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Abstract. The crossing number of a graph G, denoted by cr(G), is
defined as the smallest possible number of edge-crossings in a drawing of
G in the plane. A graph G is crossing-critical if cr(G − e) < cr(G) for
all edges e of G. We prove that crossing-critical graphs have “bounded
path-width” (by a function of the crossing number), which roughly means
that such graphs are made up of small pieces joined in a linear way
on small cut-sets. Equivalently, a crossing-critical graph cannot contain
a subdivision of a “large” binary tree. This assertion was conjectured
earlier by Salazar in [J. Geelen, B. Richter, G. Salazar, Embedding grids

on surfaces, submitted, 2000].

1 Introduction

We begin with the most important definitions here. Additional definitions and
comments will be presented in the subsequent section. If % : [0, 1] →

� 2 is a
simple continuous function, then %([0, 1]) is a simple curve, and %((0, 1)) is a
simple open curve.

Definition. A graph G is drawn in the plane if the vertices of G are distinct
points of

� 2, and every edge e = uv ∈ E(G) is a simple open curve % such that
%(0) = u, %(1) = v. Moreover, it is required that no edge contains a vertex of G,
and that no three distinct edges of G share a common point.

We denote by T (G) the union of all vertices and all edges of G (viewed as
a topological set), and a face is a connected component of

� 2 \ T (G). An edge
crossing (or a crossing) in G is any point of T (G) that belongs to two distinct
edges. A drawing of a graph H is a graph G ' H that is drawn in the plane. A
graph G is plane if G is drawn in the plane without crossings, while G is planar
if it has a plane drawing.

? This research was done while the author held the J. E. Marsden Distinguished Post-
doctoral Fellowship at The Fields Institute, University of Toronto, Canada, during
1999/2000.



We are interested in drawings of (nonplanar) graphs that have a small number
of crossings. There are many practical applications of such drawings, including
VLSI design [5], and graph visualization [6].

Definition. The crossing number cr(H) of a graph H is the smallest possible
number of edge crossings in a drawing of H in the plane. A graph H is crossing-
critical if cr(H − e) < cr(H) for all edges e ∈ E(H). A graph H is k-crossing-
critical if H is crossing-critical and cr(H) = k.

Determining the crossing number of a graph is a hard problem [9] in general,
and the crossing number is not even known exactly for complete or complete
bipartite graphs. So it is important to study crossing-critical graphs in order to
understand what structural properties force the crossing number of a graph to
be large. In this work, we prove that if G is a k-crossing-critical graph, then G

cannot contain a subdivision of a “large in k” binary tree. It is known that the
latter condition is equivalent to G having “bounded in k path-width”, which
roughly means that G is made up of small pieces joined in a linear way on small
cut-sets. (See formal definitions and statements in the next section.)

Theorem 1.1. There exists a function f such that no k-crossing-critical graph
contains a subdivision of a (complete) binary tree of height f(k). In particular,
f(k) ≤ 6 · (72 log2 k + 248) · k3.

2 Notation and Comments

We consider finite simple graphs (no loops or multiple edges) in this paper.
When reading this paper, it is important to understand the relations and dif-
ferences between an abstract graph (combinatorial object) and a drawing of a
graph (topological object). We mostly speak about actual drawings of graphs.
Notice that in our notation an edge as a topological object does not include
its endpoints, and a face does not include its boundary. In particular, when we
speak about an edge crossing, we do not mean a common end of two edges. We
use abstract-graph terms, like a subgraph or a vertex-edge incidence, for graph
drawings in their obvious abstract meanings. When we speak about connectiv-
ity, we mean, depending on context, either arcwise-connectivity for topological
objects, or path-connectivity for graphs.

Further we define the path-width of a graph, and present its basic properties.
A notation G �X is used for the subgraph of G induced by the vertex set X.

Definition. A path decomposition of a graph G is a sequence of sets (W1,W2,

. . . ,Wp) such that
⋃

1≤i≤p Wi = V (G),
⋃

1≤i≤p E(G � Wi) = E(G), and

Wi ∩ Wk ⊆ Wj for all 1 ≤ i < j < k ≤ p. The width of a path decomposition is
max{|Wi| − 1 : 1 ≤ i ≤ p}. The path-width of a graph G, denoted by pw(G), is
the smallest width of a path decomposition of G.

It is known [16] that if G is a minor of H , then pw(G) ≤ pw(H). A binary
tree of height h is a rooted tree T such that the root has degree 2, all other
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non-leaf vertices of T have degree 3, and every leaf of T has distance h from
the root. (A binary tree of height h has 2h+1 − 1 vertices.) Since the maximal
degree of a binary tree T is 3, a graph H contains T as a minor if and only
if H contains T as a subdivision. The important connection between binary
trees and path-width was first established by Robertson and Seymour in [16],
while the following strengthening is due to Bienstock, Robertson, Seymour and
Thomas [4]:

Theorem 2.1. (Bienstock, Robertson, Seymour, Thomas)
(a) If T is a binary tree of height h, then pw(T ) ≥ h

2 .
(b) If pw(G) ≥ p, then G contains any tree on p vertices as a minor.

Notice that the crossing number remains the same if we consider drawings
in the sphere instead of the plane, or if we require piecewise-linear drawings.
(However, if we require the edges to be straight segments – so called rectilinear
crossing number, we get completely different behavior; but we are not dealing
with this concept here.) Also, the crossing number is clearly preserved under sub-
divisions of edges (although not under contractions). Thus it is not an essential
restriction when we consider simple graphs only.

One annoying thing about the crossing number is that there exist other
possible definitions of it, and we do not know whether they are all equivalent or
not. The pairwise-crossing number crpair is defined similarly, but it counts the
number of crossing pairs of edges, instead of crossing points. The odd-crossing
number crodd counts the number of pairs of edges that cross an odd number
of times only. It clearly follows that crodd(G) ≤ crpair(G) ≤ cr(G), and it was
proved by Tutte [17] that crodd(G) = 0 implies cr(G) = 0. The best known
general relation between these crossing numbers is due to Pach and Tóth [13] who
proved cr(G) ≤ 2 crodd(G)2. Our result is formulated for the ordinary crossing
number. However, it holds as well for the pairwise-crossing number as can be
checked step by step in the proof.

As noted above, the crossing number is a very difficult graph parameter, both
for theoretical study and for practical computations. A lot of work has been done
investigating the crossing number of particular graphs, see for example works of
Anderson, Richter and Rodney [2, 3], and Richter and Thomassen [14]. For gen-
eral graphs, reserach so far focused mainly on relations of the crossing number to
nonstructural graph properties like the number of edges, for example [1, 12, 13].
On the other hand, crossing-critical graphs play a key role in the investigation
of structural properties of the crossing number. Our result gives some insight to
the general structure of crossing-critical graphs.

By the Kuratowski theorem, there are only two 1-crossing-critical graphs
K5 and K3,3, up to subdivisions. On the other hand, an infinite family of 2-
crossing-critical graphs with minimum degree at least 3 was found by Kochol
in [11]. Moreover, Ding, Oporowski, Thomas and Vertigan [7] have proved that
every ≥2-crossing-critical graph satisfying certain simple assumptions and hav-
ing sufficiently many vertices belongs to a well-defined infinite graph class. In
particular, these graphs have bounded path-width.
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The lastly mentioned result actually speaks about a slightly extended notion
of a crossing-critical graph. We say that a graph G is ≥ k-crossing-critical if
cr(G) ≥ k and cr(G − e) < k for all e ∈ E(G). Richter and Thomassen proved
in [15] that if G is a ≥ k-crossing-critical graph, then cr(G) ≤ 5

2k + 16 holds.
(Note, however, that there exist graphs H and an edge e ∈ E(H), such that
H − e is planar but cr(H) is arbitrarily high – such H is not crossing-critical.)
Thus we see that, for our main result, there is no significant difference between
considering k-crossing-critical or ≥k-crossing-critical graphs.

Observing the structure of known infinite classes of crossing-critical graphs,
Salazar and Thomas formulated the following conjecture, appearing in [8]:

Conjecture 2.2. There exists a function g such that any k-crossing-critical graph
has path-width at most g(k).

The paper [8] proves a weaker statement that the tree-width of a crossing-
critical graph is bounded. Our main result, Theorem 1.1, together with Theo-
rem 2.1 immediately imply a solution to Conjecture 2.2:

Corollary 2.3. Let f be the function from Theorem 1.1. If G is a k-crossing-
critical graph, then the path-width of G is at most 2f(k)+1 − 2.

3 Graph Multicycles

The proof of bounded tree-width for crossing-critical graphs in [8] is based on
the following idea: Assuming the contrary, a sequence of disjoint nested cycles
that “enclose” all crossed edges is found in the graph, and then the sequence
is used to argue that the graph is not crossing-critical. Unfortunately, such an
idea does not work directly in our case; but it is still useful to consider certain
collections of cycles (instead of single cycles) that “separate” all crossed edges
from the rest of the graph.

Definition. Let G be a graph drawn in the plane. Let C = {C1, . . . , Cm} be a
collection of m distinct (but not necessarily disjoint) cycles in G, such that the
graph F = C1 ∪ . . . ∪ Cm ⊆ G is plane. A pair M = (C, X), where X is a face
of F , is a multicycle (in G) if the following is satisfied: for all 1 ≤ i ≤ m, the
cycle Ci is the boundary of some face Yi 6= X of F .

In this situation, the set X = X(M ) is the exterior face of M . The faces Yi

bounded by the cycles of C = C(M ) are the interior faces of M , and their union
is denoted by I(M ) = Y1 ∪ . . . ∪ Ym. (Notice that a face of F may be neither
interior nor exterior.)

For clarity, we will depict a multicycle M with X(M ) as the unbounded face
in the plane. Then, simply speaking, our definition means that the cycles of M

are pairwise not “crossed” and not “nested”. Figure 1 illustrates the definition.
We shall use M to refer to both the multicycle and its underlying graph F =
C1 ∪ . . . ∪ Cm. This convention allows us to use notations like V (M ) or T (M)
in their corresponding graph-meanings.
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I(M) X(M)

Fig. 1. An example of a multicycle M consisting of 8 cycles.

Definition. Let M ,M ′ be two multicycles in a graph G such that the union
of their underlying graphs is plane. We say that M is nested in M

′, denoted by
M � M

′, if I(M ) ⊆ I(M ′) and X(M ) ⊇ X(M ′). We say that M is strictly
nested in M

′, denoted by M≺≺M
′, if M � M

′ and |V (M ) ∩ V (M ′)| ≤ 1.

M

M
′

Fig. 2. An example of strictly nested multicycles M≺≺M
′ (M consists of 4 cycles, and

M
′ of 3 cycles).

Since a face is a (topologically) connected open set, the definition of M � M
′

implies that each interior face of M is contained in exactly one interior face
of M

′. It is easy to verify that both relations � and ≺≺ are transitive and
antisymmetric, and that � is reflexive. (Focus on inclusions between the interior
faces.) An example of nested multicycles is presented in Figure 2.

4 Nesting Sequence

In order to motivate the next definitions, we present a short sketch of our proof
ideas here. We assume, for a contradiction, that a crossing-critical graph G

contains a subdivision of a huge binary tree. (So G is a “bad” graph.) In the
first step we denote by M 0 the subgraph of G induced by all crossed edges.
Then we try to inductively construct a sequence of strictly nested multicycles
M 1,M 2, . . . such that M 0 is contained in the interior of M 1 and that a large
portion of the binary tree still stays in the last exterior face (“outside”). If we
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find a sufficiently long sequence of these nested multicycles, then we are able to
show that G cannot be crossing-critical.

On the other hand, if it is not possible to find the next multicycle for our
sequence, then we examine paths connecting the leaves of the “outside tree” to
the last multicycle: It is possible that there are not many of these paths, but
then again G cannot be crossing-critical. Thus many paths connect leaves of
the “outside tree” to the last multicycle, but only a limited number of them
may “continue through” our sequence of multicycles all the way to M 0. We
conclude that a large portion of these paths must “end in one part” of some of
the multicycles M j , which again implies a contradiction to G being crossing-
critical.

Fig. 3. An example of a (strong) 2-nesting sequence in a graph.

The notion of a (strong) nesting sequence is the heart of our proof. However,
due to its length and complexity, the definition is divided into two parts, the
latter one being presented in Section 6.

Definition. Let G be a 2-connected graph drawn in the plane with crossings,
and let c ≥ 0 be an integer. A sequence Mc(G) = (M 0,M 1, . . . ,M c) is called
a c-nesting sequence in G if the following conditions are satisfied:

(N1) M 0 is the subgraph of G consisting of all crossed edges and their ends.
For 1 ≤ i ≤ c, M i is a multicycle in G.

(N2) Suppose that c ≥ 1. Then all edges of M 0 are contained in I(M 1), and
the multicycles are nested as M 1≺≺ . . .≺≺M c. For 1 ≤ i ≤ c, each interior
face of M i intersects M i−1. Moreover, at least one edge of G is in X(M c).

(N3) Suppose that 1 ≤ j ≤ c. Let e = zz′ be an edge of G such that z ∈
V (M j)\V (M j−1) and e ⊂ I(M j). Then there exists a vertex t ∈ V (M j−1)\
V (M j) and a path P joining z to t in G, such that e ∈ E(P ) and P is
internally disjoint from V (M j−1) ∪ V (M j).

We add several comments to this definition. By (N1,2), all edge crossings of
G are “enclosed inside” I(M 1), and no multicycle M i, 1 ≤ i ≤ c is involved in
a crossing. The purpose of (N3) is to ensure “connectivity between multicycles”
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in the sequence. An illustration to the definition is in Figure 3. The following is
a direct consequence of the above definition

Lemma 4.1. Let (M 0,M 1, . . . ,M c), c ≥ 1 be a c-nesting sequence in G. Then
|C(M c)| ≤ |C(M c−1)| ≤ . . . ≤ |C(M 1)|. Moreover, if the drawing G has k

crossings, then |E(M 0)| ≤ 2k, and hence |C(M 1)| ≤
1
2 |E(M 0)| ≤ k.

Lastly in this section we show how to find a contradiction if a sufficiently
long nesting sequence exists in our crossing-critical graph.

Lemma 4.2. Let k be a positive integer. Suppose that there exists a (3k − 1)-
nesting sequence in a 2-connected graph H drawn in the plane. Then H is not
k-crossing-critical.

Proof. Let M3k−1(H) = (M 0,M 1, . . . ,M 3k−1) be a (3k − 1)-nesting
sequence in H . Informally speaking, our goal is to delete an edge in the exterior
face, draw the new graph with fewer crossings, and use pieces of the new drawing
to “improve” the drawing H . We start with a simple claim.

Claim 1. If 2 ≤ i ≤ 3k − 1 is such that |C(M i−1)| = |C(M i)|, then, for any
interior face F of M i, the subgraph HF of H induced by the vertices belonging
to F is connected.

Proof. Let C ′ be the cycle of M i bounding F . Since |C(M i−1)| = |C(M i)|,
exactly one cycle C of M i−1 is contained in the closure of F . Moreover, |V (C)∩
V (C ′)| ≤ 1, so the subgraph Q = C − V (C ′) is a cycle or a path. Suppose that
there is a component H0 of HF not containing Q. Then H0 is attached to
at least two vertices of C ′ because H is 2-connected, so, in particular, H0 is
attached to a vertex z ∈ V (C ′) \ V (C) by an edge e = zz′. Since e ⊂ I(M i),
by part (N3) of the definition of a nesting sequence, z ′ is connected by a path
in HF to a vertex of Q, a contradiction. 2

By the definition of a nesting sequence, there is an edge e of H contained in
X(M 3k−1). If H is k-crossing-critical, then there exists a drawing H

− of the
graph H−e with fewer than k crossings. We denote by M

−
1 ,M−

2 , . . . ,M−
3k−1 the

subgraphs of H
− corresponding to M 1,M 2, . . . ,M 3k−1 in H. These subgraphs

are edge-disjoint, so one edge-crossing may involve at most two of them. Thus
at least k of M

−
2 , . . . ,M−

3k−1 are not crossed in H
−. Then, by Lemma 4.1,

there exists an index 2 ≤ i ≤ 3k − 1 such that M
−
i is not crossed, and that

|C(M−
i−1)| = |C(M−

i )|. An illustration to the situation is presented in Figure 4.

Let us denote by C−
1 , . . . , C−

m the cycles of M
−
i , and by C1, . . . , Cm the

corresponding cycles of M i. Let Hj , j = 1, . . . ,m be the subgraph of H induced
by the cycle Cj and its interior, and let H

−
j be the corresponding subgraph

of H
−. Let H0 be the subgraph of H induced on

� 2 \ I(M i). Notice that H0

is a plane graph. Since the cycle C−
j is not crossed in H

−, the whole graph H
−
j

belongs to one region of T (C−
j ) by Claim 1 and the Jordan curve theorem. So

there exists a homeomorphic image H
o
j of the graph H

−
j such that the cycle C−

j
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C1 C2

C3

C−

1C−

2

C−

3

H : e H
−:

Fig. 4. An illustration to how a better drawing of H is obtained using parts of the
drawing H

−
' H − e that has fewer than k crossings.

becomes Cj , and H
o
j − V (Cj) is in the interior face of Cj in H0. Altogether,

the graph H0 ∪ H
o
1 ∪ . . . ∪ H

o
m is isomorphic to H , but it contains at most as

many crossings as H
−, a contradiction.

5 Cutting Paths

Unfortunately, it is not always possible to find a sufficiently long nesting sequence
in a “bad” graph. In this case we can alternatively exhibit a sequence of “ordered
path-cuts” in the graph, as defined next.

Definition. Let G be a connected graph drawn in the plane, and let q ≥ 1
be an integer. A sequence of paths Pq(G) = (P1, P2, . . . , Pq) in G is called a
q-cutting sequence if the following conditions are satisfied:

(C1) All paths P1, P2, . . . , Pq in G are pairwise disjoint. Each set V (Pi), 1 ≤
i ≤ q is a vertex cut in G (not necessarily minimal).

(C2) The set V (P1) separates the ends of all crossed edges of G from the set
V (P2) ∪ . . . ∪ V (Pq).

(C3) For 2 ≤ i ≤ q − 1, the set V (Pi) separates the set V (P1) ∪ . . . ∪ V (Pi−1)
from the set V (Pi+1) ∪ . . . ∪ V (Pq) in G.

We show in this section that, similarly as for nesting sequences, if a sufficiently
long cutting sequence exists in a graph, then this graph cannot be crossing-
critical. However, notice that a cutting sequence is not a generalization of a
nesting sequence, since the paths in a cutting sequence must be vertex-disjoint
which is not always true for graph multicycles in a nesting sequence. Moreover,
a path is always connected, which need not be (and typically is not) true for a
multicycle.

Lemma 5.1. Suppose that there exists a 4k-cutting sequence in a 2-connected
graph H drawn in the plane. Then H cannot be k-crossing-critical.
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. . . . . . . . .G1H1

C1 C2k−1

G2k−1

H : P0 P1 P2 P3

e

P4k−3 P4k−2

P4k−1

Fig. 5. An illustration how a cutting sequence (P0, P1, . . . , P4k−1) is used to show that
graph H is not k-crossing-critical.

Proof. Let the 4k-cutting sequence in H be (P0, P1, . . . , P4k−1). First ob-
serve from the definition that the paths P0, P1, . . . , P4k−1 of a cutting sequence
are “ordered” in the following natural sense: If Q is a path connecting V (P0)
to V (P4k−1) in H and 0 < i < j < 4k − 1, then Q first hits Pi before hitting
Pj . The idea of the proof of this lemma is the same as in Lemma 4.2, but we
first need to construct a sequence of disjoint cycles (not nested this time) from
successive pairs of paths. An illustration is in Figure 5.

Let 1 ≤ i ≤ 2k − 1. We denote by G
′ the component of H − V (P2i−2)

containing P2i, by G
′′ the component of G

′ − V (P2i) containing P2i+1, and
by G

•
i = G

′ − V (G′′). Then G
•
i ⊃ P2i−1 ∪ P2i. (Informally speaking, G

•
i is

the subgraph of H “between” P2i−2 exclusive and P2i inclusive.) Since H is
2-connected, there are two disjoint paths connecting V (P2i−1) to V (P2i), and
hence some 2-connected component Gi of G

•
i hits both P2i−1 and P2i. Finally,

we denote by Ci the cycle bounding the face Fi of Gi which includes T (P2i−2).

Claim 1. The graph H − V (Gi) has exactly two components H i, H
′
i, and

H i ⊇ P2i−2, H
′
i ⊇ P2i+1. All crossed edges of H belong to H i.

Proof. The paths P2i−2 and P2i+1 are in distinct components of H −V (Gi),
since any path Q connecting them must intersect both P2i−1 and P2i, and so the
segment of Q between the intersections belongs to Gi (that was chosen as a 2-
connected component). Assume that H

′′ is a component of H−V (Gi) containing
neither P2i−2 nor P2i+1. Then H

′′ ⊂ G
•
i by the definition of G

•
i . Moreover,

for similar reasons, since H is 2-connected, there are two disjoint paths in H

connecting V (H ′′) to V (Gi) and contained in G
•
i . That contradicts our choice

of Gi. Finally, any path connecting a crossed edge to P2i must intersect P0 ⊂ H i.
2

Clearly, the only vertices of Gi that may be adjacent to H i are those of Ci.
The rest of the proof is similar to Lemma 4.2, so we only sketch it. Let e be an
edge of P4k−1. Suppose that H is k-crossing-critical, so there exists a drawing
H

− of the graph H − e with fewer than k crossings. We denote by H
−
i , C−

i

the subgraphs of H
− corresponding to H i, Ci. Then at least one of the 2k − 1

disjoint cycles C−
i , i ∈ {1, . . . , 2k−1} is not crossed in H

−. Since the graph H
−
i
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is connected, it is contained in one face of C−
i . Hence there is a homeomorphic

image of H
−
i that can replace the subgraph H i ⊆ H in the face Fi without

introducing additional crossings. By Claim 1, the new drawing of H has at most
as many crossings as H

−, a contradiction.

6 Strong Nesting Sequence

The definition of a strong nesting sequence is continued here. We advise the
reader to compare this definition with the sketch of our proof that was presented
in Section 4.

Definition. Let Mc(G) = (M 0,M 1, . . . ,M c) be a c-nesting sequence in a
graph G. (See on page 6.) Then Mc(G) is called a strong c-nesting sequence in
G if the following is true in addition to conditions (N1–3):

(N4) Let n0 = 2|E(M 0)|, and let VX(M c) ⊆ V (M c) denote the set of bound-
ary vertices of the exterior face X(M c). Suppose that p ≥ 1 is an arbitrary
integer, that J = {1, 2, . . . , β} where β = β(n0, c, p) = n0p

2c+1, and that
ϕ : J → VX(M c) is an arbitrary mapping. In such situation, for some sub-
set J0 = {j1, j2, . . . , jp} ⊆ J , at least one of the cases (a–c) is fulfilled.

(a) It is c = 0, and ϕ(J0) = {v} for some vertex v ∈ V (M 0).

(b) For some b, 1 ≤ b ≤ c, there exists a vertex v ∈ V (M b); and there are p

paths Pi, 1 ≤ i ≤ p such that Pi connects ϕ(ji) with v in G, all Pi − v

are pairwise disjoint, and every T (Pi) is disjoint from I(M b) ∪X(M c).
(c) For some b, 1 ≤ b ≤ c, there exists a path P which is a subpath of a cycle

of M b such that every edge incident in G−E(P ) with an internal vertex
of P is contained in X(M b); and there are p pairwise disjoint paths Pi,
1 ≤ i ≤ p in G such that Pi connects ϕ(ji) with some ui ∈ V (P ), and
every T (Pi) is disjoint from I(M b) ∪ X(M c).

Again, we add a few comments to this definition. The purpose of (N4) is to
“control behavior” of (huge amount of) paths that are coming to M c from the
exterior face. The mapping ϕ represents ends of the incoming paths. Controlling
these paths is essential for an inductive construction of a strong nesting sequence
later in Lemma 8.1. Notice that some (or even all) of the paths Pi above may
have length 0. Actually, the case (a) could be formulated as a special case of
(b) for b = 0, but we state them separately to avoid unnecessary confusion that
may be caused by the fact that M 0 is an ordinary subgraph while M b, b ≥ 1
is a multicycle. Our last comment points out that, since all crossed edges of G

are enclosed in I(M 1), we do not have to bother with crossings when speaking
about the paths Pi. Figure 3 on page 6 illustrates a strong nesting sequence.

Now we present an obvious statement about a strong 0-nesting sequence.

Lemma 6.1. Let G be a 2-connected graph drawn in the plane with some cros-
sings. Let M0 denote the subgraph of G consisting of all crossed edges. Then
(M 0) is a strong 0-nesting sequence in G.
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Proof. The condition (N1) is satisfied by the choice of M 0, and there
is nothing to show in (N2,3). Validity of (N4)(a) follows immediately from
|V (M 0)| ≤ 2|E(M 0)| = n0 and the pigeon-hole principle.

The next lemma shows how we can iteratively produce a (strong) nesting
sequence from nested multicycles in a graph.

Lemma 6.2. Let G be a 2-connected graph drawn in the plane with some cros-
sings. Let Mc(G) = (M 0,M 1, . . . ,M c), c ≥ 0 be a c-nesting sequence in G.
Suppose that N is a multicycle in G, that M c≺≺N if c > 0 or I(N ) includes all
edges of M0 if c = 0, and that X(N ) contains some edge of G. Then there exists
a multicycle N

′ such that N
′ � N , and that Mc+1(G) = (M 0, . . . ,M c,N

′)
is a (c + 1)-nesting sequence in G. Moreover, N

′ can be chosen such that, if
Mc(G) is a strong nesting sequence, then so is Mc+1(G).

Proof. We define N to be the collection of all multicycles N
o in G such

that N
o � N , and M c≺≺N

o if c > 0 or I(N o) includes all edges of M 0 if c = 0.
Since N ∈ N and N is finite, there exists a multicycle N

′ ∈ N that is a minimal
element of N with respect to �. The minimality of N

′ ensures that each interior
face of N

′ intersects T (M c). We claim that N
′ satisfies the conclusions of the

lemma.
The conditions (N1,2) are clearly true for Mc+1(G). We show the validity

of (N3): Let e = zz′ be an edge of G such that z ∈ V (N ′) \ V (M c) and
e ⊂ I(N ′). We denote by C ′ the cycle of N

′ having e in its interior face. Since
G is 2-connected, the vertex z′ is connected with C ′−z by a path P ′ in G−z. Let
P ′′ ⊂ P ′−z be the shortest path connecting z′ with a vertex t ∈ V (M c)∪V (N ′),
and let P = P ′′ ∪ e. If t ∈ V (M c) \ V (N ′), then P is the path required by the
condition. Otherwise, P connects two distinct vertices z, t ∈ V (C ′) ⊆ V (N ′),
dividing C ′ into two cycles C ′

1, C
′
2. Since P is internally disjoint from V (M c),

the multicycle N
o ∈ N obtained from N

′ by replacing C ′ with both of C ′
1, C

′
2

contradicts the minimality of N
′.

Now suppose that Mc(G) is a strong nesting sequence. We show the validity
of the condition (N4) for Mc+1(G): Recall from the definition that p ≥ 1, that
n0 = 2|E(M 0)| ≥ 4|C(N ′)| by Lemma 4.1, and that J = {1, 2, . . . , β} where
β = n0p

2(c+1)+1. Assume that ϕ : J → VX(N ′) is a mapping as in (N4). Our
idea is to show that either the vertex v or the path P from the conclusions
of (N4) can be found right in the multicycle N

′, or that sufficiently many of the
vertices in ϕ(J) can be connected by internally-disjoint paths to vertices of the
previous multicycle M c.

If |ϕ(J)| < β
p−1

, then |ϕ−1(v)| ≥ p for some vertex v ∈ V (N ′), so the part

(b) applies for v, b = c + 1, and J0 being any p-element subset of ϕ−1(v). Thus
we assume |ϕ(J)| ≥ β

p−1
. We denote by S ⊆ VX(N ′) the set of all boundary

vertices of X(N ′) that belong to more than one cycle in C(N ′). Moreover, we
denote by R the set of all vertices z ∈ VX(N ′) for which z ∈ V (M c), or for
which there exists an edge e = zz′ of G contained in I(N ′). Notice that every
cycle in C(N ′) intersects R by connectivity. We assign an arbitrary orientation
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to each cycle in C(N ′), and we define a mapping ϑ : ϕ(J) → R ∪ S as follows:
If x ∈ ϕ(J) ∩ S, then ϑ(x) = x. If x ∈ ϕ(J) \ S, then ϑ(x) is the point of R ∪ S

closest to x in the assigned orientation on the cycle C ∈ C(N ′), x ∈ V (C).
Finally, we set Ro = R ∩ ϑ(ϕ(J)).

Suppose that |ϑ−1(v)∩V (C)| ≥ p for some vertex v ∈ Ro ∪S and some cycle
C ∈ C(N ′), v ∈ V (C). Then by the definition of ϑ, for U = ϑ−1(v) ∩ V (C),
there is a path P ⊂ C on the boundary of X(N ′) that is internally-disjoint
from R ∪ S, and that U ⊆ V (P ). It is easy to verify that (N4)(c) is fulfilled for
P , b = c + 1, and for J0 ⊆ ϕ−1(U) such that |J0| = |ϕ(J0)| = p. Otherwise, we
may assume |ϑ−1(v)∩V (C)| < p for all v and C as above. We need the following
easy inequality:

Claim 1. σS =
∑

x∈S

∣

∣{C ′ ∈ C(N ′) : x ∈ V (C ′)}
∣

∣ ≤ 4|C(N ′)| − 4 ≤ n0.

Proof. It is an easy exercise to show that some cycle C ′ ∈ C(N ′) intersects
the boundary of X(N ′) in a connected piece. Hence |S ∩ V (C ′)| ≤ 2 and C ′

contributes by at most 4 to the sum σS. We finish by induction on the number
of cycles in N

′. 2

Using Claim 1 and the previous assumption over all v and C, we can es-
timate |ϕ(J)| = |ϑ−1(Ro ∪ S)| < p(|Ro| + σS) ≤ p|Ro| + pn0, and so |Ro| >
1
p
|ϕ(J)| − n0 ≥ β

p(p−1) − n0 ≥ n0
p2c+2−p2c+1

p−1 = n0p
2c+1. It follows from the def-

inition of Ro that there exists a collection of pairwise disjoint paths Qz ⊂ N
′,

z ∈ Ro (possibly of length 0) connecting each vertex of Ro to some vertex
in ϕ(J) ⊆ V (N ′). Moreover, by (N3), for each vertex x ∈ R ⊇ Ro there exists a
path Q∗

x connecting x to a vertex q∗x ∈ V (M c) such that Q∗
x is internally-disjoint

from V (M c) ∪ V (N ′).

If c = 0, then, in particular, |Ro| > n0 ≥ |V (M 0)|. Hence q∗x = q∗y for some
distinct x, y ∈ Ro. Then the subpath of Q∗

x ∪ Q∗
y connecting x to y divides the

cycle C ′ ∈ C(N ′), x, y ∈ V (C ′) into two cycles C ′
1, C

′
2, and so (as in the beginning

of this proof) we can form a multicycle N
o ∈ N , N

o � N
′ by replacing C ′ with

both of C ′
1, C

′
2, a contradiction to the minimality of N

′.

If c ≥ 1, then we define a mapping ϕ′ : Ro → V (M c) by ϕ′(x) = q∗x.
Notice that two paths Q∗

x, Q∗
y, x 6= y ∈ Ro cannot intersect in an internal vertex

since that would contradict the minimality of N
′ similarly as in the previous

paragraph. We inductively apply the condition (N4) for Mc(G) and ϕ′, obtaining
a set J ′

0 = {r′1, . . . , r
′
p} ⊂ Ro and a collection of paths P ′

i , 1 ≤ i ≤ p connecting

vertices ϕ′(r′i) to a vertex v′ or a path P
′ on M b (depending on which of (b) or

(c) applies). Finally, we define paths Pi = P ′
i∪Q∗

r′

i

∪Qr′

i
, and set J0 = {j1, . . . , jp}

such that ϕ(ji) is the other end of the path Qr′

i
. It is now routine work to verify

that J0 and Pi’s satisfy (N4) (b) or (c), respectively.

7 Assorted Lemmas

In this section we present several simple lemmas that are used later in the proof.
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Lemma 7.1. Let H be a plane graph, and let G1,G2 be connected subgraphs
of H. Then either there exists a face in H incident both with a vertex of G1

and a vertex of G2, or there exists a cycle in H disjoint from G1 ∪ G2 and
separating G1 from G2.

Proof. We assume that no face of H is incident both with a vertex of
G1 and a vertex of G2. In particular, V (G1) ∩ V (G2) = ∅. Let H

′ = H −
(V (G1)∪ V (G2)). Suppose that G1,G2 belong to the same face F ′ of H

′. This
means there exists a sequence of successively adjacent faces F1, . . . , Fq in H (a
“dual path”), such that F1 is incident with G1, Fq is incident with G2, and
some edge ei shared by Fi−1 and Fi, 1 < i ≤ q, is not in E(H). In particular,
F1 ∪ . . . ∪ Fq ⊆ F ′, and each ei is incident with V (G1) ∪ V (G2). However, for
some 1 < i < q, the edge ei is incident with V (G1) while the edge ei+1 is incident
with V (G2), and hence Fi is incident with both G1 and G2, a contradiction.
Thus G1,G2 belong to distinct faces F ′

1, F
′
2 of H

′. The facial walk bounding F ′
1

then contains a cycle separating G1 from G2.

Corollary 7.2. Let H be a plane graph, let G be a connected subgraph of H,
and let F be a face of H. Then either F is incident with a vertex of G, or there
exists a cycle in H separating F from G.

Proof. We add a new isolated vertex w into F , and we apply the lemma
for G1 = {w} and G2 = G.

Lemma 7.3. Let T be a binary tree with root r and height h ≥ 1, let q ≥ 1 be
an integer, and let L be a subset of α(h, q) = (2h)q leaves of T . Then there exist
q pairwise disjoint paths P1, . . . , Pq in T such that the ends of each Pi, 1 ≤ i ≤ q

are in L. Moreover, each set V (Pi), 1 < i < q is a cut in T separating the set
{r} ∪ V (P1) ∪ . . . ∪ V (Pi−1) from V (Pi+1) ∪ . . . ∪ V (Pq).

Proof. The case of q = 1 is trivial, so let q > 1. For simplicity we imagine
T as a plane tree with the leaves ordered from left to right. We define P1 as the
path connecting the left-most with the right-most leaves in L. Every component
of T −V (P1) having leaves “between” the ends of P1 is a binary tree again. There
are at most 2h−2 such components, and thus one of the components T

′ of height

h′ < h has at least (2h)q
−2

2h−2 ≥ (2h)q−1 > (2h′)q−1 leaves in L. By induction, we

find paths P2, . . . , Pq in T
′. Notice that the root r′ of T

′ is connected with r∪P1

by edges in T −V (T ′). So it remains to verify that V (P2) separates {r}∪V (P1)
from V (P3) ∪ . . . ∪ V (Pp), which is easy.

8 Conclusion of the Proof

We now move towards proving Theorem 1.1. We want to exhibit a contradiction
if a k-crossing critical graph G contains a subdivision of a sufficiently large
binary tree. We consider 2-connected graphs first, since graphs that are not 2-
connected can easily be reduced later. Let us fix the value of k. Let us denote by
f ′(k) = (72 log2 k+248)k2, by f(k) = 6kf ′(k), and by fc(k) = (6k−2c−1)f ′(k).
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Lemma 8.1. Let G be a 2-connected k-crossing-critical graph that is drawn in
the plane with k crossings. Suppose that Mc(G) = (M 0,M 1, . . . , M c), 0 ≤ c ≤
3k − 2 is a strong c-nesting sequence in G. Moreover, suppose that U ⊆ G is a
subdivision of a binary tree of height fc(k), and that U ∩ M0 = ∅ if c = 0 or
T (U ) ⊂ X(M c) if c > 0. Then at least one of the following happens:

(a) There exists a multicycle N in G such that (M 0, . . . ,M c,N ) is a strong
(c+1)-nesting sequence in G, and that there exists U

′ ⊆ G, T (U ′) ⊂ X(N )
which is a subdivision of a binary tree of height fc+1(k).

(b) There exist 3k − 1 multicycles N 1, . . . ,N 3k−1 in G such that (M 0,

N 1, . . . ,N 3k−1) is a (3k − 1)-nesting sequence in G.
(c) There exist 4k paths that form a 4k-cutting sequence in G.

Proof. To make our arguments as smooth as possible, we start with several
useful conventions: Recall that while M i, 1 ≤ i ≤ c are multicycles, M 0 is an
ordinary subgraph of G. However, as this proof speaks only about what happens
“outside of M c”, we do not want to formally distinguish between M 0 and M i.
So for now we define X(M 0) to be the face of M 0 containing U , and I(M 0) to
be the union of all edges of M 0 (not including the vertices).

All trees we consider in this proof are plane and rooted, with the root on
top and the branches growing down. The leaves are naturally ordered from left
to right by this drawing. (Notice that such a view “ties” the graph G to the
plane – we may no longer treat the unbounded face as equivalent to bounded
faces.) Suppose that T is a binary tree, and T

′ is a subdivision of T . A node of
T

′ is a vertex of T
′ that is also a vertex of T . We say that a node u of T

′ is at
level l ≥ 0 if u has in T distance l from the root. If u is a node of T

′, and e is
the first edge of the path connecting u with the root of T

′, then T
′(u) denotes

the component of T
′ − e including u, and T

′(u; l) denotes the subtree induced
by the first l levels of T

′(u).
Due to the length and complexity of this proof, we present an informal de-

scription of our ideas first:

– We divide the “tree of height fc(k)” in X(M c) into layers of heights f ′(k),
f ′(k), and fc+1(k). We try to “isolate” leaves of some middle-layer sub-
tree from the rest of the graph. If we succeed, we either get (a), or we use
Lemma 7.3 to get (c).

– If we are not successful in the previous step, then, using Lemma 7.1, we argue
that most of the middle-layer subtrees are “cut in half” by a closed curve
in T (G). If sufficiently many such curves do not intersect M c, then they are
graph cycles in G, and we use them to construct a multicycle for (a).

– Otherwise, most of middle-layer subtrees are connected by pairwise internal-
ly-disjoint paths to vertices of M c. In such case we apply the property (N4)
from the definition of a strong nesting sequence for the ends of these paths,
and Lemma 7.3 for the top-layer subtree, in order to obtain (b) or (c).

Recall that U ⊂ G is the subdivision of a binary tree of height fc(k) contained
in X(M c). It is important to keep in mind that no vertex of U is incident with
a crossed edge of G. By a direct application of Lemma 4.1, the set T (M c) (or
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I(M c) ) has at most k connected components, and this fact is used frequently
in the proof. Suppose that u is a node of U at level 2f ′(k). Then U (u) is
a subdivision of a binary tree of height fc(k) − 2f ′(k) = fc+1(k). If L is a
multicycle such that T (M c) ⊂ I(L) and T (U(u)) ⊂ X(L), then we may use
Lemma 6.2 and conclude that (a) happens. In this situation we call L a good
multicycle in G.

W :

w

wl wr

w′

l w′

r

%

w0

GR

R′

Fig. 6. An illustration to the situation in Claim 1.

Let w be a node of U at level f ′(k), and let W = U(w; f ′(k)). We denote
by wl, wr the left-most and right-most, respectively, leaves of W . Suppose that
there exists a face R′ of G which is incident both with a vertex w′

l of U(wl) and a
vertex w′

r of U (wr). Then there exists a curve % connecting w′
l with w′

r inside R′,
and a path P connecting w′

l with w′
r in W ∪U(wl)∪U(wr). By the Jordan curve

theorem, the simple closed curve % ∪ T (P ) divides the plane into two regions,
exactly one of which, say Ro, contains T (W ) \ T (P ). Set R = Ro ∪ % ∪ T (P ),
so T (W ) ⊂ R. Notice that if T (M c) intersects R, then some component of
T (M c) is a subset of R \R′. Since no region R1, defined in a corresponding way
for another node w1 6= w at level f ′(k), can intersect R \ R′, at most k such
regions like R may intersect T (M c). So suppose for now that does not happen.
(See an illustration in Figure 6.)

Claim 1. If, for w,W , R′, R chosen as above, R ⊆ X(M c) holds, then one of
(a) and (c) holds.

Proof. Let w0 be a leaf of W other than wl, wr. Then since w0 6∈ V (P ), the
whole subtree U (w0) is in R. Let GR be the plane subgraph of G contained in R.
By Corollary 7.2, either the face of GR containing R′ is incident with a vertex
of U(w0), or there is a cycle C ⊂ GR separating U(w0). If the latter happens
for some w0, then C forms a good multicycle (with U (w0) in its exterior), so
we are done by (a). Otherwise, returning back to G, the face R′ is incident with
some vertex of each tree U(w0) for w0 ranging over all leaves of W .
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We claim that in this situation (c) applies: If P1 is an arbitrary path in W

connecting two of its leaves w1, w2, then P1 can be “prolonged” into a path
P+

1 ⊇ P1, P+
1 ⊂ W ∪ U(w1) ∪ U(w2) such that both ends of P +

1 are incident

with the face R′ in G. Notice that W has height f ′(k) and 2f ′(k) leaves, and

that 2f ′(k) = 2(72 log2 k+248)k2

= (262k18)4k2

> (2f ′(k))4k . Therefore we may
apply Lemma 7.3, obtaining a sequence of 4k paths P1, . . . , P4k as described by
the lemma. It is easy to verify, using the fact that GR is plane, that P +

1 , . . . , P+
4k

is a 4k-cutting sequence in G. 2

We define a graph G
• as the plane graph obtained from G by adding, for

every crossing x of edges e, e′, a new vertex subdividing both e, e′ in the point x.
Notice that G, G

• have the same collection of faces. If Claim 1 does not apply,
then for at least 2f ′(k)−k nodes w ∈ V (U) at level f ′(k) and for wl, wr defined as
above, there is no face of G incident both with a vertex of U(wl) and a vertex of
U(wr). Thus, by Lemma 7.1, the plane graph G

• contains a cycle Cw separating
U(wl) from U(wr). Without loss of generality we may assume that Cw is a union
of a nonempty path P ′

w ⊂ U (possibly being just one vertex), and of a path or
cycle Pw which is disjoint from U − V (P ′

w). We assign an orientation to T (Cw)
such that wl belongs to the right-hand region of T (Cw). If T (Cw) ⊂ X(M c),
then Cw is also a cycle of G.

v v′

Cv Cv′

R∆R′

vl vr v′

l v′

r

U :

Fig. 7. An illustration to the situation in Claim 2.

Claim 2. Suppose that, for at least 2k+2 nodes w ∈ V0 ⊆ V (U ) at level f ′(k),
the whole cycle Cw is in X(M c). Then (a) holds.

Proof. There exist at most 2k < 1
3 |V0| distinct collections of components

of I(M c). Therefore there are three distinct nodes v, v′, v′′ ∈ V0 such that the
right-hand regions R,R′, R′′ of the oriented cycles T (Cv), T (Cv′ ), T (Cv′′ ), respec-
tively, share the same collection of components of I(M c). We denote by vl, vr
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and v′l, v
′
r the left-most and right-most leaves of U (v; f ′(k)) and of U (v′, f ′(k)).

See Figure 7.

Since any cycle Cw, w ∈ V0 may intersect at most one subtree U (w′),
where w′ ranges over the nodes of U at level f ′(k) other than w; we may as-
sume, after possible renaming, that the cycle Cv′ does not intersect U (v). (The
node v′′ was needed only to perform this renaming.) That means either both
U(vl),U (vr) are in R′, or both U(vl),U (vr) are disjoint with R′. Thus one of
U(vl),U (vr), say U(vr), belongs to the symmetric difference S = R∆R′. Notice
that S ⊂ X(M c). If |V (Cv) ∩ V (Cv′)| ≤ 1, then ({Cv , Cv′}, S) clearly is a good
multicycle in G. Otherwise, the graph Cv ∪ Cv′ is 2-connected, so it contains
a cycle C0 bounding a face S0 ⊆ S, T (U (vr)) ⊂ S0, and hence ({C0}, S0) is a
good multicycle again. Thus (a) follows. 2

Finally, we focus on the case that neither Claim 1, nor Claim 2 may be
applied. That means, for at least 2f ′(k) − k − 2k+2 ≥ 2f ′(k)−1 nodes w of U

at level f ′(k), there is a cycle Cw in G
• which separates U(wl) from U(wr),

and which intersects T (M c). Moreover, we may assume that for none of these
nodes w there is such a separating cycle C ′

w not intersecting T (M c). In this
situation we find a path Qw ⊂ Cw that connects w with some vertex in T (M c),
and that Qw is internally disjoint both from T (M c) and from

(

U −V (U(w))
)

∪
U(wl) ∪ U(wr). We say that Qw is a good connection from w to M c. Then two
good connections Qw, Qw′ , w 6= w′ do not intersect except in V (M c) by the
previous assumption.

V1

U : U1

P1

P

P+
1

Mc Mb

Fig. 8. An illustration to the situation in Claim 3.
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Claim 3. Suppose that, for at least 2f ′(k)−1 nodes w ∈ V1 ⊂ V (U) at level f ′(k),
there is a good connection Qw from w to M c. Moreover, suppose that all the
paths Qw, w ∈ V1 are pairwise internally-disjoint. Then one of (b) and (c) holds.

Proof. Let V1 = {v1, v2, . . . , vm} for m ≥ 2f ′(k)−1, and let J = {1, . . . ,m}.
We define a mapping ϕ : J → V (M c) by the following rule: The image ϕ(i) is the
vertex of V (Qvi

)∩V (M c). (Clearly ϕ(i) lies on the boundary of X(M c).) We set
p = (k +1)α(f ′(k), 4k) where α(h, p) = (2h)p is the bound from Lemma 7.3. We
are going to apply condition (N4) of the definition of a strong nesting sequence
onto ϕ and p. To do that we first need to verify m ≥ β(n0, c, p) where n0 ≤ 4k
and c ≤ 3k − 2:

log2 β
(

4k, 3k − 2, (k + 1)α(f ′(k), 4k)
)

= log2

(

4k
(

(k + 1)(2f
′(k))4k

)2(3k−2)+1
)

≤

≤ 2+6k log2(k+1)+24k
2(1+log2 f

′(k)) ≤ 8k
2+24k

2
(

1 + log2((72 log2 k + 248)k2)
)

≤

≤ 8k
2 + 24k

2 (1 + 3 log2 k + 9) − 1 = (72 log2 k + 248)k2
− 1 = f

′(k) − 1

Consider first the case when (N4)(c) happens. (The case is illustrated in
Figure 8.) Then there exists a subset V ′

1 ⊂ V1, |V ′
1 | = p such that the ends

of Qw, w ∈ V ′
1 other than w form the set ϕ(J0) as given by (N4). If ϕ(ji) ∈

V (Qw), then the path Q+
w = Qw ∪ Pi connects w with a vertex of the path

P ⊂ M b from (N4)(c). Moreover, the paths Q+
w, w ∈ V ′

1 are pairwise disjoint.
Let U 1 = U(r; f ′(k)) where r is the root of U . Consider now the plane subgraph
GQ = U1 ∪ P ∪

(
⋃

w∈V ′

1
Q+

w

)

which has p faces. At most k faces of GQ may

contain components of I(M b), and at most one other may be the unbounded
face. Thus there is a set V ′′

1 ⊂ V ′
1 , |V ′′

1 | = p′ ≥ p
k+1 , such that one can write

V ′′
1 = {v′1, . . . , v

′
p′}; and for all i = 1, . . . , p′ − 1, the paths Q+

v′

i

, Q+
v′

i+1

share the

boundary of one bounded face of GQ disjoint from I(Mb).
We apply Lemma 7.3 for the tree U 1 and the set L = V ′′

1 of leaves of U 1. Since
|V ′′

1 | ≥ p
k+1 = α(f ′(k), 4k), we get a sequence of 4k disjoint paths P ′

1, . . . , P
′
4k in

U1, as described by the lemma. For 1 ≤ i ≤ 4k, and P ′
i having ends w,w′ ∈ V ′′

1 ,
we prolong the path P ′

i to P+
i by adding the paths Q+

w and Q+
w′ . The new paths

P+
1 , . . . , P+

4k are clearly pairwise disjoint, and having both ends in V (P ). Suppose
that P ′

1 is the path closest in U 1 to the root r. Then the cycle C ⊆ P +
1 ∪ P

bounds an open region R such that T (P +
i ) \ T (P ) ⊂ R for 2 ≤ i ≤ 4k, and

that R ⊂ X(M b) by the choice of V ′′
1 . Since no edge incident with an internal

vertex of P is in I(M b), and since P and all P +
i are uncrossed, the sets V (P +

i ),
1 ≤ i ≤ 4k are cuts in G. It is now easy to verify that, indeed, (P +

1 , P+
2 , . . . , P+

4k)
is a cutting sequence in G.

Consider the case when (N4)(a) or (b) happens. (Those two cases are es-
sentially the same for the purpose of this proof.) We may apply the same con-
struction as in the previous case, the only difference is that we consider paths
ending in the vertex v rather than on P . So we obtain a sequence P +

1 , . . . , P+
4k

in G in the same way as above, but now each P +
i is a cycle in G. All cycles P +

i ,
1 ≤ i ≤ 4k are sharing the vertex v ∈ V (M b) defined by (N4)(a) or (b), but they
are pairwise disjoint elsewhere. Moreover, all P +

i are contained in X(M b)∪{v}.
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Now, the assumptions of Lemma 6.2 are satisfied for (M 0) and the multicycle
N

o
1 formed by P+

1 with P+
2 in the exterior face. Hence there is a multicycle

N 1 � N
o
1 in G such that (M 0,N 1) is a 2-nesting sequence. (We do not re-

quire the sequence to be strong.) Since the assumptions of the lemma are still
satisfied for (M0,N 1) and a multicycle formed by P +

2 , and so on, we may re-
peat our argument for P +

2 , . . . , P+
3k−1. Finally, we get a (3k−1)-nesting sequence

(M 0,N 1, . . . ,N 3k−1) in G. 2

The whole proof is now finished.

Proof of Theorem 1.1. Let us suppose that there exists a 2-connected
graph G contradicting the statement – i.e. k-crossing-critical, drawn in the plane
with k crossings, and containing a subdivision of a binary tree of height f(k).
Let M 0 be the subgraph of G consisting of all crossed edges and their ends.
Since there are 2f ′(k) > 4k ≥ |V (M0)| disjoint trees in G that are subdivisions
of a binary tree of height f(k) − f ′(k) = f0(k), some of these trees, say U , is
disjoint from M0. By Lemma 6.1, (M 0) is a strong 0-nesting sequence. Then
we repeatedly apply Lemma 8.1, until we get (after at most 3k − 1 steps) a
contradiction to the existence of G by Lemma 4.2 or by Lemma 5.1.

So let us drop the connectivity assumption now, and suppose that G is an
arbitrary k-crossing-critical graph that is drawn in the plane with k crossings.
The following is an easy observation:

Claim 1. Let H1,H2 be two graphs such that |V (H1) ∩ V (H2)| ≤ 1. Then
cr(H1 ∪ H2) = cr(H1) + cr(H2).

We decompose G into 2-connected components G1, . . . ,Gn. If some of the
components is an isolated vertex, then it has no significance for our problem, so
we discard it. Then, for ki = cr(Gi), k1 + . . . + kn = k holds by inductive ap-
plication of Claim 1. Moreover, all graphs G1, . . . ,Gn must be crossing-critical,
and hence, in particular, ki > 0. Thus the largest subdivision of a binary tree
that any of Gi, i ∈ {1, . . . , n} may contain is of height less than f(ki). Al-
together, the largest subdivision of a binary tree in G is of height less than
f(k1) + . . . + f(kn) + dlog2 ne < f(k1) + 1 + . . . + f(kn) + 1 < f(k).

9 Final Remarks

A natural question arising in connection with Theorem 1.1 is whether the bound
f(k) must depend on k at all. A simple answer is given by the complete graph Kn

– it is crossing-critical for n ≥ 5 from edge-transitivity, cr(Kn) obviously tends
to infinity with n, and Kn contains arbitrarily large binary tree for big n. In
fact, we can get a much better lower bound on f(k), as proved in [10].

Theorem 9.1. Let f be the function from Theorem 1.1, and let k ≥ 3. Then
f(k) ≥ k + 3, or f(k) ≥ k if we consider only simple 3-connected graphs.
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We are not going to give any conjecture about the behavior of f(k) (other than
what was proved here), but we think that the right order of magnitude is closer
to the linear lower bound than to the upper bound O(k3 log k).

Another question reader may ask is whether the proof can be extended to
other surfaces than the plane. That is not clear at this moment. It seems to be
possible to extend the definition of the nesting sequence to other (orientable)
surfaces, and to carry on the arguments from Lemma 8.1 using homotopy clas-
ses for the surface. However, a problem is that the proofs of Lemma 4.2 and
Lemma 5.1 completely fail on other surfaces. So we leave this question open.
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10. P. Hliněný, Crossing-Critical Graphs and Path-width, In: Graph Drawing, 9th Sym-

posium GD 2001, Vienna Austria, September 2001; Lecture Notes in Computer
Science 2265, Springer Verlag 2002, 102–114.

11. M. Kochol, Construction of crossing-critical graphs, Discrete Math. 66 (1987), 311–
313.
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