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1 Crossing Number ?1 Crossing Number ?

• Everybody here knows very well. . .

s s s
s s s
s s s

But, wait, which crossing number is it?But, wait, which crossing number is it?

• Right, it is the “traditional” crossing number;

having a nice drawing, and counting pairwise edge crossings.

• The minor-monote version is of some interest as well.
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Our objectiveOur objective

• To provide a two-way math relation between an embedding of
a graph (on a surface) and its crossing number.
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– Requires finding suitable “parameters” of an embedding. . .
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– Requires finding suitable “parameters” of an embedding. . .

• Although this is math, our motivation is algoritmic.
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Petr Hliněný, BIRS 11w5144, 2011 4 / 16 Crossing Number of Embedded. . .

2 Computing the Crossing Number2 Computing the Crossing Number

Importance, e.g.

• VLSI design (cf. [Leighton])

• Graph visualization



page.16
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2 Computing the Crossing Number2 Computing the Crossing Number

Importance, e.g.

• VLSI design (cf. [Leighton])

• Graph visualization

What is hard about it? i.e., computationally NP-hard

• The general case (of course. . . ); [Garey and Johnson, 1983]

• The degree-3 and minor-monotone cases; [PH, 2004]

• Even fixed rotation scheme;
[Pelsmajer, Schaeffer, Štefankovič, 2007]

• Much worse – hard already for planar graphs plus one edge !
[Cabello and Mohar, 2010]

Can anything be computed efficiently?
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So, what is efficiently computable?

• The case of cubic planar graphs plus one edge [Riskin, 1996]

• FPT when parameterized by itself
[Grohe, 2001], [Kawarabayashi and Reed, 2007]

• An exact branch&bound approach for “real-world” graphs on up to
∼ 100 vertices [Chimani, Mutzel, and Bomze, 2008]

• NO rich natural graph class with nontrivial and yet efficiently com-
putable crossing number problem is known. . .

Approximations, at least?, e.g.

• Up to factor log3 |V (G)| (log2 ·) for cr(G) + |V (G)| with bd. deg.
[Even, Guha and Schieber, 2002]

• Constant factors for surface-embedded bounded-degree graphs

[Gitler et al, 2007], [PH and Salazar, 2007], [PH and Chimani, 2010]
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3 Crossing Number of Embedded Graphs3 Crossing Number of Embedded Graphs

Related:

• Crossing number is linear, O(|V |), for any graph
of bounded degree and embedded in a fixed surface.

[Böröczky, Pach and Tóth, 2006]

• Improved costants (opt.) by [Djidjev and Vrt’o, 2006].
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3 Crossing Number of Embedded Graphs3 Crossing Number of Embedded Graphs

Related:

• Crossing number is linear, O(|V |), for any graph
of bounded degree and embedded in a fixed surface.

[Böröczky, Pach and Tóth, 2006]

• Improved costants (opt.) by [Djidjev and Vrt’o, 2006].

• Assymptotically extended even to graphs excluding a minor.
[Telle and Wood, 2006]

Unfortunately,

all these are only upper bounds, giving no approximation guarantees;

— we need fine-resolution measure(s) of embedded graphs!
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E.g., just for the projective graphs. . .E.g., just for the projective graphs. . .

Face-width

fw(G) = shortest noncontractible “vertex-face cycle” in the embedding.

fw = 2 fw = 3

• By cutting along (close to) such a vertex-face cycle, one gets a pretty
good drawing in the plane;

cr(G) ≤ 1

8
∆(G)2 · fw(G)2 .
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Petr Hliněný, BIRS 11w5144, 2011 8 / 16 Crossing Number of Embedded. . .

. . . the projective approximation
[Gitler, PH, Leaños, Salazar, 2007]

• Recall;
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. . . the projective approximation
[Gitler, PH, Leaños, Salazar, 2007]

• Recall;

cr(G) ≤
1

8
∆(G)2 · fw(G)2 .

• A lower-bound argument, prov. fw(G) ≥ 6, gives

1

36
fw(G)2 ≤ cr(G) .

Impr. for minor crossing number

• Can do much better – removing the ∆ !

1

36
fw(G)2 ≤ cr(G) ≤

(
fw(G)

2

)
.
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And on the torus. . .And on the torus. . .

• A natural “cut and reconnect” appr. gives a decent planar drawing.

• However, face-width fw(G) is no longer enough to express the re-
sulting number of crossings.
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Edge-width ew(G) = simply the shortest noncontractible cycle.

• face-width −→ dual edge-width ew∗(G) (technical)
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4 Introducing Stretch of an Embedding4 Introducing Stretch of an Embedding

Edge-width ew(G) = simply the shortest noncontractible cycle.

• face-width −→ dual edge-width ew∗(G) (technical)

Stretch stretch(G) = min len(α) · len(β) over all (α, β);

– (α, β) “one-leaping” pair of dual cycles in G,

– i.e, meet once and transversally.
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Stretch and crossings; the toroidal caseStretch and crossings; the toroidal case

Particularly nice, since the aforementioned easy approach;

• for toroidal G readily gives

cr(G) ≤ stretch(G) !

(Even smaller bound can be given – “remove” the shared sect. length. . . )

• Furthermore, for stretch(G) = len(α) · len(β) on the torus, one may
assume len(α) = ew∗(G).
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Lower bound on the torus
– finding a large toroidal grid minor in G:

• Set k = len(α)/b∆/2c and ` = ( len(β)− len(α)/2)/b∆/2c.
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Lower bound on the torus
– finding a large toroidal grid minor in G:

• Set k = len(α)/b∆/2c and ` = ( len(β)− len(α)/2)/b∆/2c.

• Then construct a p× q = max (b2k/3c, `)× b2k/3c tor. grid H.

• Note cr(G) ≥ 1
4

cr(H) since ∆(H) = 4, and cr(H) ≥ 1
2
(q − 2)p.

• Finally, provided ew∗(G) ≥ 8∆, we get:

cr(G) ≥
1

8∆2
· stretch(G)

For minor crossing, again

• (Skip the above shift fw→ ew∗ → fw.)

• Analog., use “face-width stretch”, and get rid of ∆. . . factor 8
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Stretch and crossings; higher surfacesStretch and crossings; higher surfaces

Say, G on an orientable surface of genus g.

• Lower bound
cr(G) ≥

1

21+2g∆2
· stretch(G)

provided ew∗(G) ≥ 2g+2∆.
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cr(G) ≥

1

21+2g∆2
· stretch(G)

provided ew∗(G) ≥ 2g+2∆.

• Rel. easy proof – enough to show that stretch(F ) ≥ 1
4
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if F via “cut and open” of a shortest nonsep. dual cycle from G.
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Stretch and crossings; higher surfacesStretch and crossings; higher surfaces

Say, G on an orientable surface of genus g.

• Lower bound
cr(G) ≥

1

21+2g∆2
· stretch(G)

provided ew∗(G) ≥ 2g+2∆.

• Rel. easy proof – enough to show that stretch(F ) ≥ 1
4
stretch(G),

if F via “cut and open” of a shortest nonsep. dual cycle from G.

• Though, not good enough for a general approximation!

– bad “interference” in a sequence of g cuts. . .
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5 General Approximation5 General Approximation
– just a very brief sketch, G embedded on Sg:

• Recall, to cope with the “interference” betw. sequential cuts,
we always want to cut the shortest dual cycles in G.

• Let c = ew∗(G), and choose γ ⊂ G∗ s.t. len(γ) = c.
Cut and open G/γ, and let ` = dual dist. of the (new) “cut faces”.

(c · ` ∼ stretch(G) “without” the shared path once.)

Stronger lower bound

cr(G) ≥
1

21+2g∆2
· c`

provided ew∗(G) ≥ 2g+2∆.

• Proof? Rather complicated; c` >> stretch(G) . . .

Need to cut “low-stretch handles” to raise the stretch value.
In other words, we “hunt” for the c× ` tor. grid minor in G.
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• Finally, Gg is plane!
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Approximation AlgorithmApproximation Algorithm

• Input G, (embed on Sg).

• Separately cut and open all sparse handles:

bounded num. of edges → separate MEI approx. [Chim. PH, 2011].

• Seq. cut and open Gi+1 = Gi/γi where ci =len(γi) = ew∗(Gi),
and ci ≥ 2g+3−i∆. Store corresp. `i.

• Finally, Gg is plane!

Insert the cut edges back optimally into Gg (recall the MEI part).

• Count the crossings: ≤ 3 · 2g+1 ·max{ci`i}
and apply the lower bound.
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Approximation AlgorithmApproximation Algorithm

• Input G, (embed on Sg).

• Separately cut and open all sparse handles:

bounded num. of edges → separate MEI approx. [Chim. PH, 2011].

• Seq. cut and open Gi+1 = Gi/γi where ci =len(γi) = ew∗(Gi),
and ci ≥ 2g+3−i∆. Store corresp. `i.

• Finally, Gg is plane!

Insert the cut edges back optimally into Gg (recall the MEI part).

• Count the crossings: ≤ 3 · 2g+1 ·max{ci`i}
and apply the lower bound.

−→ factor 3 · 23g+2 ·∆2.
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6 Concluding Remarks6 Concluding Remarks

• The crossing number of a graph embedded on an orientable surface
can be reasonably well approximated.

The algrithm is actually implementable (mod. embedding).
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Though, there is no apparent reason for it in the problem!
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• Is there a nice analogue in the nonorientable case?

– Beware, there are three types of cuts there; through a handle,
an antihandle, and a crosscap.
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• Is there a nice analogue in the nonorientable case?
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an antihandle, and a crosscap.

• Is there a nice fw-like translation of the stretch concept?

– Again, there are technical complications (cases).
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• The crossing number of a graph embedded on an orientable surface
can be reasonably well approximated.

The algrithm is actually implementable (mod. embedding).

• The exponential factor 23g is unavoidable in our proof.

Though, there is no apparent reason for it in the problem!

• Is there a nice analogue in the nonorientable case?

– Beware, there are three types of cuts there; through a handle,
an antihandle, and a crosscap.

• Is there a nice fw-like translation of the stretch concept?

– Again, there are technical complications (cases).

• Other applications for stretch?
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