
page.19
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0 Bit of History for Start0 Bit of History for Start

A WW II story

“There were some kilns where the bricks were made and some open storage
yards where the bricks were stored. All the kilns were connected by rail with
all the storage yards. The bricks were carried on small wheeled trucks to
the storage yards. . . the work was not difficult; the trouble was only at the
crossings. The trucks generally jumped the rails there, and the bricks fell
out of them; in short this caused a lot of trouble and loss of time. . . the
idea occurred to me that this loss of time could have been minimized if the
number of crossings of the rails had been minimized.

But what is the minimum number of crossings?

. . . This problem has become a notoriously difficult unsolved problem.”

Pál Turán, A note of welcome.
Journal of Graph Theory (1977)
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Or, can you avoid all the crossings?Or, can you avoid all the crossings?
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1 Graph Crossing Number1 Graph Crossing Number

Definition. Drawing of a graph G:

– The vertices of G are distinct points,
and every edge e = uv ∈ E(G) is a simple curve joining u to v.

– No edge passes through another vertex,
and no three edges intersect in a common point.
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Definition. Crossing number cr(G)
is the smallest number of edge crossings in a drawing of G.
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Definition. Crossing number cr(G)
is the smallest number of edge crossings in a drawing of G.

Warning. There are slight variations of the definition of crossing number,
some giving different numbers! Such as counting odd-crossing pairs of edges.
[Pelsmajer, Schaeffer, Štefankovič, 2005]. . .
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2 How to Compute the Crossing Number2 How to Compute the Crossing Number

Not easily. . . !

NP-hardness

• The general case (no surprise?); [Garey and Johnson, 1983]
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• The degree-3 and minor-monotone cases; [PH, 2004]
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NP-hardness
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Fixed parameter tractability
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Fixed parameter tractability
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• However, NO rich natural graph class / parameter with nontrivial and yet
efficiently computable exact crossing number problem is known. . .
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Fixed parameter tractability
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• Up to factor log3 |V (G)| (log2 ·) for cr(G)+|V (G)| with bounded degs.;
[Even, Guha and Schieber, 2002]
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2 How to Compute the Crossing Number2 How to Compute the Crossing Number

Not easily. . . !

NP-hardness

• The general case (no surprise?); [Garey and Johnson, 1983]

• The degree-3 and minor-monotone cases; [PH, 2004]

• Even fixed rotation scheme; [Pelsmajer, Schaeffer, Štefankovič, 2007]

Fixed parameter tractability

• FPT when parameterized by itself (but totally impractical);
[Grohe, 2001], [Kawarabayashi and Reed, 2007]

• However, NO rich natural graph class / parameter with nontrivial and yet
efficiently computable exact crossing number problem is known. . .

Approximations, at least?

• Up to factor log3 |V (G)| (log2 ·) for cr(G)+|V (G)| with bounded degs.;
[Even, Guha and Schieber, 2002]

• No constant factor c > 1 -approximation; [Cabello, 2013]
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Approximating “Small” Crossing NumbersApproximating “Small” Crossing Numbers

The case cr(G) ∈ o(|V (G)|) seems very hard to approximate in general. . .

– no good general algorithms are known, and
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Approximating “Small” Crossing NumbersApproximating “Small” Crossing Numbers

The case cr(G) ∈ o(|V (G)|) seems very hard to approximate in general. . .

– no good general algorithms are known, and

– no good quantitative lower bounds exist.

Close to planarity?

• cr(G) ∈ o(|V (G)|) means “most of” G is planar. . . BUT

• Crossing number NP-hard already for planar graphs plus one edge !
[Cabello and Mohar, 2010]

Still, approximations do exist

• Factor ∆(G) for planar graphs plus one edge; [PH and Salazar, 2006]

• Constant-factor for surface-embedded bounded-degree graphs;
[Gitler et al, 2007], [PH and Salazar, 2007], [PH and Chimani, 2010]



page.19
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3 Planar Insertion Problems3 Planar Insertion Problems

Keeping “most of” G planar. . .

Definition. Given a planar graph G and a set F of additional edges (vert.).
Find a drawing of G + F minimizing the edge crossings ins(G,E)

such that the subdrawing of G is plane.
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such that the subdrawing of G is plane.

Remark. The difficulty comes from possible inequivalent embeddings of G.
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3 Planar Insertion Problems3 Planar Insertion Problems

Keeping “most of” G planar. . .

Definition. Given a planar graph G and a set F of additional edges (vert.).
Find a drawing of G + F minimizing the edge crossings ins(G,E)

such that the subdrawing of G is plane.

Remark. The difficulty comes from possible inequivalent embeddings of G.

Particular variants

• Single edge insertion: solvable in linear time using SPQR trees (easily
implementable!); [Gutwenger, Mutzel, and Weiskircher, 2005]

• Single vertex insertion: solvable in polynomial time;
[Chimani, Gutwenger, Mutzel, and Wolf, 2009]

• Multiple edge insertion (MEI): NP-complete for general edge set F ;
[Ziegler, 2001]

but we may hope for a special small F . . . (and there are other ways)
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Insertion can be very far from Crossing numberInsertion can be very far from Crossing number

See, e.g., the following example:
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Remark. In cubic planar graphs, edge insertion is optimal for crossing number.
[Riskin, 1996]
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Insertion and Crossing NumberInsertion and Crossing Number

• Single edge insertion ↔ planar graph plus an edge G + e
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Insertion and Crossing NumberInsertion and Crossing Number

• Single edge insertion ↔ planar graph plus an edge G + e

– cr(G + e) approximated by ins(G, e) up to factor ∆(G);
[PH and Salazar, 2006]

– factor b∆(G)/2c, tight; [Cabello and Mohar, 2008]
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– factor b∆(G)/2c, tight; [Cabello and Mohar, 2008]

• Single vertex insertion ↔ apex graph G+x (specif. neighbourhood)
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– cr(G + e) approximated by ins(G, e) up to factor ∆(G);
[PH and Salazar, 2006]

– factor b∆(G)/2c, tight; [Cabello and Mohar, 2008]

• Single vertex insertion ↔ apex graph G+x (specif. neighbourhood)

– cr(G + x) approximated by ins(G, x) up to factor d(x) · b∆(G)/2c;
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– a tight factor – half of that?
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• Single edge insertion ↔ planar graph plus an edge G + e

– cr(G + e) approximated by ins(G, e) up to factor ∆(G);
[PH and Salazar, 2006]

– factor b∆(G)/2c, tight; [Cabello and Mohar, 2008]

• Single vertex insertion ↔ apex graph G+x (specif. neighbourhood)

– cr(G + x) approximated by ins(G, x) up to factor d(x) · b∆(G)/2c;
[Chimani, PH, and Mutzel, 2008]

– a tight factor – half of that?

• Multiple edge insertion MEI ↔ graph G + F (the general case)
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• Single edge insertion ↔ planar graph plus an edge G + e

– cr(G + e) approximated by ins(G, e) up to factor ∆(G);
[PH and Salazar, 2006]

– factor b∆(G)/2c, tight; [Cabello and Mohar, 2008]

• Single vertex insertion ↔ apex graph G+x (specif. neighbourhood)

– cr(G + x) approximated by ins(G, x) up to factor d(x) · b∆(G)/2c;
[Chimani, PH, and Mutzel, 2008]

– a tight factor – half of that?

• Multiple edge insertion MEI ↔ graph G + F (the general case)

– cr(G + F ) approximated by ins(G,F ) for connected planar G;

the factor being 2|F | · b∆(G)/2c plus additive
(|F |

2

)
[Chimani, PH, and Mutzel, 2008]
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Insertion and Crossing NumberInsertion and Crossing Number

• Single edge insertion ↔ planar graph plus an edge G + e

– cr(G + e) approximated by ins(G, e) up to factor ∆(G);
[PH and Salazar, 2006]

– factor b∆(G)/2c, tight; [Cabello and Mohar, 2008]

• Single vertex insertion ↔ apex graph G+x (specif. neighbourhood)

– cr(G + x) approximated by ins(G, x) up to factor d(x) · b∆(G)/2c;
[Chimani, PH, and Mutzel, 2008]

– a tight factor – half of that?

• Multiple edge insertion MEI ↔ graph G + F (the general case)

– cr(G + F ) approximated by ins(G,F ) for connected planar G;

the factor being 2|F | · b∆(G)/2c plus additive
(|F |

2

)
[Chimani, PH, and Mutzel, 2008]

– however, how to compute ins(G,F )? – enough to approximate!
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4 MEI-based Approach to Crossing Numbers4 MEI-based Approach to Crossing Numbers

Computing ins(G,F ) for planar connected G:

• [Chuzhoy, Makarychev, and Sidiropoulos, 2011 SODA]

≤ O(∆(G)3 · |F | · cr(G + F ) + ∆(G)3 · |F |2) crossings,

a very complicated algorithm for both cr(G + F ) and ins(G,F ).
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Computing ins(G,F ) for planar connected G:

• [Chuzhoy, Makarychev, and Sidiropoulos, 2011 SODA]

≤ O(∆(G)3 · |F | · cr(G + F ) + ∆(G)3 · |F |2) crossings,

a very complicated algorithm for both cr(G + F ) and ins(G,F ).

• [Chimani and PH, 2011 ICALP]

≤ ins(G,F ) + (b12∆(G)c+ 1
2) · (|F |2 − |F |) crossings,

direct focus on an approximation of ins(G,F ) up to an additive factor,
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Computing ins(G,F ) for planar connected G:

• [Chuzhoy, Makarychev, and Sidiropoulos, 2011 SODA]

≤ O(∆(G)3 · |F | · cr(G + F ) + ∆(G)3 · |F |2) crossings,

a very complicated algorithm for both cr(G + F ) and ins(G,F ).

• [Chimani and PH, 2011 ICALP]

≤ ins(G,F ) + (b12∆(G)c+ 1
2) · (|F |2 − |F |) crossings,

direct focus on an approximation of ins(G,F ) up to an additive factor,

and an easily implementable algorithm.
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4 MEI-based Approach to Crossing Numbers4 MEI-based Approach to Crossing Numbers

Computing ins(G,F ) for planar connected G:

• [Chuzhoy, Makarychev, and Sidiropoulos, 2011 SODA]

≤ O(∆(G)3 · |F | · cr(G + F ) + ∆(G)3 · |F |2) crossings,

a very complicated algorithm for both cr(G + F ) and ins(G,F ).

• [Chimani and PH, 2011 ICALP]

≤ ins(G,F ) + (b12∆(G)c+ 1
2) · (|F |2 − |F |) crossings,

direct focus on an approximation of ins(G,F ) up to an additive factor,

and an easily implementable algorithm.

• For the crossing number the latter reads

≤ 2|F | · b12∆(G)c · cr(G + F ) + (b12∆(G)c+ 1
2) · (|F |2 − |F |) cr.



page.19

Petr Hliněný, Maribor: Crossing numbers, 2014 10 / 19 Approximating edge insertion and crossing number

4 MEI-based Approach to Crossing Numbers4 MEI-based Approach to Crossing Numbers

Computing ins(G,F ) for planar connected G:

• [Chuzhoy, Makarychev, and Sidiropoulos, 2011 SODA]

≤ O(∆(G)3 · |F | · cr(G + F ) + ∆(G)3 · |F |2) crossings,

a very complicated algorithm for both cr(G + F ) and ins(G,F ).

• [Chimani and PH, 2011 ICALP]

≤ ins(G,F ) + (b12∆(G)c+ 1
2) · (|F |2 − |F |) crossings,

direct focus on an approximation of ins(G,F ) up to an additive factor,

and an easily implementable algorithm.

• For the crossing number the latter reads

≤ 2|F | · b12∆(G)c · cr(G + F ) + (b12∆(G)c+ 1
2) · (|F |2 − |F |) cr.

So called SPQR trees play key role in both the approaches.
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Gentle introduction to SPQR treesGentle introduction to SPQR trees

• Graph broken into the blocks first.

• Then, for pairwise gluing on virtual skeleton edges, we have got

– S-nodes for serial skeletons,

– P-nodes for parallel skeletons,

– R-nodes for 3-connected components.
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5 Better Additive Approximation for MEI5 Better Additive Approximation for MEI

Theorem. Given a conn. planar graph G and an edge set F , F ∩ E(G) = ∅,
the below Algorithm finds, in O(|F |2 · |V (G)|) time, an approximate solution
to the MEI problem for G and F with

≤ ins(G,F ) + 2|F | · blog2 |F |c · b12∆(G)c+
(|F |

2

)
crossings.
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Theorem. Given a conn. planar graph G and an edge set F , F ∩ E(G) = ∅,
the below Algorithm finds, in O(|F |2 · |V (G)|) time, an approximate solution
to the MEI problem for G and F with

≤ ins(G,F ) + 2|F | · blog2 |F |c · b12∆(G)c+
(|F |

2

)
crossings.

Remark. This estimate is assymptotically tight wrt. the difference between
ins(G,F ) and the sum of individual insertions:

|F | · log2 |F |
(|F |

2

)
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5 Better Additive Approximation for MEI5 Better Additive Approximation for MEI

Theorem. Given a conn. planar graph G and an edge set F , F ∩ E(G) = ∅,
the below Algorithm finds, in O(|F |2 · |V (G)|) time, an approximate solution
to the MEI problem for G and F with

≤ ins(G,F ) + 2|F | · blog2 |F |c · b12∆(G)c+
(|F |

2

)
crossings.

Remark. This estimate is assymptotically tight wrt. the difference between
ins(G,F ) and the sum of individual insertions:

|F | · log2 |F |
(|F |

2

)

Corollary. The below Algorithm computes a drawing of G+ F with crossings

≤ 2|F | · b12∆(G)c · cr(G + F ) + 2|F | · blog2 |F |c · b12∆(G)c+
(|F |

2

)
.
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Ω(|F | · log2 |F |)
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Very Brief Algorithm / Proof SketchVery Brief Algorithm / Proof Sketch

1. Compute the SPQR tree of G, in linear time.
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Very Brief Algorithm / Proof SketchVery Brief Algorithm / Proof Sketch

1. Compute the SPQR tree of G, in linear time.

2. Optimally solve the individual edge insertions ins(G, f), f ∈ F ;

– each solution giving an insertion path Pf within the SPQR tree,
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1. Compute the SPQR tree of G, in linear time.

2. Optimally solve the individual edge insertions ins(G, f), f ∈ F ;

– each solution giving an insertion path Pf within the SPQR tree,

– more precisely, extend the insertion paths to the block-cut tree.

3. Insertion paths assign embedding preferences to the SPQR tree nodes;

– combine these preferences in a “smart way” to re-embed G,

– and insert F to G optimally (but neglecting inter-F crossings).

4. What happens if an embedding preference (of Pf ) is not realized?

– we pay the “price” of b∆(G)/2c additional crossings. . .

5. And how many embedding preferences are not realized for F?

– any two insertion paths Pf ,Pg “divert” at ≤ two places, and

– shared preferences are “the same” except at the diversions!
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A naive approach. . .

The key – to define embedding preferences at SPQR-tree nodes.

• The embedding flexibility of an SPQR-tree node:

R-node: rigid skeleton, but flip R or R

P-node: cyclic permutation A B C or A C B

S-node: just a cycle, but having two faces

C-node: cutvertex – handled separately. . .

sSPQR tree – “serialized”; insert dummy S-nodes between all P,R nodes.
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Petr Hliněný, Maribor: Crossing numbers, 2014 16 / 19 Approximating edge insertion and crossing number

Embedding Preferences I, ctnd.Embedding Preferences I, ctnd.

• The embedding preference of an SPQR-tree node (wrt. Pf ):

P-node: “A,B together”,

where edge from A to B A B C
%
%
%

R-node: no preference (see adjacent S-nodes)

S-node: “switching” or “nonswitching”,

i.e., facing different or same face of S

– an implicit reference to initial default embedding of the neighbours

• An approximation guarantee (weak, cf. [ICALP11]):

– at every node, the preference of some Pf is realized, and if another
Pg is not satisfied there then Pf ,Pg divert there,

– consequently, at most 2
(|F |

2

)
-times paying b∆(G)/2c.
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Embedding Preferences IIEmbedding Preferences II

Now making precise!

Tackle nonlocality – big hidden problem of naive preferences;

– e.g., a subpath of type −R−S− P −S−R− R R X

• Default(s) – more careful handling / specification needed;

R-node: refer to the initial embedding (the mirror is flipped),

S-node: refer to the initial “inside” face,

P-node: direct the virtual (gluing) edges of the skeleton, and
introduce a “magical composition bit” to every such virtual edge
– to spec. whether the neighbour is expected to the “left/right”

• Improved preferences – the naive ones turned trully local;

– realization of a preference decided locally wrt. the composition bits,

– the composition bits then “magically disappear” (∃ . . .),

– not an easy concept, but formally very clean.
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Final touch - log2 |F |Final touch - log2 |F |

A “smart way” of combining embedding preferences in the Algorithm, plus a
clever trick in the proof of the approximation guarantee. . .

• Semi-majority choice of a preference (in the Algorithm)

– every chosen node embedding preference should be at least as fre-
quent as any other one (at this node).
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A “smart way” of combining embedding preferences in the Algorithm, plus a
clever trick in the proof of the approximation guarantee. . .

• Semi-majority choice of a preference (in the Algorithm)

– every chosen node embedding preference should be at least as fre-
quent as any other one (at this node).

• “Simplicial ordering” of insertion paths (in the Proof)

– inductively, always take an insertion path Pf such that all other
intersecting paths do so in the same node:

Pf

– then, everytime Pf not realized, ≥ half of the paths divert from Pf .
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Studying an interesting and useful MEI problem:

• A fast approximation algorithm with an additive factor.
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6 Conclusions6 Conclusions

Studying an interesting and useful MEI problem:

• A fast approximation algorithm with an additive factor.

• Nicely implementable and practically fast – see the OGDF.

• Hoping to get an FPT exact algorithm, wrt. |F |.

• And, see Markus’ talk. . .

Thank you for your attention.
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