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1 Graph Crossing Number1 Graph Crossing Number

Definition. Drawing of a graph G:

– The vertices of G are distinct points,
and every edge e = uv ∈ E(G) is a simple curve joining u to v.

– No edge passes through another vertex,
and no three edges intersect in a common point.
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Petr Hliněný (FI MU Brno), BLED’11, 2011 2 Insertion-based approximation of crossing. . .

1 Graph Crossing Number1 Graph Crossing Number

Definition. Drawing of a graph G:

– The vertices of G are distinct points,
and every edge e = uv ∈ E(G) is a simple curve joining u to v.

– No edge passes through another vertex,
and no three edges intersect in a common point.

s s
ss

s s
ss

s
s s s
s s s
s s s

Definition. Crossing number cr(G)
is the smallest number of edge crossings in a drawing of G.
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Definition. Crossing number cr(G)
is the smallest number of edge crossings in a drawing of G.

Warning. There are slight variations of the definition of crossing number,
some giving different numbers! Such as counting odd-crossing pairs of edges.
[Pelsmajer, Schaeffer, Štefankovič, 2005]. . .
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Computing the Crossing NumberComputing the Crossing Number

Importance, e.g.

• VLSI design, cf. Leighton

• Graph visualization

What is hard? i.e., NP-hard

• The general case (of course. . . ); [Garey and Johnson, 1983]

• The degree-3 and minor-monotone cases; [PH, 2004]

• Even fixed rotation scheme; [Pelsmajer, Schaeffer, Štefankovič, 2007]

• Much worse – hard already for planar graphs plus one edge !
[Cabello and Mohar, 2010]

Can anything be computed efficiently?
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So, what is efficiently computable?

• The case of cubic planar graphs plus one edge; [Riskin, 1996]

• FPT when parameterized by itself;
[Grohe, 2001], [Kawarabayashi and Reed, 2007]

• An exact branch & bound approach for “real-world” graphs on up to∼ 100
vertices; [Chimani, Mutzel, and Bomze, 2008]

• NO rich natural graph class with nontrivial and yet efficiently computable
crossing number problem is known. . .

Approximations, at least?

• Up to factor log3 |V (G)| (log2 ·) for cr(G)+|V (G)| with bounded degrees;
[Even, Guha and Schieber, 2002]

• Constant factors for surface-embedded bounded-degree graphs;

[Gitler et al, 2007], [PH and Salazar, 2007], [PH and Chimani, 2010]
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Find a drawing of G + F minimizing the edge crossings ins(G,E)

such that the subdrawing of G is plane.
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2 Planar Insertion Problems2 Planar Insertion Problems

Definition. Given a planar graph G and a set F of additional edges (vert.?).
Find a drawing of G + F minimizing the edge crossings ins(G,E)

such that the subdrawing of G is plane.

Particular variants

• Single edge insertion: solvable in linear time using SPQR trees (easily
implementable!); [Gutwenger, Mutzel, and Weiskircher, 2005]

• Single vertex insertion: solvable in polynomial time;
[Chimani, Gutwenger, Mutzel, and Wolf, 2009]

• Multiple edge insertion (MEI): for general edge set F is NP-complete;
[Ziegler, 2001]

Remark. Difficulty of insertion problems comes from possible inequivalent
embeddings of G.
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Connections between Insertion and Crossing numberConnections between Insertion and Crossing number

• Single edge insertion ↔ almost-planar graph (near-planar) G + e

– cr(G + e) approximated by ins(G, e) up to factor ∆(G);
[PH and Salazar, 2006]

– factor b∆(G)/2c, tight; [Cabello and Mohar, 2008]

• Single vertex insertion ↔ apex graph G+x (specif. neighbourhood)

– cr(G + x) approximated by ins(G, x) up to factor d(x) · b∆(G)/2c;
[Chimani, PH, and Mutzel, 2008]

– tight factor – half of that? waiting for Cabello–Mohar’s turn. . .

• Multiple edge insertion ↔ graph G + F (a very general case)

– cr(G + F ) approximated by ins(G,F );
[Chimani, PH, and Mutzel, 2008]

– however, ins(G,F ) is NP-complete! (as well as finding F )
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3 Approximating MEI up to Additive Factor3 Approximating MEI up to Additive Factor

• [Chuzhoy, Makarychev, and Sidiropoulos, 2011 SODA]
Using MEI, a solution to cr(G + F ) for given planar G and F , with

≤ O(∆(G)3 · |F | · cr(G + F ) + ∆(G)3 · |F |2) crossings.
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3 Approximating MEI up to Additive Factor3 Approximating MEI up to Additive Factor

• [Chuzhoy, Makarychev, and Sidiropoulos, 2011 SODA]
Using MEI, a solution to cr(G + F ) for given planar G and F , with

≤ O(∆(G)3 · |F | · cr(G + F ) + ∆(G)3 · |F |2) crossings.

• Our alternative approach directly focuses on approximating MEI:

– only additive approximation factor for MEI ins(G,F ),

– consequently improved multiplicative factor for cr(G + F ),

– and practically implementable using SPQR trees.

Theorem 1. Given a conn. planar graph G and an edge set F , F ∩E(G) = ∅,
Algorithm 2 described below finds, in

O(|F | · |V (G)|+ |F |2) time,

an approximate solution to the MEI problem for G and F with

≤ ins(G,F ) + (b12∆(G)c+ 1
2) · (|F |2 − |F |) crossings.
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Gentle introduction to SPQR treesGentle introduction to SPQR trees

• Graph broken into the blocks first.

• Then, for pairwise gluing on virtual skeleton edges, we have got

– S-nodes for serial skeletons,

– P-nodes for parallel skeletons,

– R-nodes for 3-connected components.
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The algorithm for MEIThe algorithm for MEI

• Con-tree = a combination of a block-cut tree with SPQR trees.

Con-chain = a path traversing the con-tree nodes relevant for inserting a
specific edge; only the C-, P-, and R-nodes on it do matter.

Algorithm 2. Computing an approximate solution to the multiple edge in-
sertion problem for a connected planar graph G and new edges F .

1. Build the con-tree C of G.

2. Using C, compute single-edge insertions (the con-chains) for each edge
e ∈ F independently,
and centrally store their embedding preferences.

3. Fix an embedding Γ of G by suitably combining the embedding prefer-
ences from step 2 (at least “one happy con-chain per node”).

4. Independently compute the insertion paths for each edge e ∈ F into the
fixed embedding Γ, as shortest dual paths.
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Petr Hliněný (FI MU Brno), BLED’11, 2011 10 Insertion-based approximation of crossing. . .

Proof sketchProof sketch

A very informal one, neglecting all technical obstacles. . .

• Identify dirty passes of con-chains – where the con-chain embedding pref-
erences are not happy with the fixed embedding Γ.

• Observe that con-chains rooted through the same neighbourhood are
either both happy or both unhappy there.
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Proof sketchProof sketch

A very informal one, neglecting all technical obstacles. . .

• Identify dirty passes of con-chains – where the con-chain embedding pref-
erences are not happy with the fixed embedding Γ.

• Observe that con-chains rooted through the same neighbourhood are
either both happy or both unhappy there.

• As every node has some happy con-chain, each dirty pass can be linked
to a pair of con-chains that split/merge at that pass.

• Two con-chains can split/merge twice, hence ≤ 2
(|F |

2

)
dirty passes.

• Every dirty pass is associated with a 1- or 2-cut, and the inserted edge
needs ≤ b∆(G)/2c crossings to “pass by” it. Altogether

≤ ins(G,F ) +

(
2

⌊
∆(G)

2

⌋
+ 1

)
·
(
|F |
2

)
. 2
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4 Consequences4 Consequences

Theorem 3. Given a planar graph G and an edge set F , F ∩ E(G) = ∅,
Algorithm 2 finds an approximate solution to cr(G + F ) with

≤ b12∆(G)c· 2|F |· cr(G + F ) + (b12∆(G)c+ 1
2)(|F |2 − |F |) crossings.
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• In the MEI problem, the O(∆(G)·|F |2) additive factor should be replaced
with as. tight
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Algorithm 2 finds an approximate solution to cr(G + F ) with

≤ b12∆(G)c· 2|F |· cr(G + F ) + (b12∆(G)c+ 1
2)(|F |2 − |F |) crossings.

• This improves over previous O(∆(G)3 · |F | · cr(G + F ) + ∆(G)3 · |F |2)

• . . . with a simpler algorithm and a simpler proof.

5 Final Remark and Question5 Final Remark and Question

• In the MEI problem, the O(∆(G)·|F |2) additive factor should be replaced
with as. tight

O(∆(G) · |F | log |F |+ |F |2) .

• Can the MEI (G,F ) problem have, say, an FPT algorithm wrt. |F |?
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