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1 Graph Crossing Number

Definition. Drawing of a graph G:

— The vertices of GG are distinct points,
and every edge e = uv € E(G) is a simple curve joining u to v.

— No edge passes through another vertex,
and no three edges intersect in a common point.
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1 Graph Crossing Number

Definition. Drawing of a graph G:

— The vertices of GG are distinct points,
and every edge e = uv € E(G) is a simple curve joining u to v.

— No edge passes through another vertex,
and no three edges intersect in a common point.

Definition. Crossing number cr(G)
is the smallest number of edge crossings in a drawing of G.

Warning. There are slight variations of the definition of crossing number,
some giving different numbers! Such as counting odd-crossing pairs of edges.
[Pelsmajer, Schaeffer, Stefankovi¢, 2005]. . .
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Computing the Crossing Number

Importance, e.g.

e VLSI design, cf. Leighton
e Graph visualization
What is hard? i.e., NP-hard
e The general case (of course. .. ); [Garey and Johnson, 1983]

e The degree-3 and minor-monotone cases; [PH, 2004]

e Even fixed rotation scheme; [Pelsmajer, Schaeffer, Stefankovi&, 2007]

e Much worse — hard already for planar graphs plus one edge!
[Cabello and Mohar, 2010]

Can anything be computed efficiently?
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So, what is efficiently computable?

e The case of cubic planar graphs plus one edge; [Riskin, 1996]
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So, what is efficiently computable?

The case of cubic planar graphs plus one edge; [Riskin, 1996]

FPT when parameterized by itself;
[Grohe, 2001], [Kawarabayashi and Reed, 2007]

An exact branch & bound approach for “real-world" graphs on up to ~ 100
vertices; [Chimani, Mutzel, and Bomze, 2008]

NO rich natural graph class with nontrivial and yet efficiently computable
crossing number problem is known. ..

Approximations, at least?

e Up to factor log® |V (G)| (log? ) for cr(G)+|V ()| with bounded degrees;
[Even, Guha and Schieber, 2002]
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So, what is efficiently computable?

The case of cubic planar graphs plus one edge; [Riskin, 1996]

FPT when parameterized by itself;
[Grohe, 2001], [Kawarabayashi and Reed, 2007]

An exact branch & bound approach for “real-world" graphs on up to ~ 100
vertices; [Chimani, Mutzel, and Bomze, 2008]

NO rich natural graph class with nontrivial and yet efficiently computable
crossing number problem is known. ..

Approximations, at least?

e Up to factor log® |V (G)| (log? ) for cr(G)+|V ()| with bounded degrees;
[Even, Guha and Schieber, 2002]

e Constant factors for surface-embedded bounded-degree graphs;
[Gitler et al, 2007], [PH and Salazar, 2007], [PH and Chimani, 2010]
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2 Planar Insertion Problems

Definition. Given a planar graph G and a set F' of additional edges (vert.?).
Find a drawing of G + F minimizing the edge crossings ins(G, E)
such that the subdrawing of G is plane.

Petr Hlinény (FI MU Brno), BLED’11, 2011 Insertion-based approximation of crossing. ..



2 Planar Insertion Problems
Definition. Given a planar graph G and a set F' of additional edges (vert.?).
Find a drawing of G + F minimizing the edge crossings ins(G, E)

such that the subdrawing of G is plane.

Particular variants

e Single edge insertion: solvable in linear time using SPQR trees (easily
implementable!); [Gutwenger, Mutzel, and Weiskircher, 2005]
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2 Planar Insertion Problems

Definition. Given a planar graph G and a set F' of additional edges (vert.?).
Find a drawing of G + F minimizing the edge crossings ins(G, E)
such that the subdrawing of G is plane.

Particular variants

e Single edge insertion: solvable in linear time using SPQR trees (easily
implementable!); [Gutwenger, Mutzel, and Weiskircher, 2005]

e Single vertex insertion: solvable in polynomial time;
[Chimani, Gutwenger, Mutzel, and Wolf, 2009]

e Multiple edge insertion (MEI): for general edge set F' is NP-complete;
[Ziegler, 2001]

Remark. Difficulty of insertion problems comes from possible inequivalent
embeddings of G.
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e Single edge insertion <>  almost-planar graph (near-planar) G + e

Petr Hlinény (FI MU Brno), BLED’11, 2011 Insertion-based approximation of crossing. ..



Connections between Insertion and Crossing number
e Single edge insertion <>  almost-planar graph (near-planar) G + e

— cr(G + e) approximated by ins(G,e) up to factor A(G);
[PH and Salazar, 2006]

— factor |A(G)/2], tight; [Cabello and Mohar, 2008]

Petr Hlinény (FI MU Brno), BLED’11, 2011 Insertion-based approximation of crossing. ..



Connections between Insertion and Crossing number
e Single edge insertion <>  almost-planar graph (near-planar) G + e

— cr(G + e) approximated by ins(G,e) up to factor A(G);
[PH and Salazar, 2006]

— factor |A(G)/2], tight; [Cabello and Mohar, 2008]

e Single vertex insertion <>  apex graph G+ z (specif. neighbourhood)

Petr Hlinény (FI MU Brno), BLED’11, 2011 Insertion-based approximation of crossing. ..



Connections between Insertion and Crossing number
e Single edge insertion <>  almost-planar graph (near-planar) G + e

— cr(G + e) approximated by ins(G, e) up to factor A(G);
[PH and Salazar, 2006]

— factor |A(G)/2], tight; [Cabello and Mohar, 2008]

e Single vertex insertion <>  apex graph G+ x (specif. neighbourhood)

— ¢r(G + ) approximated by ins(G,x) up to factor d(z) - [A(G)/2];
[Chimani, PH, and Mutzel, 2008]

— tight factor — half of that? waiting for Cabello-Mohar's turn. . .
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Connections between Insertion and Crossing number
e Single edge insertion <>  almost-planar graph (near-planar) G + e

— cr(G + e) approximated by ins(G, e) up to factor A(G);
[PH and Salazar, 2006]

— factor |A(G)/2], tight; [Cabello and Mohar, 2008]

e Single vertex insertion <>  apex graph G+ x (specif. neighbourhood)

— ¢cr(G + x) approximated by ins(G, x) up to factor d(x) - |A(G)/2];
[Chimani, PH, and Mutzel, 2008]

— tight factor — half of that? waiting for Cabello-Mohar's turn. . .

e Multiple edge insertion <> graph G + F' (a very general case)

— cr(G + F) approximated by ins(G, F');
[Chimani, PH, and Mutzel, 2008|

— however, ins(G, F) is NP-complete! (as well as finding F')
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3 Approximating MEI up to Additive Factor

e [Chuzhoy, Makarychev, and Sidiropoulos, 2011 SODA|
Using MEI, a solution to cr(G + F) for given planar G and F', with

< O(A(G)3 - |F| - cr(G + F) + A(G)3 - |F|?) crossings.
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3 Approximating MEI up to Additive Factor

e [Chuzhoy, Makarychev, and Sidiropoulos, 2011 SODA|
Using MEI, a solution to cr(G + F') for given planar G and F', with

< O(A(G)3 - |F| - cr(G + F) + A(G)? - |F|?) crossings.
e Qur alternative approach directly focuses on approximating MEI:

— only additive approximation factor for MEI ins(G, F'),
— consequently improved multiplicative factor for cr(G + F),

— and practically implementable using SPQR trees.

Theorem 1. Given a conn. planar graph G and an edge set F', FNE(G) =),
Algorithm 2 described below finds, in

O(IF| - [V(G)| + |F[?) time,
an approximate solution to the ME| problem for G and F' with

< ins(G,F) + (|3A(G)] + 3) - (|F|* — |F|) crossings.
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Gentle introduction to SPQR trees
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e Then, for pairwise gluing on virtual skeleton edges, we have got

e Graph broken into the blocks first.

— S-nodes for serial skeletons,
— P-nodes for parallel skeletons,

— R-nodes for 3-connected components.
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The algorithm for MEI

o (Con-tree = a combination of a block-cut tree with SPQR trees.
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o (Con-tree = a combination of a block-cut tree with SPQR trees.
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Algorithm 2. Computing an approximate solution to the multiple edge in-
sertion problem for a connected planar graph GG and new edges F.

1. Build the con-tree € of G.
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Con-chain = a path traversing the con-tree nodes relevant for inserting a
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Algorithm 2. Computing an approximate solution to the multiple edge in-
sertion problem for a connected planar graph GG and new edges F.

1. Build the con-tree € of G.

2. Using @, compute single-edge insertions (the con-chains) for each edge
e € F independently,

and centrally store their embedding preferences.

3. Fix an embedding I of G by suitably combining the embedding prefer-
ences from step 2 (at least “one happy con-chain per node").
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The algorithm for MEI

o (Con-tree = a combination of a block-cut tree with SPQR trees.

Con-chain = a path traversing the con-tree nodes relevant for inserting a
specific edge; only the C-, P-, and R-nodes on it do matter.

Algorithm 2. Computing an approximate solution to the multiple edge in-
sertion problem for a connected planar graph GG and new edges F.

1. Build the con-tree € of G.

2. Using @, compute single-edge insertions (the con-chains) for each edge
e € F independently,
and centrally store their embedding preferences.

3. Fix an embedding I of G by suitably combining the embedding prefer-
ences from step 2 (at least “one happy con-chain per node").

4. Independently compute the insertion paths for each edge e € F' into the
fixed embedding I', as shortest dual paths.
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Proof sketch

A very informal one, neglecting all technical obstacles. . .

YOU WANT PROOF?
I'LL 6IVE YOU PROOF!

e |dentify dirty passes of con-chains — where the con-chain embedding pref-
erences are not happy with the fixed embedding I'.
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Proof sketch

A very informal one, neglecting all technical obstacles. . .

YOU WANT PROOF?
I'LL 6IVE YOU PROOF!

e |dentify dirty passes of con-chains — where the con-chain embedding pref-
erences are not happy with the fixed embedding I'.

e Observe that con-chains rooted through the same neighbourhood are
either both happy or both unhappy there.

e As every node has some happy con-chain, each dirty pass can be linked
to a pair of con-chains that split/merge at that pass.

e Two con-chains can split/merge twice, hence < 2(‘5') dirty passes.

e Every dirty pass is associated with a 1- or 2-cut, and the inserted edge
needs < [A(G)/2] crossings to “pass by” it. Altogether

< ins(G,F) + (2 {A(QG)J + 1) . <|§|> O
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4 Consequences

Theorem 3. Given a planar graph G and an edge set F, F N E(G) = ),
Algorithm 2 finds an approximate solution to cr(G + F') with

< [SA(G)]-2|F|- cr(G + F) + (|3A(G)] + 3)(|F|? — |F|) crossings.
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4 Consequences

Theorem 3. Given a planar graph G and an edge set F, F N E(G) = ),
Algorithm 2 finds an approximate solution to cr(G + F) with

< BAG)]- 20F|- oG + F) + (LBA(G)] + B)(IFP | F|) crossings.

e This improves over previous O(A(G)3 - |F| - cr(G + F) + A(G)? - |F|?)

e ... with a simpler algorithm and a simpler proof.

5 Final Remark and Question

e In the MEI problem, the O(A(G)-|F'|?) additive factor should be replaced
with as. tight
O(A(G) - |F|log | F| +|F[?).
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4 Consequences

Theorem 3. Given a planar graph G and an edge set F, F N E(G) = ),
Algorithm 2 finds an approximate solution to cr(G + F) with

< LLAG)] 2] er(G + F) + ([3A(G)] + 3)(IF* = |[F]) crossings.
e This improves over previous O(A(G)3 - |F| - cr(G + F) + A(G)? - |F|?)

e ... with a simpler algorithm and a simpler proof.

5 Final Remark and Question

e In the MEI problem, the O(A(G)-|F'|?) additive factor should be replaced
with as. tight
O(A(G) - |F|log | F| +|F[?).

e Can the MEI (G, F) problem have, say, an FPT algorithm wrt. |F'|?
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