On the Crossing Number of Surface-Embedded Graphs

Petr Hliněný

Faculty of Informatics, Masaryk University Botanická 68a, 60200 Brno, Czech Rep.
based on joint work with Markus Chimani and Gelasio Salazar

1 Crossing Number?

- Everybody here knows very well...

1 Crossing Number?

- Everybody here knows very well...

But, wait, which crossing number is it?

- Right, it is the "traditional" crossing number, having a nice drawing, and counting pairwise edge crossings.

1 Crossing Number?

- Everybody here knows very well...

But, wait, which crossing number is it?

- Right, it is the "traditional" crossing number, having a nice drawing, and counting pairwise edge crossings.
- The minor-monote version is of some interest as well.

Our objective

- To provide a two-way math relation between an embedding of a graph (on a surface) and its crossing number.

- Requires finding suitable "parameters" of an embedding...

Our objective

- To provide a two-way math relation between an embedding of a graph (on a surface) and its crossing number.

- Requires finding suitable "parameters" of an embedding...
- Although this is math, our motivation is algoritmic.

2 Computing the Crossing Number

Importance, e.g.

2 Computing the Crossing Number

Importance, e.g.

- VLSI design (cf. [Leighton])
- Graph visualization

2 Computing the Crossing Number

 Importance, e.g.- VLSI design (cf. [Leighton])
- Graph visualization

What is hard about it? i.e., computationally NP-hard

2 Computing the Crossing Number

 Importance, e.g.- VLSI design (cf. [Leighton])
- Graph visualization

What is hard about it? i.e., computationally NP-hard

- The general case (of course...); [Garey and Johnson, 1983]

2 Computing the Crossing Number

 Importance, e.g.- VLSI design (cf. [Leighton])
- Graph visualization

What is hard about it? i.e., computationally NP-hard

- The general case (of course...); [Garey and Johnson, 1983]
- The degree-3 and minor-monotone cases; [PH, 2004]

2 Computing the Crossing Number

 Importance, e.g.- VLSI design (cf. [Leighton])
- Graph visualization

What is hard about it? i.e., computationally NP-hard

- The general case (of course...); [Garey and Johnson, 1983]
- The degree-3 and minor-monotone cases; [PH, 2004]
- Even fixed rotation scheme;
[Pelsmajer, Schaeffer, Štefankovič, 2007]

2 Computing the Crossing Number

 Importance, e.g.- VLSI design (cf. [Leighton])
- Graph visualization

What is hard about it? i.e., computationally NP-hard

- The general case (of course...); [Garey and Johnson, 1983]
- The degree-3 and minor-monotone cases; [PH, 2004]
- Even fixed rotation scheme;
[Pelsmajer, Schaeffer, Štefankovič, 2007]
- Much worse - hard already for planar graphs plus one edge!
[Cabello and Mohar, 2010]

2 Computing the Crossing Number

 Importance, e.g.- VLSI design (cf. [Leighton])
- Graph visualization

What is hard about it? i.e., computationally NP-hard

- The general case (of course...); [Garey and Johnson, 1983]
- The degree-3 and minor-monotone cases; [PH, 2004]
- Even fixed rotation scheme;
[Pelsmajer, Schaeffer, Štefankovič, 2007]
- Much worse - hard already for planar graphs plus one edge!
[Cabello and Mohar, 2010]
Can anything be computed efficiently?

So, what is efficiently computable?

- The case of cubic planar graphs plus one edge

So, what is efficiently computable?

- The case of cubic planar graphs plus one edge [Riskin, 1996]
- FPT when parameterized by itself
[Grohe, 2001], [Kawarabayashi and Reed, 2007]

So, what is efficiently computable?

- The case of cubic planar graphs plus one edge
[Riskin, 1996]
- FPT when parameterized by itself
[Grohe, 2001], [Kawarabayashi and Reed, 2007]
- An exact branch \& bound approach for "real-world" graphs on up to ~ 100 vertices
[Chimani, Mutzel, and Bomze, 2008]

So, what is efficiently computable?

- The case of cubic planar graphs plus one edge
[Riskin, 1996]
- FPT when parameterized by itself
[Grohe, 2001], [Kawarabayashi and Reed, 2007]
- An exact branch \& bound approach for "real-world" graphs on up to ~ 100 vertices [Chimani, Mutzel, and Bomze, 2008]
- NO rich natural graph class with nontrivial and yet efficiently computable crossing number problem is known...

So, what is efficiently computable?

- The case of cubic planar graphs plus one edge
[Riskin, 1996]
- FPT when parameterized by itself
[Grohe, 2001], [Kawarabayashi and Reed, 2007]
- An exact branch \& bound approach for "real-world" graphs on up to ~ 100 vertices [Chimani, Mutzel, and Bomze, 2008]
- NO rich natural graph class with nontrivial and yet efficiently computable crossing number problem is known...

Approximations, at least?, e.g.

- Up to factor $\log ^{3}|V(G)|\left(\log ^{2} \cdot\right)$ for $\operatorname{cr}(G)+|V(G)|$ with bd. deg.
[Even, Guha and Schieber, 2002]

So, what is efficiently computable?

- The case of cubic planar graphs plus one edge
[Riskin, 1996]
- FPT when parameterized by itself
[Grohe, 2001], [Kawarabayashi and Reed, 2007]
- An exact branch \& bound approach for "real-world" graphs on up to ~ 100 vertices [Chimani, Mutzel, and Bomze, 2008]
- NO rich natural graph class with nontrivial and yet efficiently computable crossing number problem is known...

Approximations, at least?, e.g.

- Up to factor $\log ^{3}|V(G)|\left(\log ^{2} \cdot\right)$ for $\operatorname{cr}(G)+|V(G)|$ with bd. deg.
[Even, Guha and Schieber, 2002]
- Constant factors for surface-embedded bounded-degree graphs
[Gitler et al, 2007], [PH and Salazar, 2007], [PH and Chimani, 2010]

3 Crossing Number of Embedded Graphs

Related:

- Crossing number is linear, $O(|V|)$, for any graph of bounded degree and embedded in a fixed surface.
[Böröczky, Pach and Tóth, 2006]
- Improved costants (opt.) by
[Djidjev and Vrt'o, 2006].

3 Crossing Number of Embedded Graphs

Related:

- Crossing number is linear, $O(|V|)$, for any graph of bounded degree and embedded in a fixed surface.
[Böröczky, Pach and Tóth, 2006]
- Improved costants (opt.) by [Djidjev and Vrt'o, 2006].
- Assymptotically extended even to graphs excluding a minor.
[Telle and Wood, 2006]

3 Crossing Number of Embedded Graphs

Related:

- Crossing number is linear, $O(|V|)$, for any graph
 of bounded degree and embedded in a fixed surface. [Böröczky, Pach and Tóth, 2006]
- Improved costants (opt.) by [Djidjev and Vrt'o, 2006].
- Assymptotically extended even to graphs excluding a minor. [Telle and Wood, 2006]

Unfortunately,

all these are only upper bounds, giving no approximation guarantees;

- we need fine-resolution measure(s) of embedded graphs!

E.g., just for the projective graphs. . .

Face-width

$f w(G)=$ shortest noncontractible "vertex-face cycle" in the embedding.

E.g., just for the projective graphs. . .

Face-width

$f w(G)=$ shortest noncontractible "vertex-face cycle" in the embedding.

- By cutting along (close to) such a vertex-face cycle, one gets a pretty good drawing in the plane;

$$
\operatorname{cr}(G) \leq \frac{1}{8} \Delta(G)^{2} \cdot f w(G)^{2}
$$

...the projective approximation
[Gitler, PH, Leaños, Salazar, 2007]

- Recall;

$$
\operatorname{cr}(G) \leq \frac{1}{8} \Delta(G)^{2} \cdot f w(G)^{2}
$$

...the projective approximation

[Gitler, PH, Leaños, Salazar, 2007]

- Recall;

$$
\operatorname{cr}(G) \leq \frac{1}{8} \Delta(G)^{2} \cdot f w(G)^{2}
$$

- A lower-bound argument, prov. $f w(\boldsymbol{G}) \geq 6$, gives

$$
\frac{1}{36} f w(G)^{2} \leq \operatorname{cr}(G)
$$

...the projective approximation
[Gitler, PH, Leaños, Salazar, 2007]

- Recall;

$$
\operatorname{cr}(G) \leq \frac{1}{8} \Delta(G)^{2} \cdot f w(G)^{2}
$$

- A lower-bound argument, prov. $f w(\boldsymbol{G}) \geq 6$, gives

$$
\frac{1}{36} f w(G)^{2} \leq \operatorname{cr}(G)
$$

Impr. for minor crossing number

- Can do much better - removing the Δ !

$$
\frac{1}{36} f w(G)^{2} \leq \operatorname{cr}(G) \leq\binom{ f w(G)}{2}
$$

And on the torus. . .

- A natural "cut and reconnect" appr. gives a decent planar drawing.

And on the torus. . .

- A natural "cut and reconnect" appr. gives a decent planar drawing.
- However, face-width $f w(G)$ is no longer enough to express the resulting number of crossings.

4 Introducing Stretch of an Embedding

Edge-width $e w(G)=$ simply the shortest noncontractible cycle.

- face-width \longrightarrow dual edge-width ew* (G)
(technical)

4 Introducing Stretch of an Embedding

Edge-width $e w(G)=$ simply the shortest noncontractible cycle.

- face-width \longrightarrow dual edge-width ew* (G) (technical)

Stretch $\operatorname{stretch}(G)=\min \operatorname{len}(\alpha) \cdot \operatorname{len}(\beta)$ over all (α, β);

- (α, β) "one-leaping" pair of dual cycles in G,
- i.e, meet once and transversally.

Stretch and crossings; the toroidal case

Particularly nice, since the aforementioned easy approach;

Stretch and crossings; the toroidal case

Particularly nice, since the aforementioned easy approach;

- for toroidal G readily gives

$$
\operatorname{cr}(G) \leq \operatorname{stretch}(G)!
$$

Stretch and crossings; the toroidal case

Particularly nice, since the aforementioned easy approach;

- for toroidal G readily gives

$$
\operatorname{cr}(G) \leq \operatorname{stretch}(G)!
$$

(Even smaller bound can be given - "remove" the shared sect. length...)

- Furthermore, for $\operatorname{stretch}(G)=\operatorname{len}(\alpha) \cdot \operatorname{len}(\beta)$ on the torus, one may assume $\operatorname{len}(\alpha)=e w^{*}(G)$.

Lower bound on the torus

- finding a large toroidal grid minor in G :
- Set $k=\operatorname{len}(\alpha) /\lfloor\Delta / 2\rfloor$ and $\ell=(\operatorname{len}(\beta)-\operatorname{len}(\alpha) / 2) /\lfloor\Delta / 2\rfloor$.

Lower bound on the torus

- finding a large toroidal grid minor in G :
- Set $k=\operatorname{len}(\alpha) /\lfloor\Delta / 2\rfloor$ and $\ell=(\operatorname{len}(\beta)-\operatorname{len}(\alpha) / 2) /\lfloor\Delta / 2\rfloor$.
- Then construct a $p \times q=\max (\lfloor 2 k / 3\rfloor, \ell) \times\lfloor 2 k / 3\rfloor$ tor. grid H.

Lower bound on the torus

- finding a large toroidal grid minor in G :
- Set $k=\operatorname{len}(\alpha) /\lfloor\Delta / 2\rfloor$ and $\ell=(\operatorname{len}(\beta)-\operatorname{len}(\alpha) / 2) /\lfloor\Delta / 2\rfloor$.
- Then construct a $p \times q=\max (\lfloor 2 k / 3\rfloor, \ell) \times\lfloor 2 k / 3\rfloor$ tor. grid H.
- Note $\operatorname{cr}(G) \geq \frac{1}{4} \operatorname{cr}(H)$ since $\Delta(H)=4$, and $\operatorname{cr}(H) \geq \frac{1}{2}(q-2) p$.

Lower bound on the torus

- finding a large toroidal grid minor in G :
- Set $k=\operatorname{len}(\alpha) /\lfloor\Delta / 2\rfloor$ and $\ell=(\operatorname{len}(\beta)-\operatorname{len}(\alpha) / 2) /\lfloor\Delta / 2\rfloor$.
- Then construct a $p \times q=\max (\lfloor 2 k / 3\rfloor, \ell) \times\lfloor 2 k / 3\rfloor$ tor. grid H.
- Note $\operatorname{cr}(G) \geq \frac{1}{4} \operatorname{cr}(H)$ since $\Delta(H)=4$, and $\operatorname{cr}(H) \geq \frac{1}{2}(q-2) p$.
- Finally, provided $e w^{*}(G) \geq 8 \Delta$, we get:

$$
\operatorname{cr}(G) \geq \frac{1}{8 \Delta^{2}} \cdot \operatorname{stretch}(G)
$$

Lower bound on the torus

- finding a large toroidal grid minor in G :
- Set $k=\operatorname{len}(\alpha) /\lfloor\Delta / 2\rfloor$ and $\ell=(\operatorname{len}(\beta)-\operatorname{len}(\alpha) / 2) /\lfloor\Delta / 2\rfloor$.
- Then construct a $p \times q=\max (\lfloor 2 k / 3\rfloor, \ell) \times\lfloor 2 k / 3\rfloor$ tor. grid H.
- Note $\operatorname{cr}(G) \geq \frac{1}{4} \operatorname{cr}(H)$ since $\Delta(H)=4$, and $\operatorname{cr}(H) \geq \frac{1}{2}(q-2) p$.
- Finally, provided $e w^{*}(G) \geq 8 \Delta$, we get:

$$
\operatorname{cr}(G) \geq \frac{1}{8 \Delta^{2}} \cdot \operatorname{stretch}(G)
$$

For minor crossing, again

- (Skip the above shift $f w \rightarrow e w^{*} \rightarrow f w$.)
- Analog., use "face-width stretch", and get rid of Δ... factor 8

Stretch and crossings; higher surfaces

Say, G on an orientable surface of genus g.

- Lower bound

$$
\operatorname{cr}(G) \geq \frac{1}{2^{1+2 g} \Delta^{2}} \cdot \operatorname{stretch}(G)
$$

provided $e w^{*}(G) \geq 2^{g+2} \Delta$.

Stretch and crossings; higher surfaces

Say, G on an orientable surface of genus g.

- Lower bound

$$
\operatorname{cr}(G) \geq \frac{1}{2^{1+2 g} \Delta^{2}} \cdot \operatorname{stretch}(G)
$$

provided $e w^{*}(G) \geq 2^{g+2} \Delta$.

- Rel. easy proof - enough to show that $\operatorname{stretch}(F) \geq \frac{1}{4} \operatorname{stretch}(G)$, if F via "cut and open" of a shortest nonsep. dual cycle from G.

Stretch and crossings; higher surfaces

Say, G on an orientable surface of genus g.

- Lower bound

$$
\operatorname{cr}(G) \geq \frac{1}{2^{1+2 g} \Delta^{2}} \cdot \operatorname{stretch}(G)
$$

provided $e w^{*}(G) \geq 2^{g+2} \Delta$.

- Rel. easy proof - enough to show that $\operatorname{stretch}(F) \geq \frac{1}{4} \operatorname{stretch}(G)$, if F via "cut and open" of a shortest nonsep. dual cycle from G.
- Though, not good enough for a general approximation!
- bad "interference" in a sequence of g cuts. . .

5 General Approximation

- just a very brief sketch, G embedded on \mathcal{S}_{g} :
- Recall, to cope with the "interference" betw. sequential cuts, we always want to cut the shortest dual cycles in G.

5 General Approximation

- just a very brief sketch, G embedded on \mathcal{S}_{g} :
- Recall, to cope with the "interference" betw. sequential cuts, we always want to cut the shortest dual cycles in G.
- Let $c=e w^{*}(G)$, and choose $\gamma \subset G^{*}$ s.t. len $(\gamma)=c$.

5 General Approximation

- just a very brief sketch, G embedded on \mathcal{S}_{g} :
- Recall, to cope with the "interference" betw. sequential cuts, we always want to cut the shortest dual cycles in G.
- Let $c=e w^{*}(G)$, and choose $\gamma \subset G^{*}$ s.t. len $(\gamma)=c$. Cut and open G / γ, and let $\ell=$ dual dist. of the (new) "cut faces". ($c \cdot \ell \sim \operatorname{stretch}(G)$ "without" the shared path once.)

5 General Approximation

- just a very brief sketch, G embedded on \mathcal{S}_{g} :
- Recall, to cope with the "interference" betw. sequential cuts, we always want to cut the shortest dual cycles in G.
- Let $c=e w^{*}(G)$, and choose $\gamma \subset G^{*}$ s.t. len $(\gamma)=c$. Cut and open G / γ, and let $\ell=$ dual dist. of the (new) "cut faces". ($c \cdot \ell \sim \operatorname{stretch}(G)$ "without" the shared path once.)

Stronger lower bound

$$
\operatorname{cr}(G) \geq \frac{1}{2^{1+2 g} \Delta^{2}} \cdot c \ell
$$

provided $e w^{*}(G) \geq 2^{g+2} \Delta$.

5 General Approximation

- just a very brief sketch, G embedded on \mathcal{S}_{g} :
- Recall, to cope with the "interference" betw. sequential cuts, we always want to cut the shortest dual cycles in G.
- Let $c=e w^{*}(G)$, and choose $\gamma \subset G^{*}$ s.t. len $(\gamma)=c$. Cut and open G / γ, and let $\ell=$ dual dist. of the (new) "cut faces". ($c \cdot \ell \sim \operatorname{stretch}(G)$ "without" the shared path once.)

Stronger lower bound

$$
\operatorname{cr}(G) \geq \frac{1}{2^{1+2 g} \Delta^{2}} \cdot c \ell
$$

provided $e w^{*}(G) \geq 2^{g+2} \Delta$.

- Proof? Rather complicated; $c \ell \gg \operatorname{stretch}(G) \ldots$

5 General Approximation

- just a very brief sketch, G embedded on \mathcal{S}_{g} :
- Recall, to cope with the "interference" betw. sequential cuts, we always want to cut the shortest dual cycles in G.
- Let $c=e w^{*}(G)$, and choose $\gamma \subset G^{*}$ s.t. len $(\gamma)=c$. Cut and open G / γ, and let $\ell=$ dual dist. of the (new) "cut faces".

$$
(c \cdot \ell \sim \operatorname{stretch}(G) \text { "without" the shared path once.) }
$$

Stronger lower bound

$$
\operatorname{cr}(G) \geq \frac{1}{2^{1+2 g} \Delta^{2}} \cdot c \ell
$$

provided $e w^{*}(G) \geq 2^{g+2} \Delta$.

- Proof? Rather complicated; cl $\gg \operatorname{stretch}(G) \ldots$

Need to cut "low-stretch handles" to raise the stretch value. In other words, we "hunt" for the $c \times \ell$ tor. grid minor in G.

Approximation Algorithm

- Input G, (embed on $\left.\mathcal{S}_{g}\right)$.

Approximation Algorithm

- Input G, (embed on \mathcal{S}_{g}).
- Separately cut and open all sparse handles: bounded num. of edges \rightarrow separate MEI approx. [Chim. PH, 2011].

Approximation Algorithm

- Input G, (embed on $\left.\mathcal{S}_{g}\right)$.
- Separately cut and open all sparse handles: bounded num. of edges \rightarrow separate MEI approx. [Chim. PH, 2011].
- Seq. cut and open $\boldsymbol{G}_{\boldsymbol{i + 1}}=\boldsymbol{G}_{\boldsymbol{i}} / \gamma_{\boldsymbol{i}}$ where $c_{i}=\operatorname{len}\left(\gamma_{i}\right)=e w^{*}\left(G_{i}\right)$, and $c_{i} \geq 2^{g+3-i} \Delta$. Store corresp. ℓ_{i}.

Approximation Algorithm

- Input G, (embed on $\left.\mathcal{S}_{g}\right)$.
- Separately cut and open all sparse handles: bounded num. of edges \rightarrow separate MEI approx. [Chim. PH, 2011].
- Seq. cut and open $\boldsymbol{G}_{\boldsymbol{i + 1}}=\boldsymbol{G}_{\boldsymbol{i}} / \gamma_{\boldsymbol{i}}$ where $c_{i}=\operatorname{len}\left(\gamma_{i}\right)=e w^{*}\left(G_{i}\right)$, and $c_{i} \geq 2^{g+3-i} \Delta$. Store corresp. ℓ_{i}.
- Finally, G_{g} is plane!

Insert the cut edges back optimally into G_{g} (recall the MEI part).

Approximation Algorithm

- Input G, (embed on $\left.\mathcal{S}_{g}\right)$.
- Separately cut and open all sparse handles: bounded num. of edges \rightarrow separate MEI approx. [Chim. PH, 2011].
- Seq. cut and open $\boldsymbol{G}_{\boldsymbol{i + 1}}=\boldsymbol{G}_{\boldsymbol{i}} / \gamma_{\boldsymbol{i}}$ where $c_{i}=\operatorname{len}\left(\gamma_{i}\right)=e w^{*}\left(G_{i}\right)$, and $c_{i} \geq 2^{g+3-i} \Delta$. Store corresp. ℓ_{i}.
- Finally, G_{g} is plane! Insert the cut edges back optimally into G_{g} (recall the MEI part).
- Count the crossings: $\leq 3 \cdot 2^{g+1} \cdot \max \left\{c_{i} \ell_{i}\right\}$ and apply the lower bound.

Approximation Algorithm

- Input G, (embed on $\left.\mathcal{S}_{g}\right)$.
- Separately cut and open all sparse handles: bounded num. of edges \rightarrow separate MEI approx. [Chim. PH, 2011].
- Seq. cut and open $\boldsymbol{G}_{\boldsymbol{i + 1}}=\boldsymbol{G}_{\boldsymbol{i}} / \gamma_{\boldsymbol{i}}$ where $c_{i}=\operatorname{len}\left(\gamma_{i}\right)=e w^{*}\left(G_{i}\right)$, and $c_{i} \geq 2^{g+3-i} \Delta$. Store corresp. ℓ_{i}.
- Finally, G_{g} is plane!

Insert the cut edges back optimally into G_{g} (recall the MEI part).

- Count the crossings: $\leq 3 \cdot 2^{g+1} \cdot \max \left\{c_{i} \ell_{i}\right\}$ and apply the lower bound.

$$
\longrightarrow \quad \text { factor } 3 \cdot 2^{3 g+2} \cdot \Delta^{2} \text {. }
$$

6 Concluding Remarks

- The crossing number of a graph embedded on an orientable surface can be reasonably well approximated.

The algrithm is actually implementable (mod. embedding).

6 Concluding Remarks

- The crossing number of a graph embedded on an orientable surface can be reasonably well approximated.

The algrithm is actually implementable (mod. embedding).

- The exponential factor $2^{3 g}$ is unavoidable in our proof.

Though, there is no apparent reason for it in the problem!

6 Concluding Remarks

- The crossing number of a graph embedded on an orientable surface can be reasonably well approximated.

The algrithm is actually implementable (mod. embedding).

- The exponential factor $2^{3 g}$ is unavoidable in our proof.

Though, there is no apparent reason for it in the problem!

- Is there a nice analogue in the nonorientable case?
- Beware, there are three types of cuts there; through a handle, an antihandle, and a crosscap.

6 Concluding Remarks

- The crossing number of a graph embedded on an orientable surface can be reasonably well approximated.

The algrithm is actually implementable (mod. embedding).

- The exponential factor $2^{3 g}$ is unavoidable in our proof.

Though, there is no apparent reason for it in the problem!

- Is there a nice analogue in the nonorientable case?
- Beware, there are three types of cuts there; through a handle, an antihandle, and a crosscap.
- Is there a nice $f w$-like translation of the stretch concept?
- Again, there are technical complications (cases).

6 Concluding Remarks

- The crossing number of a graph embedded on an orientable surface can be reasonably well approximated.

The algrithm is actually implementable (mod. embedding).

- The exponential factor $2^{3 g}$ is unavoidable in our proof.

Though, there is no apparent reason for it in the problem!

- Is there a nice analogue in the nonorientable case?
- Beware, there are three types of cuts there; through a handle, an antihandle, and a crosscap.
- Is there a nice $f w$-like translation of the stretch concept?
- Again, there are technical complications (cases).
- Other applications for stretch?

