Petr Hliněný

Crossing Number is Hard for Cubic Graphs

Department of Computer Science
FEI, VŠB - Technical University of Ostrava
and
Institute for Theoretical Computer Science
MFF, Charles University, Czech Republic

> e-mail: petr.hlineny@vsb.cz
> http://www.cs.vsb.cz/hlineny

2000 Math Subjects Classification: 05C10, 05C62, 68R10

1 Drawings and the crossing number

Definition. Drawing of a graph G :

- The vertices of G are distinct points, and every edge $e=u v \in E(G)$ is a simple curve joining u to v.
- No edge passes through another vertex, and no three edges intersect in a common point.

Definition. Crossing number cr (G)
is the smallest number of edge crossings in a drawing of G.
Origin - Turán's work in brick factory, WW II. Importance - in graph visualization, VLSI design, etc.

Warning. There are variations of the definition of crossing number, not yet proved to be equivalent. (Like counting crossing or odd-crossing pairs of edges.)

Different versions:

- Rectilinear crossing number - requires edges as straight lines. Same up to $\operatorname{cr}(G)=3$, then much different.
- Minor-monotone crossing number - closes the definition down to minors. (Usual crossing number may grow up rapidly when contracting an edge!)

Definition. Minor-monotone crossing number

$$
\operatorname{mcr}(G)=\min _{H: G \leq H \text { (minor) }} \operatorname{cr}(H)
$$

Observation. (Fellows) If a cubic graph F is a minor of G, then F is in G as a subdivision. Hence for cubic F

$$
\operatorname{cr}(F)=\operatorname{mcr}(F)
$$

2 Computational Complexity

Remark. It is (practically) very hard to determine crossing number.
Observation. The problem CrossingNumber $(\leq k)$ is in $N P$: Guess a suitable drawing of G, then replace crossings with new vertices, and test planarity.

Theorem 2.1. (Garey and Johnson, 1983) CrossingNumber is $N P$-hard.
Theorem 2.2. (Grohe, 2001) CrossingNumber $(\leq k)$ is in FPT with parameter k, i.e. solvable in time $O\left(f(k) \cdot n^{2}\right)$.

Our results:

Theorem 2.3. CrossingNumber is $N P$-hard on simple cubic graphs.
Corollary 2.4. The minor-monotone version is also $N P$-hard.

$N P$-reduction from OLA

OptimalLinearArrangement:

Input: An n-vertex graph G, and an integer a.
Question: Is there a bijection $\alpha: V(G) \rightarrow\{1, \ldots, n\}$ (a linear arrangement of vertices) such that the weight of α is

$$
\begin{equation*}
\sum_{u v \in E(G)}|\alpha(u)-\alpha(v)| \leq a ? \tag{1}
\end{equation*}
$$

- NP-complete by [Garey and Johnson].
- Used to prove Theorem 2.1.
- Used (differently) also to prove our Theorem 2.3.

Question: What about a reduction from Planar 3-SAT?

- Tried (reasonably hard) several times, but yet unsuccessful. . . Why?

3 Sketch of a Proof

For an instance G, a of OLA, construct a graph H_{G}, and test $\operatorname{cr}\left(H_{G}\right) \ldots$

round boulder

Boulders - huge, and keeping everything "in place".
Rings - one for each vertex of G, their order is (like) α.
Spokes - horizontal connections, force rings to lie "between" the boulders.

Handles for the edges of G are attached to the (above) skeleton as follows:

Lemma 3.1. Let us, for a given graph G on n vertices and m edges, construct the graph H_{G} as described above. If G has a linear arrangement of weight A, then

$$
\operatorname{cr}\left(H_{G}\right) \leq(s+r n) n t+2(A+m) t-4 m,
$$

where $s+r n$ is the total number of spokes, and t is the thickness of each ring.

Converse direction

The following statement, together with Lemma 3.1, validates our reduction.
Proposition 3.2. If an optimal linear arrangement of G has weight A, then

$$
\operatorname{cr}\left(H_{G}\right) \geq(s+r n) n t+2(A+m) t-8 m
$$

We proceed the proof along the following sequence of claims:

- In the optimal drawing of H_{G}, the boulders B_{1}, B_{2} are drawn with no edge crossings.
- In the optimal drawing of H_{G}, each main cycle of every ring R_{i} is drawn as a closed curve separating the subdrawing of B_{1} from that of B_{2}.

- The rings are drawn (almost) in an order $R_{\alpha^{-1}(1)}, \ldots, R_{\alpha^{-1}(n)}$.
- Drawings of the edge handles can be separated (by curves of some spokes) into disjoint areas of the plane.

- The separated edge handles generate (almost) as many edge crossings as expected.

Hence we determine the OLA value A for G from

$$
(s+r n) n t+2(A+m) t-4 m \geq \operatorname{cr}\left(H_{G}\right) \geq(s+r n) n t+2(A+m) t-8 m
$$

