Petr Hliněný

On Crossing-Critical Graphs

Department of Computer Science
e-mail: petr.hlineny@vsb.cz
http://www.cs.vsb.cz/hlineny

* Supported partly by the program "Information Society" of the Czech Academy of Sciences, project No. 1ET101940420.

1 Drawings and the Crossing Number

Definition. Drawing of a graph G :

- The vertices of G are distinct points, and every edge $e=u v \in E(G)$ is a simple curve joining u to v.
- No edge passes through another vertex, and no three edges intersect in a common point.

Definition. Crossing number $\operatorname{cr}(G)$
is the smallest number of edge crossings in a drawing of G.
Origin - Turán's work in brick factory, WW II. Importance - in VLSI design [Leighton et al], graph visualization, etc.

Warning. There are variations of the definition of crossing number, not yet proved to be equivalent. (Like counting crossing or odd-crossing pairs of edges.)

Different versions:

- Rectilinear crossing number - requires edges as straight lines. Same up to $\operatorname{cr}(G)=3$, then much different.
- Minor-monotone crossing number - closes the definition down to minors. (Usual crossing number may grow up rapidly when contracting an edge!)

Definition. Minor-monotone crossing number

$$
\operatorname{mcr}(G)=\min _{H: G \leq H \text { (minor) }} \operatorname{cr}(H)
$$

Observation. (Fellows) If a cubic graph F is a minor of G, then F is in G as a subdivision. Hence for cubic F,

$$
\operatorname{cr}(F)=\operatorname{mcr}(F)
$$

Computational Complexity

Remark. It is (practically) very hard to determine crossing number.
Observation. The problem CrossingNumber $(\leq k)$ is in $N P$: Guess a suitable drawing of G, then replace crossings with new vertices, and test planarity.

Theorem 1.1. [Garey and Johnson, 1983] CrossingNumber is $N P$-hard.
Theorem 1.2. [Grohe, 2001] CrossingNumber $(\leq k)$ is in FPT with parameter k, i.e. solvable in time $O\left(f(k) \cdot n^{2}\right)$.

A new result:
Theorem 1.3. [PH, 2004] CrossingNumber is $N P$-hard on simple 3connected cubic graphs.

Corollary 1.4. The minor-monotone version of c.n. is also NP-hard.

2 Crossing-Critical Graphs

What forces high crossing number?

- Many edges - cf. Euler's formula, and some strong enhancements [Ajtai, Chvátal, Newborn, Szemeredi, 1982; Leighton].
- Structural properties (even with few edges) - but what exactly?

Definition. Graph H is k-crossing-critical
$-\operatorname{cr}(H) \geq k$ and $\operatorname{cr}(H-e)<k$ for all edges $e \in E(H)$.
We study crossing-critical graphs to understand what structural properties force the crossing number of a graph to be large.

Notes:

- 1-crossing-critical graphs are K_{5} and $K_{3,3}$ (up to vertices of degree 2).
- An infinite class of 2 -crossing-critical graphs, first by [Kochol].
- Many infinite classes of crossing-critical graphs are known today, and all tend to have similar "global" structure.
cf. [Oporowski], [Richter, Pinontoan], ...

Constructing crossing-critical graphs

Twisted Möbius band:
(a classical idea)

Crossed planar band:
[PH, 2001]

Structure of crossing-critical graphs:

1999 [Salazar]: A k-crossing-critical graph has bounded tree-width in k.

- Conjecture [Salazar and Thomas]: an analogue holds for path-width.

2000 [PH]: Yes, a k-crossing-critical graph has bounded path-width in k.

- Conjecture [Richter, Salazar, and Thomassen] an. for bandwidth:

A k-crossing-critical graph has bounded bandwidth in k.

- Is that really true?

Bounded bandwidth \Rightarrow bounded max degree...

A new example:
2003 [PH]: The bounded bandwidth conjecture is false in the projective plane. (A construction of a projective crossing-critical family with high degrees.)

3 The Example

A 2-crossing critical graph H_{r} in the projective plane, max degree $6 r$.

A detail of one of the $2 r$ "tiles" in the graph:

Sketch of Proof

Deleting any edge allows a drawing with ≤ 1 crossing.

How to save a crossing with the twisted tile?

b^{+}
-...........

The graph H_{r} needs ≥ 2 crossings in the projective plane, $r>2$.

Two graphs - excluded minors for embeddability in the projective plane:

If we "eliminate" one crossing in our graph H_{r}, the remaining graph is still not projective-planar. $\Longrightarrow \quad \mathrm{cr}_{p}\left(H_{r}\right) \geq 2$.

Easily, for most edges f of H_{r}, the graph $H_{r}-f$ has an R_{2}-minor:

In the remaining cases, we instead "subdivide" one of the crossings.
(The subdivided vertices x and x^{\prime} are identical.)

