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OverviewOverview

1 Drawings and the Crossing Number 3
Basic definitions, overview of computational complexity.

2 Edge-insertion Heuristic 5
Heuristic crossing-minimization: Inserting edge-by-edge to a planar graph.
“Bridging”-minimization for a planar graph plus one edge.

3 Crossing on Almost-planar Graphs 7
How to relate “easy” bridging-minimization to crossing number?
– arbitrarily far in general, on one hand,
– constant-factor approximation for graphs of bd. degree, on the other hand.

4 Crossing-Critical Graphs 11
One more theoretical contribution, argueing nontriviality of the problem.
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1 Drawings and the Crossing Number1 Drawings and the Crossing Number

Definition. Drawing of a graph G:

– The vertices of G are distinct points,
and every edge e = uv ∈ E(G) is a simple curve joining u to v.

– No edge passes through another vertex,
and no three edges intersect in a common point.
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1 Drawings and the Crossing Number1 Drawings and the Crossing Number

Definition. Drawing of a graph G:

– The vertices of G are distinct points,
and every edge e = uv ∈ E(G) is a simple curve joining u to v.

– No edge passes through another vertex,
and no three edges intersect in a common point.
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Definition. Crossing number cr(G)
is the smallest number of edge crossings in a drawing of G.

Importance – in VLSI design [Leighton et al], graph visualization, etc.
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1 Drawings and the Crossing Number1 Drawings and the Crossing Number

Definition. Drawing of a graph G:

– The vertices of G are distinct points,
and every edge e = uv ∈ E(G) is a simple curve joining u to v.

– No edge passes through another vertex,
and no three edges intersect in a common point.
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Definition. Crossing number cr(G)
is the smallest number of edge crossings in a drawing of G.

Importance – in VLSI design [Leighton et al], graph visualization, etc.

Warning. There are slight variations of the definition of crossing number, some
giving different numbers! (Like counting odd-crossing pairs of edges.)
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Computational complexity

Remark. It is (practically) very hard to determine crossing number.

Observation. The problem CrossingNumber(≤ k) is in NP :
Guess a suitable drawing of G, then replace crossings with new vertices, and
test planarity.

. . . . . .
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Computational complexity

Remark. It is (practically) very hard to determine crossing number.

Observation. The problem CrossingNumber(≤ k) is in NP :
Guess a suitable drawing of G, then replace crossings with new vertices, and
test planarity.

. . . . . .

Theorem 1. [Garey and Johnson, 1983] CrossingNumber is NP -hard.

Theorem 2. [Grohe, 2001] CrossingNumber(≤ k) is in FPT with param-
eter k, i.e. solvable in time O(f(k) · n2).

Theorem 3. [PH, 2004] CrossingNumber is NP -hard even on simple 3-
connected cubic graphs.
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Computational complexity

Remark. It is (practically) very hard to determine crossing number.

Observation. The problem CrossingNumber(≤ k) is in NP :
Guess a suitable drawing of G, then replace crossings with new vertices, and
test planarity.

. . . . . .

Theorem 1. [Garey and Johnson, 1983] CrossingNumber is NP -hard.

Theorem 2. [Grohe, 2001] CrossingNumber(≤ k) is in FPT with param-
eter k, i.e. solvable in time O(f(k) · n2).

Theorem 3. [PH, 2004] CrossingNumber is NP -hard even on simple 3-
connected cubic graphs.

Question 4. [PH, GS / Mohar, 2006] Is it an NP–hard problem to compute
the crossing number of an apex graph?
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2 Edge-insertion Heuristic2 Edge-insertion Heuristic

(Seemingly) best general practical heuristic approach to crossing minimization:

• Delete from G some (small set of) edges F , so that G′ = G−F is planar.

• Take an edge f ∈ F and a suitable planar embedding of G′,
and insert f back to G′ with the smallest number of crossings.

• Make G′ + f planar G′′ by replacing the crossings with new vertices,
and iterate the process with G′′ and F \ {f}. . .
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2 Edge-insertion Heuristic2 Edge-insertion Heuristic

(Seemingly) best general practical heuristic approach to crossing minimization:

• Delete from G some (small set of) edges F , so that G′ = G−F is planar.

• Take an edge f ∈ F and a suitable planar embedding of G′,
and insert f back to G′ with the smallest number of crossings.

• Make G′ + f planar G′′ by replacing the crossings with new vertices,
and iterate the process with G′′ and F \ {f}. . .

This heuristic, in turn, outlines the following problem:

Definition. The problem of (one-edge) BridgingMinimization has

Input: a planar graph G and two nonadjacent vertices u, v of G,

Problem: find a planar drawing of G such that the (new) edge uv can be
inserted to G with the minimum number of crossings.
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That problem has got a really nice solution!

Theorem 5. [Gutwenger, Mutzel, Weiskircher, 2001]
The problem BridgingMinimization is (practically) solvable in linear time.

. . . . . .
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That problem has got a really nice solution!

Theorem 5. [Gutwenger, Mutzel, Weiskircher, 2001]
The problem BridgingMinimization is (practically) solvable in linear time.

. . . . . .

However, the answer is not so useful for the original problem. . .

Fact. [Farr, 2005] A solution to one-edge bridging minimization (left) can be
arbitrarily far from the crossing number (right).
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3 Crossing on Almost-planar Graphs3 Crossing on Almost-planar Graphs

Our main new contribution is the following result:

Theorem 6. Let G be a planar graph and u, v nonadjacent vertices of G. Then
the bridging minimization problem on G and uv has a solution with

br(G, uv) ≤ ∆(G) · cr(G + uv) .
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3 Crossing on Almost-planar Graphs3 Crossing on Almost-planar Graphs

Our main new contribution is the following result:

Theorem 6. Let G be a planar graph and u, v nonadjacent vertices of G. Then
the bridging minimization problem on G and uv has a solution with

br(G, uv) ≤ ∆(G) · cr(G + uv) .

Almost-planar – removing one edge leaves a planar graph.

Hence, for almost planar graphs of bounded degree, the algorithm of Gutwenger,
Mutzel, and Weiskircher makes a

constant-factor approximation of the crossing number.



'

&

$

%

'

&

$
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Some proof ideas

• What is our situation?

Having a graph G with edge e = uv such that G − e is planar,
and a crossing-optimal drawing G′ of G in which G′ − e is not plane.
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Some proof ideas

• What is our situation?

Having a graph G with edge e = uv such that G − e is planar,
and a crossing-optimal drawing G′ of G in which G′ − e is not plane.

• What can we do now?

Delete (few, actually ≤ cr(G′) ) edges F to make G′ − F plane.
Insert the edges of F back one-by-one, introducing ≤ ∆ new crossings
on e for each one.
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Some proof ideas

• What is our situation?

Having a graph G with edge e = uv such that G − e is planar,
and a crossing-optimal drawing G′ of G in which G′ − e is not plane.

• What can we do now?

Delete (few, actually ≤ cr(G′) ) edges F to make G′ − F plane.
Insert the edges of F back one-by-one, introducing ≤ ∆ new crossings
on e for each one.

• Whitney flipping – the tool to use:

Flipping – on a 2-cut, re-embed one side with its mirror image.

Every two embeddings of the same (2-connected) planar graph can be
transformed to each other via Whitney flippings.

Hence we follow a sequence of flippings that transforms
(G′ − e− F ) into (G − e− F ).
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• Whitney flippings continued. . .

However, many flippings might be needed to insert even one edge of F
back, like the example with four flippings:
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• Whitney flippings continued. . .

However, many flippings might be needed to insert even one edge of F
back, like the example with four flippings:
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One flipping might introduce up to ∆(G)/2 new crossings on e !?
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• Whitney flippings continued. . .

However, many flippings might be needed to insert even one edge of F
back, like the example with four flippings:
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One flipping might introduce up to ∆(G)/2 new crossings on e !?

Firstly, only those fippings that separate both ends of f , and both ends
of e, from each other are relevant.

Secondly, only two of those flippings really contribute new crossings on e.



'

&

$

%

'

&

$
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• Whitney flippings for third, an illustration:
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Iterating this process with each edge of F , we get the bound

br(G − e, e) ≤ ∆(G) · |F | ≤ ∆(G) · cr(G) .
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4 Crossing-Critical Graphs4 Crossing-Critical Graphs

One more theoretical thought. . .

What forces high crossing number?

• Many edges – cf. Euler’s formula, and some strong enhancements
[Ajtai, Chvátal, Newborn, Szemeredi, 1982; Leighton].

• Structural properties (even with few edges) – but what exactly?
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4 Crossing-Critical Graphs4 Crossing-Critical Graphs

One more theoretical thought. . .

What forces high crossing number?

• Many edges – cf. Euler’s formula, and some strong enhancements
[Ajtai, Chvátal, Newborn, Szemeredi, 1982; Leighton].

• Structural properties (even with few edges) – but what exactly?

Definition. Graph H is k-crossing-critical
– cr(H) ≥ k and cr(H − e) < k for all edges e ∈ E(H).

We study crossing-critical graphs to understand what structural properties force
the crossing number of a graph to be large.
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The exact crossing number problem seems to be nontrivial even on projective
(and) almost-planar graphs!

Nontriviality is witnessed by a rich family of projective almost-planar k-crossing-
critical graphs here. . .
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ConclusionsConclusions

• We have proved that, for almost planar graphs of bounded degree,
the algorithm of Gutwenger, Mutzel, and Weiskircher gives an efficient
constant-factor approximation of the crossing number.

• We have demonstrated nontriviality of the crossing number problem on
almost-planar graphs.
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ConclusionsConclusions

• We have proved that, for almost planar graphs of bounded degree,
the algorithm of Gutwenger, Mutzel, and Weiskircher gives an efficient
constant-factor approximation of the crossing number.

• We have demonstrated nontriviality of the crossing number problem on
almost-planar graphs.

• The message:

We understand really little about the crossing number problem if we can-
not solve it exactly even on almost-planar graphs!

Can we get any reasonable FPT algorithm for crossing number based on
“how far” the graph is from planarity?
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