Approximating the Crossing Num. of Toroidal Graphs

Petr Hliněný

Faculty of Informatics, Masaryk University Botanická 68a, 60200 Brno, Czech Rep.
http://www.fi.muni.cz/~hlineny
joint work with Gelasio Salazar
Universidad Autónoma de San Luis Potosí, Mexico

Overview

1 Drawings and the Crossing Number 3
Basic definitions, and an overview of related computational complexity results and questions.

2 Drawing Toroidal Graphs with few Crossings
Natural approaches to planar drawing of toridal graphs, constructions of
Böröczky, Pach and Tóth; Djidjev and Vrt'o. Our refinement and analysis.
3 Lower-bounding the Crossing Number 8 How to obtain a precise lower bound on the crossing number of a toroidal graph. Proving the approximation ratio.

4 Conclusion and Future Steps

1 Drawings and the Crossing Number

Definition. Drawing of a graph G :

- The vertices of G are distinct points, and every edge $e=u v \in E(G)$ is a simple curve joining u to v.
- No edge passes through another vertex, and no three edges intersect in a common point.

1 Drawings and the Crossing Number

Definition. Drawing of a graph G :

- The vertices of G are distinct points, and every edge $e=u v \in E(G)$ is a simple curve joining u to v.
- No edge passes through another vertex, and no three edges intersect in a common point.

Definition. Crossing number $\operatorname{cr}(G)$ of a graph G is the smallest number of edge crossings in a drawing of G.

Importance - in VLSI design [Leighton et al], graph visualization, etc.

1 Drawings and the Crossing Number

Definition. Drawing of a graph G :

- The vertices of G are distinct points, and every edge $e=u v \in E(G)$ is a simple curve joining u to v.
- No edge passes through another vertex, and no three edges intersect in a common point.

Definition. Crossing number $\operatorname{cr}(G)$ of a graph G is the smallest number of edge crossings in a drawing of G.

Importance - in VLSI design [Leighton et al], graph visualization, etc.
Warning. There are slight variations of the definition of crossing number, some giving different numbers! (Like counting odd-crossing pairs of edges.)

Computational complexity

Remark. It is practically very hard to determine the crossing number.
Observation. The problem CrossingNumber $(\leq k)$ is in $N P$:
Guess a suitable drawing of G, then replace crossings with new vertices, and test planarity...

Computational complexity

Remark. It is practically very hard to determine the crossing number.
Observation. The problem CrossingNumber $(\leq k)$ is in $N P$:
Guess a suitable drawing of G, then replace crossings with new vertices, and test planarity...

Theorem 1. [Garey and Johnson, 1983] CrossingNumber is NP-hard.

Computational complexity

Remark. It is practically very hard to determine the crossing number.
Observation. The problem CrossingNumber $(\leq k)$ is in $N P$:
Guess a suitable drawing of G, then replace crossings with new vertices, and test planarity...

Theorem 1. [Garey and Johnson, 1983] CrossingNumber is NP-hard.
Theorem 2. [Grohe, 2001], [Kawarabayashi and Reed, 2007]
CrossingNumber $(\leq k)$ is in FPT.

Computational complexity

Remark. It is practically very hard to determine the crossing number.
Observation. The problem CrossingNumber $(\leq k)$ is in $N P$:
Guess a suitable drawing of G, then replace crossings with new vertices, and test planarity...

Theorem 1. [Garey and Johnson, 1983] CrossingNumber is $N P$-hard.
Theorem 2. [Grohe, 2001], [Kawarabayashi and Reed, 2007]
CrossingNumber $(\leq k)$ is in FPT.
Theorem 3. [PH, 2004]
CrossingNumber is $N P$-hard even on simple 3-connected cubic graphs.
Corollary 4. The minor-monotone version of c.n. is also NP-hard.

Looking for "natural parametrizations"

Question 5. [Seese, 199?]
How hard is CrossingNumber on graphs of bounded tree-width?

Looking for "natural parametrizations"

Question 5. [Seese, 199?]
How hard is CrossingNumber on graphs of bounded tree-width?
Question 6. Is CrossingNumber polynomial on almost planar (i.e. being one edge from planarity) graphs?

Looking for "natural parametrizations"

Question 5. [Seese, 199?]
How hard is CrossingNumber on graphs of bounded tree-width?
Question 6. Is CrossingNumber polynomial on almost planar (i.e. being one edge from planarity) graphs?

Theorem 7. [PH and GS, 2006] CrossingNumber can be approximated within factor of $\Delta(G)$ for an almost planar graph G in $O(n)$ time.

Theorem 8. [Gitler, Leaños, PH and GS, 2007] CrossingNumber can be approx. w. factor of $4.5 \Delta(G)^{2}$ for a projective graph G in $O(n \log n)$ time.

Looking for "natural parametrizations"

Question 5. [Seese, 199?]
How hard is CrossingNumber on graphs of bounded tree-width?
Question 6. Is CrossingNumber polynomial on almost planar (i.e. being one edge from planarity) graphs?

Theorem 7. [PH and GS, 2006] CrossingNumber can be approximated within factor of $\Delta(G)$ for an almost planar graph G in $O(n)$ time.

Theorem 8. [Gitler, Leaños, PH and GS, 2007] CrossingNumber can be approx. w. factor of $4.5 \Delta(G)^{2}$ for a projective graph G in $O(n \log n)$ time.

Question 9. Can we get any reasonable FPT algorithm for (approximating, at least?) CrossingNumber based on "how far" the graph is from planarity?

The next step
Toroidal graphs...

2 Drawing Toroidal Graphs with few Crossings

All current approaches are based on similar natural ideas:

- Cut the (surface) embedded graph along a "short" nonseparating loop.
- Reconnect the cut edges "across" the rest of the drawing.

2 Drawing Toroidal Graphs with few Crossings

All current approaches are based on similar natural ideas:

- Cut the (surface) embedded graph along a "short" nonseparating loop.
- Reconnect the cut edges "across" the rest of the drawing.

Idea appears in [Böröczky, Pach and Tóth, 2006], or [Djidjev and Vrt'o, 2006]. These results extend to other surfaces quite straighforwardly.

2 Drawing Toroidal Graphs with few Crossings

All current approaches are based on similar natural ideas:

- Cut the (surface) embedded graph along a "short" nonseparating loop.
- Reconnect the cut edges "across" the rest of the drawing.

Idea appears in [Böröczky, Pach and Tóth, 2006], or [Djidjev and Vrt'o, 2006]. These results extend to other surfaces quite straighforwardly.

Moreover, [Telle and Wood, 2006] extend to drawings of all proper minor closed graph classes with linear crossing number (using "planar decompositions").

2 Drawing Toroidal Graphs with few Crossings

All current approaches are based on similar natural ideas:

- Cut the (surface) embedded graph along a "short" nonseparating loop.
- Reconnect the cut edges "across" the rest of the drawing.

Idea appears in [Böröczky, Pach and Tóth, 2006], or [Djidjev and Vrt'o, 2006]. These results extend to other surfaces quite straighforwardly.

Moreover, [Telle and Wood, 2006] extend to drawings of all proper minor closed graph classes with linear crossing number (using "planar decompositions").

Approximation?

Unfortunately, the above constructions in no way provide approximation algorithms.

The reason - lack of a corresponding lower bound on the crossing number...

Cut-and-redraw a toroidal graph

- We embed G on the torus (linear time by [Mohar 1999]).
- We find a "shortest nonseparating" loop of length k on the torus, using an $O(n \log n)$ algorithm of [Kutz 2006]. ($k=$ dual edge-width of G.)
- Cutting the torus into a cylinder, we "reconnect" the cut edges along a shortest length- ℓ dual path, producing $\leq k \ell+k^{2} / 4$ crossings.

3 Lower-bounding the Crossing Number of Toroidal Graphs

For the rest we have k the dual edge-width of G on the torus, and ℓ the "dual length" of the cylindrical embedding of G we cut out from our torus.

Lemma 10.

$$
\operatorname{cr}(G) \geq\left(\frac{1}{3 \Delta^{2}}-o_{k}(1)\right) \cdot k \ell
$$

3 Lower-bounding the Crossing Number of Toroidal Graphs

For the rest we have k the dual edge-width of G on the torus, and ℓ the "dual length" of the cylindrical embedding of G we cut out from our torus.

Lemma 10.

$$
\operatorname{cr}(G) \geq\left(\frac{1}{3 \Delta^{2}}-o_{k}(1)\right) \cdot k \ell
$$

Proof outline:

- We will find a large toroidal grid minor in G, relative to k, ℓ, and Δ.

3 Lower-bounding the Crossing Number of Toroidal Graphs

For the rest we have k the dual edge-width of G on the torus, and ℓ the "dual length" of the cylindrical embedding of G we cut out from our torus.

Lemma 10.

$$
\operatorname{cr}(G) \geq\left(\frac{1}{3 \Delta^{2}}-o_{k}(1)\right) \cdot k \ell
$$

Proof outline:

- We will find a large toroidal grid minor in G, relative to k, ℓ, and Δ.
- If H is a minor of G, and H has maximum degree at most 4 , then $\operatorname{cr}(G) \geq \frac{1}{4} \operatorname{cr}(H)$.
- The crossing number of the toroidal grid of size $p \times q$, where $p \geq q \geq 3$, is at least $\frac{1}{2}(q-2) p$.

3 Lower-bounding the Crossing Number of Toroidal Graphs

For the rest we have k the dual edge-width of G on the torus, and ℓ the "dual length" of the cylindrical embedding of G we cut out from our torus.

Lemma 10.

$$
\operatorname{cr}(G) \geq\left(\frac{1}{3 \Delta^{2}}-o_{k}(1)\right) \cdot k \ell
$$

Proof outline:

- We will find a large toroidal grid minor in G, relative to k, ℓ, and Δ.
- If H is a minor of G, and H has maximum degree at most 4 , then $\operatorname{cr}(G) \geq \frac{1}{4} \operatorname{cr}(H)$.
- The crossing number of the toroidal grid of size $p \times q$, where $p \geq q \geq 3$, is at least $\frac{1}{2}(q-2) p$.

Actually, without asymptotic terms our lower bound reads $\operatorname{cr}(G) \geq \frac{1}{4 \Delta^{2}} \cdot k \ell$, provided that $k \geq 16\lfloor\Delta / 2\rfloor$.

For the rest we have k the dual edge-width of G on the torus, and ℓ the "dual length" of the cylindrical embedding of G we cut out from our torus.

Hence we need to prove:
Theorem 11. G contains a minor isomorphic to the toroidal grid of size

$$
\max \left(\left\lfloor\frac{2}{3} \frac{k}{\lfloor\Delta / 2\rfloor}\right\rfloor,\left\lceil\frac{\ell}{\lfloor\Delta / 2\rfloor}\right\rceil\right) \times\left\lfloor\frac{2}{3} \frac{k}{\lfloor\Delta / 2\rfloor}\right\rfloor .
$$

For the rest we have k the dual edge-width of G on the torus, and ℓ the "dual length" of the cylindrical embedding of G we cut out from our torus.

Hence we need to prove:
Theorem 11. G contains a minor isomorphic to the toroidal grid of size

$$
\max \left(\left\lfloor\frac{2}{3} \frac{k}{\lfloor\Delta / 2\rfloor}\right\rfloor,\left\lceil\frac{\ell}{\lfloor\Delta / 2\rfloor}\right\rceil\right) \times\left\lfloor\frac{2}{3} \frac{k}{\lfloor\Delta / 2\rfloor}\right\rfloor .
$$

Proof outline:

- Using [de Graaf and Schrijver, 1994] we get a toroidal grid minor of size $\left\lfloor\frac{2}{3} \frac{k}{\Delta \Delta / 2\rfloor}\right\rfloor \times\left\lfloor\frac{2}{3} \frac{k}{\lfloor\Delta / 2\rfloor}\right\rfloor$ in G.

For the rest we have k the dual edge-width of G on the torus, and ℓ the "dual length" of the cylindrical embedding of G we cut out from our torus.

Hence we need to prove:
Theorem 11. G contains a minor isomorphic to the toroidal grid of size

$$
\max \left(\left\lfloor\frac{2}{3} \frac{k}{\lfloor\Delta / 2\rfloor}\right\rfloor,\left\lceil\frac{\ell}{\lfloor\Delta / 2\rfloor}\right\rceil\right) \times\left\lfloor\frac{2}{3} \frac{k}{\lfloor\Delta / 2\rfloor}\right\rfloor .
$$

Proof outline:

- Using [de Graaf and Schrijver, 1994] we get a toroidal grid minor of size $\left\lfloor\frac{2}{3} \frac{k}{\Delta \Delta / 2\rfloor}\right\rfloor \times\left\lfloor\frac{2}{3} \frac{k}{\lfloor\Delta / 2\rfloor}\right\rfloor$ in G.
- We obtain another collection of $\left[\frac{\ell}{[\Delta / 2]}\right]$ pairwise disjoint cycles of G on our cylinder, using a network-flow duality argument.

For the rest we have k the dual edge-width of G on the torus, and ℓ the "dual length" of the cylindrical embedding of G we cut out from our torus.

Hence we need to prove:
Theorem 11. G contains a minor isomorphic to the toroidal grid of size

$$
\max \left(\left\lfloor\frac{2}{3} \frac{k}{\lfloor\Delta / 2\rfloor}\right\rfloor,\left\lceil\frac{\ell}{\lfloor\Delta / 2\rfloor}\right\rceil\right) \times\left\lfloor\frac{2}{3} \frac{k}{\lfloor\Delta / 2\rfloor}\right\rfloor .
$$

Proof outline:

- Using [de Graaf and Schrijver, 1994] we get a toroidal grid minor of size $\left\lfloor\frac{2}{3} \frac{k}{\Delta \Delta / 2\rfloor}\right\rfloor \times\left\lfloor\frac{2}{3} \frac{k}{\lfloor\Delta / 2\rfloor}\right\rfloor$ in G.
- We obtain another collection of $\left[\frac{\ell}{[\Delta / 2]}\right]$ pairwise disjoint cycles of G on our cylinder, using a network-flow duality argument.
- We will then combine one collection of $\left\lfloor\frac{2}{3} \frac{k}{\lfloor\Delta / 2\rfloor}\right\rfloor$ cycles in G with the latter collection to form a new toroidal grid minor of the required size.

Our main theoretical contribution actually is the following:
Theorem 12. Suppose a toroidal graph H contains a collection \mathcal{C} of p pairwise disjoint pairwise freely homotopic cycles, and an analogous collection \mathcal{D} of q cycles, such that \mathcal{D} is not homotopic to an iteration of \mathcal{C}.
Then H contains a $p \times q$ toroidal grid minor.

Our main theoretical contribution actually is the following:
Theorem 12. Suppose a toroidal graph H contains a collection \mathcal{C} of p pairwise disjoint pairwise freely homotopic cycles, and an analogous collection \mathcal{D} of q cycles, such that \mathcal{D} is not homotopic to an iteration of \mathcal{C}.

Then H contains a $p \times q$ toroidal grid minor.

Unfortunately, the two cycle collections can interact in really nasty ways on the torus, and the proof requires a detailed technical analysis (proceedings).

4 Conclusion and Future Steps

Main result. We have got an $O(n \log n)$ time algorithm that approximates CrossingNumber on toroidal graphs up to a

$$
\text { factor of } 6 \Delta(G)^{2} \text {, }
$$

provided that the graph embeds with dual edge-width at least $8 \Delta(G)$.

4 Conclusion and Future Steps

Main result. We have got an $O(n \log n)$ time algorithm that approximates CrossingNumber on toroidal graphs up to a

$$
\text { factor of } 6 \Delta(G)^{2} \text {, }
$$

provided that the graph embeds with dual edge-width at least $8 \Delta(G)$.
Possible extensions. For graphs embedded on a higher orientable surface Σ_{g}. (Assume bounded g and Δ.)

- Repeat the algorithm of Section 2 for g steps until Σ_{g} is cut down to a plane. Denote by k_{i} and ℓ_{i} the "dual lengths" obtained at step i.
- After that, reconnect all the cut edges greedily along shortest dual paths.

4 Conclusion and Future Steps

Main result. We have got an $O(n \log n)$ time algorithm that approximates CrossingNumber on toroidal graphs up to a

$$
\text { factor of } 6 \Delta(G)^{2} \text {, }
$$

provided that the graph embeds with dual edge-width at least $8 \Delta(G)$.
Possible extensions. For graphs embedded on a higher orientable surface Σ_{g}. (Assume bounded g and Δ.)

- Repeat the algorithm of Section 2 for g steps until Σ_{g} is cut down to a plane. Denote by k_{i} and ℓ_{i} the "dual lengths" obtained at step i.
- After that, reconnect all the cut edges greedily along shortest dual paths.
- It is straighforward to show that one gets $O\left(\max _{i=1, \ldots, g} k_{i} \cdot \ell_{i}\right)$ crossings.
- The same lower-bound proof now shows $\operatorname{cr}(G) \geq \Omega\left(k_{g} \times \ell_{g}\right)$;

4 Conclusion and Future Steps

Main result. We have got an $O(n \log n)$ time algorithm that approximates CrossingNumber on toroidal graphs up to a

$$
\text { factor of } 6 \Delta(G)^{2} \text {, }
$$

provided that the graph embeds with dual edge-width at least $8 \Delta(G)$.

Possible extensions. For graphs embedded on a higher orientable surface Σ_{g}. (Assume bounded g and Δ.)

- Repeat the algorithm of Section 2 for g steps until Σ_{g} is cut down to a plane. Denote by k_{i} and ℓ_{i} the "dual lengths" obtained at step i.
- After that, reconnect all the cut edges greedily along shortest dual paths.
- It is straighforward to show that one gets $O\left(\max _{i=1, \ldots, g} k_{i} \cdot \ell_{i}\right)$ crossings.
- The same lower-bound proof now shows $\operatorname{cr}(G) \geq \Omega\left(k_{g} \times \ell_{g}\right)$; but we need to prove $\operatorname{cr}(G) \geq \Omega\left(\max _{i=1, \ldots, g} k_{i} \cdot \ell_{i}\right)$, which is still open (work in progress), and it does not seem easy to finish...

