k-expression.)
Clique-width $=$ min number of labels needed to construct (unlabeled) G.
- Cographs have clique-width $=2$, paths ≤ 3, cycles ≤ 4.
- Bounding the clique-width of a graph allows to efficiently solve all problems expressed in the MSO logic of adjacency graphs $\left(\mathrm{MS}_{1}\right)$ - quantifying over vertices and their sets. [Courcelle, Makowsky, Rotics, 00]
(Bounding the tree-width allows to efficiently solve all problems in MS_{2}.)
- The chromatic number (and the chromatic polynomial) is polynomial time (not FPT) for graphs of bounded clique-width. [Kobler, Rotics, 03]

3.1 Algorithm on Bounded Clique-Width

A subgraph k-signature $\boldsymbol{\beta}$ - a multiset of ordered k-tuples of integers, counting k-labeled (nonempty) component sizes.
(Analogous to double-signatures...)
Lemma 3.1. There are $\exp \left(\Theta\left(n^{k /(k+1)}\right)\right)$ distinct k-signatures of size n.
Extending the algorithm - processing the η_{i-j} operation:

- Using only one signature table for the whole graph.
- Thus need an artificial new label 0 for iterative processing of components intersecting label j (corresp. to the sign. table of the second graph).
- A new (easy) point of adding edges inside a component.

Our main result:
Theorem 3.2. Let G be a graph with n vertices of clique-width $\leq k$ along with a k-expression for G as an input. Then the Tutte polynomial of G can be computed in time

$$
\exp \left(O\left(n^{1-\frac{1}{k+2}}\right)\right)
$$

3.2 Final Remarks

- Our signature table actually gives more - the so called U polynomial of G.
- Do we need a k-expression for G ?

Clique-width is difficult to compute. However, it is approximable by rank-width. [Oum, Seymour, 03]

- Computing rank-width (with an approx. decomposition) is FPT. [Oum] Best asympt. $O\left(n^{3}\right)$ for fixed k. [Oum, 05] via matroid branch-width [PH,02]

Questions

- Is the Tutte polynomial on graphs of bounded clique-width in P , or \# P hard, or between?
(\#P-hardness is not yet excluded by a subexp. algorithm!)
- Is the chromatic number FPT wrt. clique-width?
(i.e. polynomial with a fixed exponent?)

