Petr Hliněný

New almost-planar crossing-critical graph families

Faculty of Informatics, Masaryk University, Brno

> \&
FEI VŠB - TU Ostrava

Czech Republic http://www.fi.muni.cz/~hlineny

Contents

1 Crossing-Critical Graphs 3
Basic introduction of crossing-critical graphs, their usual structure and constructions, their vertex degrees. . .

2 Our "Belt" Construction
New (extended) construction of almost-planar crossing-critical graphs, extending previous [PH, 2001] to get arbitrarily high even degrees.

3 Average Degrees in [4, 6)
New, almost-planar, families of crossing-critical graphs with prescribed rational average degrees.

4 Final Remarks
More thoughts and future research about almost-planar crossing-critical graphs...

1 Crossing-Critical Graphs

What forces high crossing number?

1 Crossing-Critical Graphs

What forces high crossing number?

- Many edges - cf. Euler's formula, and some strong enhancements [Ajtai, Chvátal, Newborn, Szemeredi, 1982; Leighton].

1 Crossing-Critical Graphs

What forces high crossing number?

- Many edges - cf. Euler's formula, and some strong enhancements [Ajtai, Chvátal, Newborn, Szemeredi, 1982; Leighton].
- Structural properties (even with few edges) - but what exactly?

1 Crossing-Critical Graphs

What forces high crossing number?

- Many edges - cf. Euler's formula, and some strong enhancements [Ajtai, Chvátal, Newborn, Szemeredi, 1982; Leighton].
- Structural properties (even with few edges) - but what exactly?

Definition. Graph H is k-crossing-critical
$-\operatorname{cr}(H) \geq k$ and $\operatorname{cr}(H-e)<k$ for all edges $e \in E(H)$.
We study crossing-critical graphs to understand what structural properties force the crossing number of a graph to be large.

1 Crossing-Critical Graphs

What forces high crossing number?

- Many edges - cf. Euler's formula, and some strong enhancements [Ajtai, Chvátal, Newborn, Szemeredi, 1982; Leighton].
- Structural properties (even with few edges) - but what exactly?

Definition. Graph H is k-crossing-critical
$-\operatorname{cr}(H) \geq k$ and $\operatorname{cr}(H-e)<k$ for all edges $e \in E(H)$.
We study crossing-critical graphs to understand what structural properties force the crossing number of a graph to be large.

Remarks:

- 1-crossing-critical graphs are K_{5} and $K_{3,3}$ (up to vertices of degree 2).
- Infinite classes of 3, 2-crossing-critical graphs, [Širáň 84, Kochol 87].
- Many infinite classes of crossing-critical graphs are known today, and they tend to have similar "global" structure.

Constructing crossing-critical graphs

Constructing crossing-critical graphs

Twisted Möbius band: (a classical idea)

Crossed planar belt:
[PH, 2001]

Constructing crossing-critical graphs

Twisted Möbius band: (a classical idea)

Crossed planar belt:
[PH, 2001]

Zip-product: [Bokal, 2005] Composing crossing-critical graphs...

Looking at vertex degrees

- [folklore] Infinite families of simple 3-connected crossing-critical graphs can have average degree in $(3,6]$. (Lower bound by connectivity and graph minors, upper via Euler.)

1993 [Richter and Thomassen]: Are there infinite families of simple 5-regular crossing-critical graphs?

Looking at vertex degrees

- [folklore] Infinite families of simple 3-connected crossing-critical graphs can have average degree in $(3,6]$. (Lower bound by connectivity and graph minors, upper via Euler.)

1993 [Richter and Thomassen]: Are there infinite families of simple 5-regular crossing-critical graphs?

2003 [Salazar]: Infinite families with avg. degree eq. to any rational in $[4,6)$.
2003 [Pinontoan and Richter]: Extending to any rational in $(3.5,6)$.

Looking at vertex degrees

- [folklore] Infinite families of simple 3-connected crossing-critical graphs can have average degree in $(3,6]$. (Lower bound by connectivity and graph minors, upper via Euler.)

1993 [Richter and Thomassen]: Are there infinite families of simple 5-regular crossing-critical graphs?

2003 [Salazar]: Infinite families with avg. degree eq. to any rational in $[4,6)$.
2003 [Pinontoan and Richter]: Extending to any rational in $(3.5,6)$.
2006 [Bokal]: Extending to avg. degree eq. to any rational in $(3,6)$.

Looking at vertex degrees

- [folklore] Infinite families of simple 3-connected crossing-critical graphs can have average degree in $(3,6]$.
(Lower bound by connectivity and graph minors, upper via Euler.)
1993 [Richter and Thomassen]: Are there infinite families of simple 5-regular crossing-critical graphs?

2003 [Salazar]: Infinite families with avg. degree eq. to any rational in $[4,6)$.
2003 [Pinontoan and Richter]: Extending to any rational in $(3.5,6)$.
2006 [Bokal]: Extending to avg. degree eq. to any rational in $(3,6)$.

2006
[Bokal]: Are there infinite families of simple 3-connected crossing-critical graphs having arbitr. number of vertices of degrees other than $3,4,6$?

Looking at vertex degrees

- [folklore] Infinite families of simple 3-connected crossing-critical graphs can have average degree in $(3,6]$.
(Lower bound by connectivity and graph minors, upper via Euler.)
1993 [Richter and Thomassen]: Are there infinite families of simple 5-regular crossing-critical graphs?

2003 [Salazar]: Infinite families with avg. degree eq. to any rational in $[4,6)$.
2003 [Pinontoan and Richter]: Extending to any rational in $(3.5,6)$.
2006 [Bokal]: Extending to avg. degree eq. to any rational in $(3,6)$.

2006 [Bokal]: Are there infinite families of simple 3-connected crossing-critical graphs having arbitr. number of vertices of degrees other than $3,4,6$?

2007 [PH]: YES for all even degrees (even in a very special instance).

Looking at vertex degrees

- [folklore] Infinite families of simple 3 -connected crossing-critical graphs can have average degree in $(3,6]$.
(Lower bound by connectivity and graph minors, upper via Euler.)
1993 [Richter and Thomassen]: Are there infinite families of simple 5-regular crossing-critical graphs?

2003 [Salazar]: Infinite families with avg. degree eq. to any rational in [4, 6).
2003 [Pinontoan and Richter]: Extending to any rational in (3.5, 6).
2006 [Bokal]: Extending to avg. degree eq. to any rational in $(3,6)$.

2006 [Bokal]: Are there infinite families of simple 3-connected crossing-critical graphs having arbitr. number of vertices of degrees other than $3,4,6$?

2007 [PH]: YES for all even degrees (even in a very special instance).

- The case of odd degrees >3 remains open...

2 Our "Belt" Construction

- Constructing simple 3-connected almost-planar crossing-critical graphs (such that deleting one edge leaves them planar).
- Extending the previous construction [PH, 2001] much further...

2 Our "Belt" Construction

- Constructing simple 3-connected almost-planar crossing-critical graphs (such that deleting one edge leaves them planar).
- Extending the previous construction [PH, 2001] much further...

Definition. Crossed k-belt graphs:

- Edge-disj. planar union $C_{1} \cup \ldots \cup C_{k}$, with a 4 -terminal "bridge".
- Forming many disjoint "radial" paths, separating the bridge terminals.
- No vertex of degree >4 on C_{k}, that is, $C_{k} \cap C_{k-2}=\emptyset$.

Getting high-degree vertices

- We start with a "crossed fence" from [PH 2001],

Getting high-degree vertices

- We start with a "crossed fence" from [PH 2001],

- The following modif. produce vertices of degrees $2 k-2,2 k-4, \ldots$

- the resulting graphs are all crossed k-belt graphs.

Crossing-criticality

Proposition 1. Let k be fixed. For every integer m there is a crossed k-belt graph which is simple 3 -connected and which contains more than m vertices of each of even degrees $\ell=4,6,8, \ldots, 2 k-2$.

Crossing-criticality

Proposition 1. Let k be fixed. For every integer m there is a crossed k-belt graph which is simple 3 -connected and which contains more than m vertices of each of even degrees $\ell=4,6,8, \ldots, 2 k-2$.

Theorem 2. For $k \geq 3$, every crossed k-belt graph is k-crossing-critical.
Proof. By induction on k :

- $k=1 \rightarrow$ a subdivision of nonplanar $K_{3,3}$ ($k=2$ - a false statement), $k=3$ - the base case follows from the $k=1$ case.

Crossing-criticality

Proposition 1. Let k be fixed. For every integer m there is a crossed k-belt graph which is simple 3 -connected and which contains more than m vertices of each of even degrees $\ell=4,6,8, \ldots, 2 k-2$.

Theorem 2. For $k \geq 3$, every crossed k-belt graph is k-crossing-critical.
Proof. By induction on k :

- $k=1 \rightarrow$ a subdivision of nonplanar $K_{3,3}$ ($k=2$ - a false statement), $k=3$ - the base case follows from the $k=1$ case.
- If C_{1} is crossed, then remove it, forming a crossed ($k-1$)-belt graph, and continue.

Crossing-criticality

Proposition 1. Let k be fixed. For every integer m there is a crossed k-belt graph which is simple 3 -connected and which contains more than m vertices of each of even degrees $\ell=4,6,8, \ldots, 2 k-2$.

Theorem 2. For $k \geq 3$, every crossed k-belt graph is k-crossing-critical.
Proof. By induction on k :

- $k=1 \rightarrow$ a subdivision of nonplanar $K_{3,3}$ ($k=2$ - a false statement), $k=3$ - the base case follows from the $k=1$ case.
- If C_{1} is crossed, then remove it, forming a crossed ($k-1$)-belt graph, and continue.
- If C_{1} is not crossed, then it forms a face in the optimal drawing. Then the radial paths witness $2 k-2 \quad C_{1}$-ears separating the bridge terminals on C_{1}, forcing too many crossings.

3 Average Degrees in [4, 6)

Theorem 3. For every odd $k>3$ there are infinitely many simple 3-connected crossed k-belt graphs with the average degree equal to any rational value in the interval $\left[4,6-\frac{8}{k+1}\right)$.

3 Average Degrees in [4, 6)

Theorem 3. For every odd $k>3$ there are infinitely many simple 3-connected crossed k-belt graphs with the average degree equal to any rational value in the interval $\left[4,6-\frac{8}{k+1}\right)$.

Proof. We start with the following belt, and apply suitably local splittings...

4 Final Remarks

- Is there a "nice" characterization of almost planar k-crossing-critical graphs? (Can we find it?)

4 Final Remarks

- Is there a "nice" characterization of almost planar k-crossing-critical graphs? (Can we find it?)
- Is it true that (almost?) every almost planar crossing-critical graph has an optimal drawing with all crossings on one edge?

4 Final Remarks

- Is there a "nice" characterization of almost planar k-crossing-critical graphs? (Can we find it?)
- Is it true that (almost?) every almost planar crossing-critical graph has an optimal drawing with all crossings on one edge?
- This is false for non-critical almost planar graphs!

4 Final Remarks

- Is there a "nice" characterization of almost planar k-crossing-critical graphs? (Can we find it?)
- Is it true that (almost?) every almost planar crossing-critical graph has an optimal drawing with all crossings on one edge?
- This is false for non-critical almost planar graphs!
- Can this research help to find a polynomial algorithm for exact crossing number of almost planar graphs?

4 Final Remarks

- Is there a "nice" characterization of almost planar k-crossing-critical graphs? (Can we find it?)
- Is it true that (almost?) every almost planar crossing-critical graph has an optimal drawing with all crossings on one edge?
- This is false for non-critical almost planar graphs!
- Can this research help to find a polynomial algorithm for exact crossing number of almost planar graphs?

Thank you for your attention...

4 Final Remarks

- Is there a "nice" characterization of almost planar k-crossing-critical graphs? (Can we find it?)
- Is it true that (almost?) every almost planar crossing-critical graph has an optimal drawing with all crossings on one edge?
- This is false for non-critical almost planar graphs!
- Can this research help to find a polynomial algorithm for exact crossing number of almost planar graphs?

Thank you for your attention...
Any solutions or counterexamples?

