The crossing number of a projective graph is quadratic in the face-width

Petr Hliněný

Faculty of Informatics, Masaryk University Botanická 68a, 60200 Brno, Czech Rep.

$$
\begin{aligned}
& \text { e-mail: hlineny@fi.muni.cz } \\
& \text { http://www.fi.muni.cz/~hlineny }
\end{aligned}
$$

joint work with Isidoro Gitler Departamento de Matemáticas, CINVESTAV, Mexico

Jesus Leaños and Gelasio Salazar
Universidad Autónoma de San Luis Potosí, Mexico

Overview

1 Drawings and the Crossing Number 3
Basic definitions, an overview for embedded graphs.
2 Projective graphs
Bounding the crossing number of projective graphs.
3 Approximation algorithm
How to approximate the crossing number of a projective graph of bounded degrees within a constant factor.

4 Crossing number on orientable surfaces
We extend the results to crossing numbers (of projective graphs again) on higher orientable surfaces.

1 Drawings and the Crossing Number

Definition. Drawing of a graph G :

- The vertices of G are distinct points, and every edge $e=u v \in E(G)$ is a simple curve joining u to v.
- No edge passes through another vertex, and no three edges intersect in a common point.

1 Drawings and the Crossing Number

Definition. Drawing of a graph G :

- The vertices of G are distinct points, and every edge $e=u v \in E(G)$ is a simple curve joining u to v.
- No edge passes through another vertex, and no three edges intersect in a common point.

Definition. Crossing number $\operatorname{cr}(G)$ is the smallest number of edge crossings in a drawing of G.

Importance - in VLSI design [Leighton et al], graph visualization, etc.

1 Drawings and the Crossing Number

Definition. Drawing of a graph G :

- The vertices of G are distinct points, and every edge $e=u v \in E(G)$ is a simple curve joining u to v.
- No edge passes through another vertex, and no three edges intersect in a common point.

Definition. Crossing number cr (G) is the smallest number of edge crossings in a drawing of G.

Importance - in VLSI design [Leighton et al], graph visualization, etc.
Warning. There are slight variations of the definition of crossing number, some giving different numbers! (Like counting odd-crossing pairs of edges.)

Embedded graphs

Consider graphs embedded on a (fixed) surface Σ.
Theorem 1. [Böröczky, Pach and Tóth / Djidjev and Vrt’o, 2006] The (planar) crossing number of a Σ-embedded graph is $O(\Delta n)$.

Embedded graphs

Consider graphs embedded on a (fixed) surface Σ.
Theorem 1. [Böröczky, Pach and Tóth / Djidjev and Vrt’o, 2006]
The (planar) crossing number of a Σ-embedded graph is $O(\Delta n)$.

This can be generalized even further...
Theorem 2. [Telle and Wood, 2006]
The crossing number of a bounded-deg. graph excluding a fixed minor is $O(n)$.

Embedded graphs

Consider graphs embedded on a (fixed) surface Σ.
Theorem 1. [Böröczky, Pach and Tóth / Djidjev and Vrt’o, 2006]
The (planar) crossing number of a Σ-embedded graph is $O(\Delta n)$.

This can be generalized even further...
Theorem 2. [Telle and Wood, 2006]
The crossing number of a bounded-deg. graph excluding a fixed minor is $O(n)$.
Lower bounds?

- Trivial $\Omega(g)$, but very weak.
- Finer estimates must study the structure of a Σ-embedding. . .

Embedded graphs

Consider graphs embedded on a (fixed) surface Σ.
Theorem 1. [Böröczky, Pach and Tóth / Djidjev and Vrt’o, 2006]
The (planar) crossing number of a Σ-embedded graph is $O(\Delta n)$.

This can be generalized even further...
Theorem 2. [Telle and Wood, 2006]
The crossing number of a bounded-deg. graph excluding a fixed minor is $O(n)$.
Lower bounds?

- Trivial $\Omega(g)$, but very weak.
- Finer estimates must study the structure of a Σ-embedding. . .

Definition. Face-width of a graph G in Σ is the smallest number of points a Σ-noncontractible loop intersects the drawing of G.

2 Projective graphs

We prove the following. . .
Theorem 3. If G embeds in the projective plane with face-width at least $r \geq 6$, then the crossing number of G in the plane is at least $r^{2} / 36$.

2 Projective graphs

We prove the following. . .
Theorem 3. If G embeds in the projective plane with face-width at least $r \geq 6$, then the crossing number of G in the plane is at least $r^{2} / 36$.

The corresponding "easy" direction reads:
Proposition 4. If G is a graph with maximum degree Δ that embeds in the projective plane with face-width r, then the crossing number of G in the plane is at most $r^{2} \Delta^{2} / 8$.

2 Projective graphs

We prove the following. . .
Theorem 3. If G embeds in the projective plane with face-width at least $r \geq 6$, then the crossing number of G in the plane is at least $r^{2} / 36$.

The corresponding "easy" direction reads:
Proposition 4. If G is a graph with maximum degree Δ that embeds in the projective plane with face-width r, then the crossing number of G in the plane is at most $r^{2} \Delta^{2} / 8$.

Proof. Trivially - cut the projective embedding of G at r points (and open it to the plane).
Hence there are at most $s=r \Delta / 2$ affected edges, and redrawing those induces at most $s^{2} / 2$ crossings.

To prove Theorem 3, we argue...
Theorem 5. Every graph that embeds in the projective plane with face-width r has a minor isomorphic to the projective diamond grid P_{r}.

To prove Theorem 3, we argue...
Theorem 5. Every graph that embeds in the projective plane with face-width r has a minor isomorphic to the projective diamond grid P_{r}.

Proof. Again, cut the projective embedding of G at r points (and open it to the plane, to $2 r$ points).
Find two "orthogonal" collections of r paths each between those points, by Menger's theorem.
By planarity, these two collections form $P_{r} \ldots$

Definition. l-collection - each two cycles have connected intersection, and no vertex is in more than two cycles.

Definition. l-collection - each two cycles have connected intersection, and no vertex is in more than two cycles.

Proposition 6. The projective diamond grid P_{r} of size r contains an l-collection of $r-1$ cycles.

Definition. I-collection - each two cycles have connected intersection, and no vertex is in more than two cycles.

Proposition 6. The projective diamond grid P_{r} of size r contains an l-collection of $r-1$ cycles.

Proposition 7. If an l-collection \mathcal{C} is embedded in the plane, then $|\mathcal{C}| \leq 4$.

Theorem 8. If G contains an l-collection of size $k>4$, then the crossing number of G is at least $k(k-1) / 20$.

Proof. Any 5-tuple of cycles in the I-collection must induce a crossing by Proposition 7. Each such crossing is counted at most $\binom{k-2}{3}$ times. Hence we have at least this many crossings in G :

$$
\binom{k}{5} /\binom{k-2}{3}=k(k-1) / 5 \cdot 4
$$

Theorem 8. If G contains an I-collection of size $k>4$, then the crossing number of G is at least $k(k-1) / 20$.

Proof. Any 5-tuple of cycles in the I-collection must induce a crossing by Proposition 7. Each such crossing is counted at most $\binom{k-2}{3}$ times. Hence we have at least this many crossings in G :

$$
\binom{k}{5} /\binom{k-2}{3}=k(k-1) / 5 \cdot 4
$$

Regarding Theorem 3, we continue:

- We have $k=r-1$ by Proposition 6.
- So the number of crossings is by Theorem 8 , for $r \geq 6$,

$$
(r-1)(r-2) / 20 \geq r^{2} / 36
$$

3 Approximation algorithm

Theorem 9. For every fixed Δ there is a polynomial time approximation algorithm that computes the crossing number of a projective graph with maximum degree Δ within a constant factor.

- We test whether the input graph G is planar in $O(n)$ time.
- We construct the topological dual G^{*} of G in the projective plane.

3 Approximation algorithm

Theorem 9. For every fixed Δ there is a polynomial time approximation algorithm that computes the crossing number of a projective graph with maximum degree Δ within a constant factor.

- We test whether the input graph G is planar in $O(n)$ time.
- We construct the topological dual G^{*} of G in the projective plane.
- Then we use the $O(n \sqrt{n})$-time algorithm of Cabello and Mohar to find a shortest noncontractible cycle C^{*} in G^{*}.

3 Approximation algorithm

Theorem 9. For every fixed Δ there is a polynomial time approximation algorithm that computes the crossing number of a projective graph with maximum degree Δ within a constant factor.

- We test whether the input graph G is planar in $O(n)$ time.
- We construct the topological dual G^{*} of G in the projective plane.
- Then we use the $O(n \sqrt{n})$-time algorithm of Cabello and Mohar to find a shortest noncontractible cycle C^{*} in G^{*}.
- Let F be the set of edges of G intersected by the (dual) edges of C^{*}. Then $G-F$ is a plane embedding, and we add the edges of F back to $G-F$, making a plane drawing with at most $\binom{|F|}{2}$ pairwise crossings.

3 Approximation algorithm

Theorem 9. For every fixed Δ there is a polynomial time approximation algorithm that computes the crossing number of a projective graph with maximum degree Δ within a constant factor.

- We test whether the input graph G is planar in $O(n)$ time.
- We construct the topological dual G^{*} of G in the projective plane.
- Then we use the $O(n \sqrt{n})$-time algorithm of Cabello and Mohar to find a shortest noncontractible cycle C^{*} in G^{*}.
- Let F be the set of edges of G intersected by the (dual) edges of C^{*}. Then $G-F$ is a plane embedding, and we add the edges of F back to $G-F$, making a plane drawing with at most $\binom{|F|}{2}$ pairwise crossings.
- Since $\binom{|F|}{2}<|F|^{2} / 2 \leq r^{2} \Delta^{2} / 8$, we have an approximation of $\operatorname{cr}(G)$ within factor $4.5 \Delta^{2}$.

4 Crossing number on orientable surfaces

Consider the crossing number on a fixed orientable surface $\Sigma_{g} \ldots$

- Proposition 7 extends to any orientable surface using a result of Juvan, Malnič and Mohar, with a bound $\leq M_{g}$.

4 Crossing number on orientable surfaces

Consider the crossing number on a fixed orientable surface $\Sigma_{g} \ldots$

- Proposition 7 extends to any orientable surface using a result of Juvan, Malnič and Mohar, with a bound $\leq M_{g}$.
- Hence an extension of Theorem 3 gives a lower bound of $r^{2} /\left(M_{g}+2\right)^{2}$ crossings.

4 Crossing number on orientable surfaces

Consider the crossing number on a fixed orientable surface $\Sigma_{g} \ldots$

- Proposition 7 extends to any orientable surface using a result of Juvan, Malnič and Mohar, with a bound $\leq M_{g}$.
- Hence an extension of Theorem 3 gives a lower bound of $r^{2} /\left(M_{g}+2\right)^{2}$ crossings.
- An extension of the approximation algorithm is also straightforward.

Conclusions

- Only very few graphs classes have efficient constant-factor approximaions for the crossing number; e.g. almost-planar graphs of bounded degrees.

Conclusions

- Only very few graphs classes have efficient constant-factor approximaions for the crossing number; e.g. almost-planar graphs of bounded degrees.

We add a new family:

- We can estimate the hard crossing number parameter of projective graphs (of bounded degrees) using the more easy face-width parameter.
- This extends also to crossing numbers on any orientable surfaces.

Conclusions

- Only very few graphs classes have efficient constant-factor approximaions for the crossing number; e.g. almost-planar graphs of bounded degrees.

We add a new family:

- We can estimate the hard crossing number parameter of projective graphs (of bounded degrees) using the more easy face-width parameter.
- This extends also to crossing numbers on any orientable surfaces.
- Another new result of PH and Salazar similarly estimates the crossing number of toroidal graphs (of bounded degrees)...

Conclusions

- Only very few graphs classes have efficient constant-factor approximaions for the crossing number; e.g. almost-planar graphs of bounded degrees.

We add a new family:

- We can estimate the hard crossing number parameter of projective graphs (of bounded degrees) using the more easy face-width parameter.
- This extends also to crossing numbers on any orientable surfaces.
- Another new result of PH and Salazar similarly estimates the crossing number of toroidal graphs (of bounded degrees)...
- What further generalization are possible?

Conclusions

- Only very few graphs classes have efficient constant-factor approximaions for the crossing number; e.g. almost-planar graphs of bounded degrees.

We add a new family:

- We can estimate the hard crossing number parameter of projective graphs (of bounded degrees) using the more easy face-width parameter.
- This extends also to crossing numbers on any orientable surfaces.
- Another new result of PH and Salazar similarly estimates the crossing number of toroidal graphs (of bounded degrees)...
- What further generalization are possible?
- Thank you for attention!

