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1 Drawings and the crossing number

Definition. Drawing of a graph G:

– The vertices of G are distinct points,
and every edge e = uv ∈ E(G) is a simple curve joining u to v.

– No edge passes through another vertex,
and no three edges intersect in a common point.
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Definition. Crossing number cr(G)
is the smallest number of edge crossings in a drawing of G.

Origin – Turán’s work in brick factory, WW II.

Importance – in graph visualization, VLSI design, etc.

Warning. There are variations of the definition of crossing number, not yet
proved to be equivalent. (Like counting crossing or odd-crossing pairs of edges.)
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Different versions:

• Rectilinear crossing number – requires edges as straight lines.
Same up to cr(G) = 3, then much different.

• Minor-monotone crossing number – closes the definition down to minors.
(Usual crossing number may grow up rapidly when contracting an edge!)

Definition. Minor-monotone crossing number

mcr(G) = min
H: G≤H (minor)

cr(H) .
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Observation. (Fellows) If a cubic graph F is a minor of G, then F is in G as
a subdivision. Hence for cubic F ,

cr(F ) = mcr(F ) .
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2 Crossing-Critical Graphs

What forces high crossing number?

• Many edges – cf. Euler’s formula, and some strong enhancements.

• Structural properties (even with few edges) – but what exactly?

Definition. Graph H is k-crossing-critical

– cr(H) ≥ k and cr(H − e) < k for all edges e ∈ E(H).

We study crossing-critical graphs to understand what structural properties force the

crossing number of a graph to be large.

Notes:

– 1-crossing-critical graphs are K5 and K3,3 (up to vertices of degree 2).

– An infinite class of 2-crossing-critical graphs (first by Kochol).

– Many infinite classes of crossing-critical graphs are known today, and all
tend to have similar “global” structure.
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Structure of crossing-critical graphs:

1999 [Salazar]: A k-crossing-critical graph has bounded tree-width in k.

• Conjecture [Salazar and Thomas]: an analogue holds for path-width.

2000 [PH]: Yes, a k-crossing-critical graph has bounded path-width in k.

• Conjecture [Richter, Salazar, and Thomassen] an. for bandwidth:
A k-crossing-critical graph has bounded bandwidth in k.

• Is that really true?
Bounded bandwidth ⇒ bounded max degree. . .

2003 [PH]: The bounded bandwidth conjecture is false in the projective plane.
(A construction of a projective crossing-critical family with high degrees.)
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A 2-crossing critical graph in the projective plane, max degree 6r.
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A detail of one of the 2r “tiles” in the graph:
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3 Computational Complexity

Remark. It is (practically) very hard to determine crossing number.

Observation. The problem CrossingNumber(≤ k) is in NP :
Guess a suitable drawing of G, then replace crossings with new vertices, and
test planarity.

. . . . . .

Theorem 3.1. [Garey and Johnson, 1983] CrossingNumber is NP -hard.

Theorem 3.2. [Grohe, 2001] CrossingNumber(≤ k) is in FPT with pa-

rameter k, i.e. solvable in time O(f(k) · n2).

. . . . . .

Our results:

Theorem 3.3. CrossingNumber is NP -hard on simple cubic graphs.

Corollary 3.4. The minor-monotone version of c.n. is also NP -hard.
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NP -reduction from OLA

CrossingNumber is NP -hard on cubic graphs.

via. . .

OptimalLinearArrangement:

Input: An n-vertex graph G, and an integer a.

Question: Is there a bijection α : V (G) → {1, . . . , n} (a linear arrangement

of vertices) such that the weight of α is
∑

uv∈E(G)
|α(u) − α(v)| ≤ a ? (1)

• NP -complete by [Garey and Johnson].

• Used to prove Theorem 3.1 [Garey and Johnson].

• Used (differently) also to prove our Theorem 3.3.

Question: What about a reduction from Planar 3-SAT?

– Tried (reasonably hard) several times, but yet unsuccessful. . .Why?
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4 Sketch of a Proof

For an instance G, a of OLA, construct a graph HG, and test cr(HG). . .

B1 B2

R1 R2 Rn

round boulder . . . n rings . . . round boulder

Boulders – huge, and keeping everything “in place”.

Rings – one for each vertex of G, their order is (like) α.

Spokes – horizontal connections, force rings to lie “between” the boulders.
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Handles for the edges of G are attached to the (above) skeleton as follows:

Xi,j for the edge {i, j} of G

Ri Rj

Lemma 4.1. Let us, for a given graph G on n vertices and m edges, construct

the graph HG as described above. If G has a linear arrangement of weight A,

then

cr(HG) ≤ (s + rn)nt + 2(A + m)t − 4m,

where s + rn is the total number of spokes, and t is the thickness of each ring.
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Converse direction

The following statement, together with Lemma 4.1, validates our reduction.

Proposition 4.2. If an optimal linear arrangement of G has weight A, then

cr(HG) ≥ (s + rn)nt + 2(A + m)t − 8m.

We proceed the proof along the following sequence of claims:

• In the optimal drawing of HG, the boulders B1, B2 are drawn with no
edge crossings.

• In the optimal drawing of HG, each main cycle of every ring Ri is drawn
as a closed curve separating the subdrawing of B1 from that of B2.

B1 B2
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• The rings are drawn (almost) in an order Rα−1(1), . . . , Rα−1(n).

• Drawings of the edge handles can be separated (by curves of some spokes)
into disjoint areas of the plane.

Rα−1(1) Rα−1(4)

• The separated edge handles generate (almost) as many edge crossings as
expected.

Hence we determine the OLA value A for G from

(s + rn)nt + 2(A + m)t − 4m ≥ cr(HG) ≥ (s + rn)nt + 2(A + m)t − 8m.

Petr Hliněný, ACCOTA 2004 12 Crossing Number is Hard for Cubic Graphs


