The crossing number of a projective graph is quadratic in the face–width

Petr Hliněný

Faculty of Informatics, Masaryk University Botanická 68a, 60200 Brno, Czech Rep.

e-mail: hlineny@fi.muni.cz http://www.fi.muni.cz/~hlineny

joint work with **Isidoro Gitler** Departamento de Matemáticas, CINVESTAV, Mexico

Jesus Leaños and Gelasio Salazar Universidad Autónoma de San Luis Potosí, Mexico

Crossing number of a proj. graph

Overview

1 Drawings and the Crossing Number Basic definitions, an overview for embedded graphs.

2 Projective graphs

Bounding the crossing number of projective graphs.

3 Approximation algorithm

How to approximate the crossing number of a projective graph of bounded degrees within a constant factor.

4 Crossing number on orientable surfaces

We extend the results to crossing numbers (of projective graphs again) on higher orientable surfaces. 3

5

9

1 Drawings and the Crossing Number

Definition. Drawing of a graph G:

- The vertices of G are distinct points, and every edge $e = uv \in E(G)$ is a simple curve joining u to v.
- No edge passes through another vertex, and no three edges intersect in a common point.

1 Drawings and the Crossing Number

Definition. Drawing of a graph G:

- The vertices of G are distinct points, and every edge $e = uv \in E(G)$ is a simple curve joining u to v.

 No edge passes through another vertex, and no three edges intersect in a common point.

Definition. Crossing number cr(G) is the smallest number of edge crossings in a drawing of G.

Importance – in VLSI design [Leighton et al], graph visualization, etc.

1 Drawings and the Crossing Number

Definition. Drawing of a graph G:

- The vertices of G are distinct points, and every edge $e = uv \in E(G)$ is a simple curve joining u to v.

 No edge passes through another vertex, and no three edges intersect in a common point.

Definition. Crossing number cr(G) is the smallest number of edge crossings in a drawing of G.

Importance – in VLSI design [Leighton et al], graph visualization, etc.

Warning. There are slight variations of the definition of crossing number, some giving different numbers! (Like counting odd-crossing pairs of edges.)

Petr Hliněný, C-S Grafy 2007

Consider graphs embedded on a (fixed) surface Σ .

Theorem 1. [Böröczky, Pach and Tóth / Djidjev and Vrt'o, 2006] The (planar) crossing number of a Σ -embedded graph is $O(\Delta n)$.

Consider graphs embedded on a (fixed) surface Σ .

Theorem 1. [Böröczky, Pach and Tóth / Djidjev and Vrt'o, 2006] The (planar) crossing number of a Σ -embedded graph is $O(\Delta n)$.

This can be generalized even further...

Theorem 2. [Telle and Wood, 2006] The crossing number of a bounded-deg. graph excluding a fixed minor is O(n).

Consider graphs embedded on a (fixed) surface Σ .

Theorem 1. [Böröczky, Pach and Tóth / Djidjev and Vrt'o, 2006] The (planar) crossing number of a Σ -embedded graph is $O(\Delta n)$.

This can be generalized even further...

Theorem 2. [Telle and Wood, 2006] The crossing number of a bounded-deg. graph excluding a fixed minor is O(n).

Lower bounds?

- Trivial $\Omega(g)$, but very weak.
- Finer estimates must study the structure of a Σ-embedding...

Consider graphs embedded on a (fixed) surface Σ .

Theorem 1. [Böröczky, Pach and Tóth / Djidjev and Vrt'o, 2006] The (planar) crossing number of a Σ -embedded graph is $O(\Delta n)$.

This can be generalized even further...

Theorem 2. [Telle and Wood, 2006] The crossing number of a bounded-deg. graph excluding a fixed minor is O(n).

Lower bounds?

- Trivial $\Omega(g)$, but very weak.
- Finer estimates must study the structure of a Σ-embedding...

Definition. Face-width of a graph G in Σ is the smallest number of points a Σ -noncontractible loop intersects the drawing of G.

Petr Hliněný, C-S Grafy 2007

2 Projective graphs

We prove the following...

Theorem 3. If G embeds in the projective plane with face-width at least $r \ge 6$, then the crossing number of G in the plane is at least $r^2/36$.

2 Projective graphs

We prove the following...

Theorem 3. If G embeds in the projective plane with face-width at least $r \ge 6$, then the crossing number of G in the plane is at least $r^2/36$.

The corresponding "easy" direction reads:

Proposition 4. If G is a graph with maximum degree Δ that embeds in the projective plane with face-width r, then the crossing number of G in the plane is at most $r^2\Delta^2/8$.

2 Projective graphs

We prove the following...

Theorem 3. If G embeds in the projective plane with face-width at least $r \ge 6$, then the crossing number of G in the plane is at least $r^2/36$.

The corresponding "easy" direction reads:

Proposition 4. If G is a graph with maximum degree Δ that embeds in the projective plane with face-width r, then the crossing number of G in the plane is at most $r^2\Delta^2/8$.

Proof. Trivially – cut the projective embedding of G at r points (and open it to the plane).

Hence there are at most $s = r\Delta/2$ affected edges, and redrawing those induces at most $s^2/2$ crossings.

To prove Theorem 3, we argue...

Theorem 5. Every graph that embeds in the projective plane with face-width r has a minor isomorphic to the projective diamond grid P_r .

To prove Theorem 3, we argue...

Theorem 5. Every graph that embeds in the projective plane with face-width r has a minor isomorphic to the projective diamond grid P_r .

Proof. Again, cut the projective embedding of G at r points (and open it to the plane, to 2r points).

Find two "orthogonal" collections of r paths each between those points, by Menger's theorem.

By planarity, these two collections form P_r ...

Petr Hliněný, C-S Grafy 200

Crossing number of a proj. graph

Definition. *I-collection* – each two cycles have connected intersection, and no vertex is in more than two cycles.

Definition. *I-collection* – each two cycles have connected intersection, and no vertex is in more than two cycles.

Proposition 6. The projective diamond grid P_r of size r contains an I-collection of r - 1 cycles.

Definition. *I-collection* – each two cycles have connected intersection, and no vertex is in more than two cycles.

Proposition 6. The projective diamond grid P_r of size r contains an I-collection of r - 1 cycles.

Proposition 7. If an *I*-collection C is embedded in the plane, then $|C| \leq 4$.

Petr Hliněný, C-S Grafy 2007

Theorem 8. If G contains an I-collection of size k > 4, then the crossing number of G is at least k(k-1)/20.

Proof. Any 5-tuple of cycles in the I-collection must induce a crossing by Proposition 7. Each such crossing is counted at most $\binom{k-2}{3}$ times. Hence we have at least this many crossings in G:

$$\binom{k}{5} / \binom{k-2}{3} = k(k-1) / 5 \cdot 4$$

Theorem 8. If G contains an I-collection of size k > 4, then the crossing number of G is at least k(k-1)/20.

Proof. Any 5-tuple of cycles in the I-collection must induce a crossing by Proposition 7. Each such crossing is counted at most $\binom{k-2}{3}$ times. Hence we have at least this many crossings in G:

$$\binom{k}{5} / \binom{k-2}{3} = k(k-1) / 5 \cdot 4$$

Regarding **Theorem 3**, we continue:

- We have k = r 1 by Proposition 6.
- So the number of crossings is by Theorem 8, for $r \ge 6$,

 $(r-1)(r-2)/20 \ge r^2/36.$

Theorem 9. For every fixed Δ there is a polynomial time approximation algorithm that computes the crossing number of a projective graph with maximum degree Δ within a constant factor.

- We test whether the input graph G is planar in O(n) time.
- We construct the topological dual G^* of G in the projective plane.

Theorem 9. For every fixed Δ there is a polynomial time approximation algorithm that computes the crossing number of a projective graph with maximum degree Δ within a constant factor.

- We test whether the input graph G is planar in O(n) time.
- We construct the topological dual G^* of G in the projective plane.
- Then we use the $O(n\sqrt{n})$ -time algorithm of Cabello and Mohar to find a shortest noncontractible cycle C^* in G^* .

Theorem 9. For every fixed Δ there is a polynomial time approximation algorithm that computes the crossing number of a projective graph with maximum degree Δ within a constant factor.

- We test whether the input graph G is planar in O(n) time.
- We construct the topological dual G^* of G in the projective plane.
- Then we use the $O(n\sqrt{n})$ -time algorithm of Cabello and Mohar to find a shortest noncontractible cycle C^* in G^* .
- Let F be the set of edges of G intersected by the (dual) edges of C^{*}. Then G − F is a plane embedding, and we add the edges of F back to G − F, making a plane drawing with at most (^{|F|}₂) pairwise crossings.

Theorem 9. For every fixed Δ there is a polynomial time approximation algorithm that computes the crossing number of a projective graph with maximum degree Δ within a constant factor.

- We test whether the input graph G is planar in O(n) time.
- We construct the topological dual G^* of G in the projective plane.
- Then we use the $O(n\sqrt{n})$ -time algorithm of Cabello and Mohar to find a shortest noncontractible cycle C^* in G^* .
- Let F be the set of edges of G intersected by the (dual) edges of C^{*}. Then G − F is a plane embedding, and we add the edges of F back to G − F, making a plane drawing with at most (^{|F|}₂) pairwise crossings.
- Since $\binom{|F|}{2} < |F|^2/2 \le r^2 \Delta^2/8$, we have an approximation of cr(G) within factor $4.5\Delta^2$.

4 Crossing number on orientable surfaces

Consider the crossing number on a fixed *orientable surface* $\Sigma_g \dots$

• Proposition 7 extends to any orientable surface using a result of Juvan, Malnič and Mohar, with a bound $\leq M_q$.

4 Crossing number on orientable surfaces

Consider the crossing number on a fixed *orientable surface* $\Sigma_g \dots$

- Proposition 7 extends to any orientable surface using a result of Juvan, Malnič and Mohar, with a bound $\leq M_q$.
- Hence an extension of Theorem 3 gives a lower bound of $r^2/(M_g+2)^2$ crossings.

4 Crossing number on orientable surfaces

Consider the crossing number on a fixed *orientable surface* $\Sigma_g \dots$

- Proposition 7 extends to any orientable surface using a result of Juvan, Malnič and Mohar, with a bound $\leq M_q$.
- Hence an extension of Theorem 3 gives a lower bound of $r^2/(M_g+2)^2$ crossings.
- An extension of the approximation algorithm is also straightforward.

• Only very few graphs classes have efficient constant-factor approximations for the crossing number; e.g. *almost-planar* graphs of bounded degrees.

• Only very few graphs classes have efficient constant-factor approximaions for the crossing number; e.g. *almost-planar* graphs of bounded degrees.

- We can estimate the hard *crossing number* parameter of projective graphs (of bounded degrees) using the more easy *face-width* parameter.
- This extends also to crossing numbers on any orientable surfaces.

• Only very few graphs classes have efficient constant-factor approximaions for the crossing number; e.g. *almost-planar* graphs of bounded degrees.

- We can estimate the hard *crossing number* parameter of projective graphs (of bounded degrees) using the more easy *face-width* parameter.
- This extends also to crossing numbers on any orientable surfaces.
- Another new result of PH and Salazar similarly estimates the crossing number of toroidal graphs (of bounded degrees)...

• Only very few graphs classes have efficient constant-factor approximaions for the crossing number; e.g. *almost-planar* graphs of bounded degrees.

- We can estimate the hard *crossing number* parameter of projective graphs (of bounded degrees) using the more easy *face-width* parameter.
- This extends also to crossing numbers on any orientable surfaces.
- Another new result of PH and Salazar similarly estimates the crossing number of toroidal graphs (of bounded degrees)...
- What further generalization are possible?

• Only very few graphs classes have efficient constant-factor approximaions for the crossing number; e.g. *almost-planar* graphs of bounded degrees.

- We can estimate the hard *crossing number* parameter of projective graphs (of bounded degrees) using the more easy *face-width* parameter.
- This extends also to crossing numbers on any orientable surfaces.
- Another new result of PH and Salazar similarly estimates the crossing number of toroidal graphs (of bounded degrees)...
- What further generalization are possible?
- Thank you for attention!