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1 History of Crossing Number1 History of Crossing Number

A WW II story for start

“There were some kilns where the bricks were made and some open storage
yards where the bricks were stored. All the kilns were connected by rail with
all the storage yards. The bricks were carried on small wheeled trucks to
the storage yards. . . the work was not difficult; the trouble was only at the
crossings. The trucks generally jumped the rails there, and the bricks fell
out of them; in short this caused a lot of trouble and loss of time. . . the
idea occurred to me that this loss of time could have been minimized if the
number of crossings of the rails had been minimized.

But what is the minimum number of crossings?

. . . This problem has become a notoriously difficult unsolved problem.”

Pál Turán, A note of welcome.
Journal of Graph Theory (1977)
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Crossings. . .
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and even more crossings.
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Can you avoid all the crossings?
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The definitionThe definition

Definition. Drawing of a graph G:

– The vertices of G are distinct points,
and every edge e = uv ∈ E(G) is a simple curve joining u to v.

– No edge passes through another vertex,
and no three edges intersect in a common point.

s s
ss

s s
ss

s
s s s
s s s

s s s
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The definitionThe definition

Definition. Drawing of a graph G:

– The vertices of G are distinct points,
and every edge e = uv ∈ E(G) is a simple curve joining u to v.

– No edge passes through another vertex,
and no three edges intersect in a common point.
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s s s

Definition. Crossing number cr(G)
is the smallest number of edge crossings in a drawing of G.



'

&

$

%

'

&

$
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The definitionThe definition

Definition. Drawing of a graph G:

– The vertices of G are distinct points,
and every edge e = uv ∈ E(G) is a simple curve joining u to v.

– No edge passes through another vertex,
and no three edges intersect in a common point.
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Definition. Crossing number cr(G)
is the smallest number of edge crossings in a drawing of G.

Warning. There are slight variations of the definition of crossing number,
some giving different numbers! (Like counting odd-crossing pairs of edges.
[Pelsmajer, Schaeffer, Štefankovič, 2005]. . . )
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2 How to Compute the Crossing Number2 How to Compute the Crossing Number

Observation. The problem CrossingNumber(≤ k) is in NP :
Guess a suit. drawing of G, then replace crossings with new vertices, and test planarity.
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2 How to Compute the Crossing Number2 How to Compute the Crossing Number

Observation. The problem CrossingNumber(≤ k) is in NP :
Guess a suit. drawing of G, then replace crossings with new vertices, and test planarity.
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Theorem 1. [Grohe, 2001] CrossingNumber(≤ k) is in FPT with param-
eter k, i.e. solvable in time O(f(k) · n2).
[Kawarabayashi and Reed, 2007] . . . in time O(f ′(k) · n).
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2 How to Compute the Crossing Number2 How to Compute the Crossing Number

Observation. The problem CrossingNumber(≤ k) is in NP :
Guess a suit. drawing of G, then replace crossings with new vertices, and test planarity.
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Theorem 1. [Grohe, 2001] CrossingNumber(≤ k) is in FPT with param-
eter k, i.e. solvable in time O(f(k) · n2).
[Kawarabayashi and Reed, 2007] . . . in time O(f ′(k) · n).

Practical algorithm. [Chimani, Mutzel, and Bomze, 2008]
A branch & bound approach that can compute exactly the crossing numbers of
“real-world” graphs on up to ∼ 100 vertices.

But, what else?
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Bad newsBad news

Theorem 2. [Garey and Johnson, 1983] CrossingNumber is NP -hard.
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Bad newsBad news

Theorem 2. [Garey and Johnson, 1983] CrossingNumber is NP -hard.

Theorem 3. [PH, 2004] CrossingNumber is NP -complete even on simple
3-connected cubic graphs, and hence also in the minor–monotone variant.

and things are getting much worse now. . .
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Bad newsBad news

Theorem 2. [Garey and Johnson, 1983] CrossingNumber is NP -hard.

Theorem 3. [PH, 2004] CrossingNumber is NP -complete even on simple
3-connected cubic graphs, and hence also in the minor–monotone variant.

and things are getting much worse now. . .

Theorem 4. [Cabello and Mohar, 2010]
CrossingNumber is NP -complete even on almost-planar (near-planar)
graphs, i.e. graphs that result from a planar graph by adding one edge!

(The maximum degree is unbounded in this case, though.)
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Bad newsBad news

Theorem 2. [Garey and Johnson, 1983] CrossingNumber is NP -hard.

Theorem 3. [PH, 2004] CrossingNumber is NP -complete even on simple
3-connected cubic graphs, and hence also in the minor–monotone variant.

and things are getting much worse now. . .

Theorem 4. [Cabello and Mohar, 2010]
CrossingNumber is NP -complete even on almost-planar (near-planar)
graphs, i.e. graphs that result from a planar graph by adding one edge!

(The maximum degree is unbounded in this case, though.)

So, what can be computed efficiently?

• Perhaps, we could compute the crossing number of bounded-degree
almost-planar graphs? (True for cubic almost-pl. by [Riskin, 1996].)
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%Petr Hliněný, SODA 2010 8 Approximating the Crossing Number. . .

Bad newsBad news

Theorem 2. [Garey and Johnson, 1983] CrossingNumber is NP -hard.

Theorem 3. [PH, 2004] CrossingNumber is NP -complete even on simple
3-connected cubic graphs, and hence also in the minor–monotone variant.

and things are getting much worse now. . .

Theorem 4. [Cabello and Mohar, 2010]
CrossingNumber is NP -complete even on almost-planar (near-planar)
graphs, i.e. graphs that result from a planar graph by adding one edge!

(The maximum degree is unbounded in this case, though.)

So, what can be computed efficiently?

• Perhaps, we could compute the crossing number of bounded-degree
almost-planar graphs? (True for cubic almost-pl. by [Riskin, 1996].)

• Or, we may resort to approximations. . .



'

&

$

%

'

&

$
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Approximating the cossing numberApproximating the cossing number

Theorem 5. [Even, Guha and Schieber, 2002]
CrossingNumber can be approximated in polynomial time: cr(G) + |V (G)|
up to a factor of log3 |V (G)| for graphs G of bounded degree.

This result relates to VLSI design problems. . .
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Then a series of constant-factor approximations (in case of bounded degrees):

Theorem 6. [PH and Salazar, 2006] CrossingNumber can be approxi-
mated in linear time up to a factor of ∆(G) for almost-planar graphs G.

[Cabello and Mohar, 2008] . . . factor of b∆(G)/2c.
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Then a series of constant-factor approximations (in case of bounded degrees):

Theorem 6. [PH and Salazar, 2006] CrossingNumber can be approxi-
mated in linear time up to a factor of ∆(G) for almost-planar graphs G.

[Cabello and Mohar, 2008] . . . factor of b∆(G)/2c.

Theorem 7. [Gitler, PH, Leaños and Salazar, 2007]
CrossingNumber can be approximated in polynomial time up to a factor of
9
2∆(G)2 for projective graphs G.

Theorem 8. [PH and Salazar, 2007] CrossingNumber can be approxi-
mated in polynomial time up to a factor of 6∆(G)2 for toroidal graphs G.

(The latter two results assume “sufficiently dense” embeddability of G in the
specified surface, and use a subroutine for computing the edge-width.)
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Then a series of constant-factor approximations (in case of bounded degrees):

Theorem 6. [PH and Salazar, 2006] CrossingNumber can be approxi-
mated in linear time up to a factor of ∆(G) for almost-planar graphs G.

[Cabello and Mohar, 2008] . . . factor of b∆(G)/2c.

Theorem 7. [Gitler, PH, Leaños and Salazar, 2007]
CrossingNumber can be approximated in polynomial time up to a factor of
9
2∆(G)2 for projective graphs G.

Theorem 8. [PH and Salazar, 2007] CrossingNumber can be approxi-
mated in polynomial time up to a factor of 6∆(G)2 for toroidal graphs G.

(The latter two results assume “sufficiently dense” embeddability of G in the
specified surface, and use a subroutine for computing the edge-width.)

Theorem 9. [Chimani, PH and Mutzel, 2008]
CrossingNumber can be approximated in polynomial time up to a factor of
d(x) · b∆(G)/2c for apex graphs G (x is the apex vertex).
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3 New Result(s)3 New Result(s)

Definition. An orientable surface of genus g results from a sphere by adding g
“handles”.

Sphere, torus, double-torus,
triple-torus (in the picture), . . .
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%Petr Hliněný, SODA 2010 11 Approximating the Crossing Number. . .

3 New Result(s)3 New Result(s)

Definition. An orientable surface of genus g results from a sphere by adding g
“handles”.

Sphere, torus, double-torus,
triple-torus (in the picture), . . .

Definition. An embedding of a graph in a surface is a drawing without crossings.
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Main resultMain result

Informally: Graphs of bounded degrees and “densely” embeddable in any fixed
orientable surface have polynomial constant-factor approximation algorithm for
CrossingNumber.
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Main resultMain result

Informally: Graphs of bounded degrees and “densely” embeddable in any fixed
orientable surface have polynomial constant-factor approximation algorithm for
CrossingNumber.

Definition. Dual graph of an embedded graph G – “faces → vertices” G∗.

Definition. Edge-width of an embedded graph G – the shortest length of a
noncontractible cycle in G. (Embedding “density” measure. . . )
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Main resultMain result

Informally: Graphs of bounded degrees and “densely” embeddable in any fixed
orientable surface have polynomial constant-factor approximation algorithm for
CrossingNumber.

Definition. Dual graph of an embedded graph G – “faces → vertices” G∗.

Definition. Edge-width of an embedded graph G – the shortest length of a
noncontractible cycle in G. (Embedding “density” measure. . . )

Theorem 10. Let G be a multigraph embeddable in an orientable surface of
genus g ≥ 1 with nonseparating dual edge-width at least 2g+2∆(G).

The next Algorithm 11 computes a drawing of G in the plane with at most
3 · 23g+2 ·∆(G)2 · cr(G) crossings. Its running time is O(n log n).
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Main resultMain result

Informally: Graphs of bounded degrees and “densely” embeddable in any fixed
orientable surface have polynomial constant-factor approximation algorithm for
CrossingNumber.

Definition. Dual graph of an embedded graph G – “faces → vertices” G∗.

Definition. Edge-width of an embedded graph G – the shortest length of a
noncontractible cycle in G. (Embedding “density” measure. . . )

Theorem 10. Let G be a multigraph embeddable in an orientable surface of
genus g ≥ 1 with nonseparating dual edge-width at least 2g+2∆(G).

The next Algorithm 11 computes a drawing of G in the plane with at most
3 · 23g+2 ·∆(G)2 · cr(G) crossings. Its running time is O(n log n).

Hence this is a constant factor approximation algorithm for CrossingNumber
cr(G) in the case of bounded degrees by ∆ and bounded genus g.

This widely extends our previous Theorems 7 and 8.
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Related mathematical aspectsRelated mathematical aspects

Some deep new math considerations are needed to prove the lower bound on cr(G),
i.e. to relate unknown cr(G) to the number of crossings produced by our algorithm. . .

• Deep considerations of “embedding density” of graphs in surfaces,
and new density estimates related to “surface cutting”.
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Related mathematical aspectsRelated mathematical aspects

Some deep new math considerations are needed to prove the lower bound on cr(G),
i.e. to relate unknown cr(G) to the number of crossings produced by our algorithm. . .

• Deep considerations of “embedding density” of graphs in surfaces,
and new density estimates related to “surface cutting”.

• New useful “embedding density” measure defined – the stretch of G.



'

&

$

%

'

&

$
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Related mathematical aspectsRelated mathematical aspects

Some deep new math considerations are needed to prove the lower bound on cr(G),
i.e. to relate unknown cr(G) to the number of crossings produced by our algorithm. . .

• Deep considerations of “embedding density” of graphs in surfaces,
and new density estimates related to “surface cutting”.

• New useful “embedding density” measure defined – the stretch of G.

• A new technical concept of bipolarity of a subembedding appears very
helpful in the proofs.
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4 Sketch of the Proof4 Sketch of the Proof
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4 Sketch of the Proof4 Sketch of the Proof

The easy side – Algorithmic upper boundThe easy side – Algorithmic upper bound

• Basic idea: iteratively “cut and open” a handle, and redraw the affected
edges through the rest of the graph.
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4 Sketch of the Proof4 Sketch of the Proof

The easy side – Algorithmic upper boundThe easy side – Algorithmic upper bound

• Basic idea: iteratively “cut and open” a handle, and redraw the affected
edges through the rest of the graph.

• Similar to prev. upper bounds on the crossing num. of surface-embedded
graphs, e.g. [Böröczky, Pach, Tóth, 2006] and [Djidjev and Vrt’o, 2006].

Yet, our upper bound is stronger and thus allows for an approximat. alg.
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Algorithm 11. Drawing a surface-embeddable graph in the plane

Given is a nonpl. graph G embeddable in the orientable surface Sg of genus g.

I) We construct an embedding G1 of G in Sg using [Mohar, 1999].
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Algorithm 11. Drawing a surface-embeddable graph in the plane

Given is a nonpl. graph G embeddable in the orientable surface Sg of genus g.

I) We construct an embedding G1 of G in Sg using [Mohar, 1999].

II) For i = 1, 2, . . . , g; we use [Kutz, 2006] to compute, in the dual graph G∗
i ,

a nonseparating dual cycle γi of length ci = ew∗(Gi).
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Algorithm 11. Drawing a surface-embeddable graph in the plane

Given is a nonpl. graph G embeddable in the orientable surface Sg of genus g.

I) We construct an embedding G1 of G in Sg using [Mohar, 1999].

II) For i = 1, 2, . . . , g; we use [Kutz, 2006] to compute, in the dual graph G∗
i ,

a nonseparating dual cycle γi of length ci = ew∗(Gi).
We construct an embedding Gi+1 = Gi/γi by cutting Gi along γi.
(Gi+1 is a spanning subgraph of Gi, and Gi+1 has genus g − i.)
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Algorithm 11. Drawing a surface-embeddable graph in the plane

Given is a nonpl. graph G embeddable in the orientable surface Sg of genus g.

I) We construct an embedding G1 of G in Sg using [Mohar, 1999].

II) For i = 1, 2, . . . , g; we use [Kutz, 2006] to compute, in the dual graph G∗
i ,

a nonseparating dual cycle γi of length ci = ew∗(Gi).
We construct an embedding Gi+1 = Gi/γi by cutting Gi along γi.
(Gi+1 is a spanning subgraph of Gi, and Gi+1 has genus g − i.)

III) Now, Gg+1 is a planar embedding (spanning G !).

For any “missing” edge e = v1v2 ∈ F = E(G) \ E(Gg+1) we compute,
using breadth-first search, a shortest dual path π(v1, v2) between the “cut-
face” incident to v1 and the “cut-face” incident to v2 in G∗

g+1.
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Algorithm 11. Drawing a surface-embeddable graph in the plane

Given is a nonpl. graph G embeddable in the orientable surface Sg of genus g.

I) We construct an embedding G1 of G in Sg using [Mohar, 1999].

II) For i = 1, 2, . . . , g; we use [Kutz, 2006] to compute, in the dual graph G∗
i ,

a nonseparating dual cycle γi of length ci = ew∗(Gi).
We construct an embedding Gi+1 = Gi/γi by cutting Gi along γi.
(Gi+1 is a spanning subgraph of Gi, and Gi+1 has genus g − i.)

III) Now, Gg+1 is a planar embedding (spanning G !).

For any “missing” edge e = v1v2 ∈ F = E(G) \ E(Gg+1) we compute,
using breadth-first search, a shortest dual path π(v1, v2) between the “cut-
face” incident to v1 and the “cut-face” incident to v2 in G∗

g+1.

This can be done such that no two distinct paths π(v1, v2), π(v′1, v
′
2)

intersect more than once.
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Algorithm 11. Drawing a surface-embeddable graph in the plane

Given is a nonpl. graph G embeddable in the orientable surface Sg of genus g.

I) We construct an embedding G1 of G in Sg using [Mohar, 1999].

II) For i = 1, 2, . . . , g; we use [Kutz, 2006] to compute, in the dual graph G∗
i ,

a nonseparating dual cycle γi of length ci = ew∗(Gi).
We construct an embedding Gi+1 = Gi/γi by cutting Gi along γi.
(Gi+1 is a spanning subgraph of Gi, and Gi+1 has genus g − i.)

III) Now, Gg+1 is a planar embedding (spanning G !).

For any “missing” edge e = v1v2 ∈ F = E(G) \ E(Gg+1) we compute,
using breadth-first search, a shortest dual path π(v1, v2) between the “cut-
face” incident to v1 and the “cut-face” incident to v2 in G∗

g+1.

This can be done such that no two distinct paths π(v1, v2), π(v′1, v
′
2)

intersect more than once.

IV) Within Gg+1, we draw every edge e = v1v2 ∈ F “along” the dual path
π = π(v1, v2), crossing the len(π) edges of Gg+1 that are dual to E(π).
We output the resulting drawing G̃ isomorphic to input G.
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The difficult side – Proving a lower boundThe difficult side – Proving a lower bound

Recall; “Algorithm 11 computes R ≤ 3 · 23g+2 · ∆(G)2 · cr(G) crossings”.
Since we have so far no idea what cr(G) should be, we have to lower-estimate
cr(G) based on the run and the results of Algorithm 11.
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The difficult side – Proving a lower boundThe difficult side – Proving a lower bound

Recall; “Algorithm 11 computes R ≤ 3 · 23g+2 · ∆(G)2 · cr(G) crossings”.
Since we have so far no idea what cr(G) should be, we have to lower-estimate
cr(G) based on the run and the results of Algorithm 11.

• Easily,
R ≤ 3 · (2g+1 − 2− g) ·max{len(γi) · `i : i = 1, 2, . . . , g}

where γi is the dual “cut-cycle” at step i,

and `i is the dual distance of the two “cut-faces” in Gi+1.
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The difficult side – Proving a lower boundThe difficult side – Proving a lower bound

Recall; “Algorithm 11 computes R ≤ 3 · 23g+2 · ∆(G)2 · cr(G) crossings”.
Since we have so far no idea what cr(G) should be, we have to lower-estimate
cr(G) based on the run and the results of Algorithm 11.

• Easily,
R ≤ 3 · (2g+1 − 2− g) ·max{len(γi) · `i : i = 1, 2, . . . , g}

where γi is the dual “cut-cycle” at step i,

and `i is the dual distance of the two “cut-faces” in Gi+1.

• The difficult part is now to prove the lower bound

2−2g−1 ·∆(G)−2 ·max{len(γi) · `i : i = 1, 2, . . . , g} ≤ cr(G) . (1)
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5 “Mathematical” Lower Bound5 “Mathematical” Lower Bound

For a rigorous presentation of the proof, the bound (1) is made independent of
the algorithm:

Theorem 12. Let G be a graph embedded in the orientable surface of genus
g ≥ 1 with nonseparating dual edge-width c = ew∗(G) ≥ 2g+2∆(G), and let γ
be any nonseparating dual cycle in G of length c. If the shortest γ-switching
ear in G∗ has length `, then the crossing number of G satisfies

cr(G) ≥ 2−2g−1 ·∆(G)−2 · c` . (2)
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5 “Mathematical” Lower Bound5 “Mathematical” Lower Bound

For a rigorous presentation of the proof, the bound (1) is made independent of
the algorithm:

Theorem 12. Let G be a graph embedded in the orientable surface of genus
g ≥ 1 with nonseparating dual edge-width c = ew∗(G) ≥ 2g+2∆(G), and let γ
be any nonseparating dual cycle in G of length c. If the shortest γ-switching
ear in G∗ has length `, then the crossing number of G satisfies

cr(G) ≥ 2−2g−1 ·∆(G)−2 · c` . (2)

Base case. True for the torus, by [PH and Salazar, 2007] (cf. Theorem 8).

The core idea is to find an Ω(c)× Ω(`) toroidal grid as a minor in G. . .
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Induction on g: higher surfaces

• Our toroidal grid minor is “hiding somewhere” in G, and we want to find
it. So we cut the handles of Sg down to a torus where we discover it.
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Induction on g: higher surfaces

• Our toroidal grid minor is “hiding somewhere” in G, and we want to find
it. So we cut the handles of Sg down to a torus where we discover it.

• Really?
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Induction on g: higher surfaces

• Our toroidal grid minor is “hiding somewhere” in G, and we want to find
it. So we cut the handles of Sg down to a torus where we discover it.

• Really? Although sounding easy, this is much complicated by the fact we
must not cut through our desired toroidal grid!
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Induction on g: higher surfaces

• Our toroidal grid minor is “hiding somewhere” in G, and we want to find
it. So we cut the handles of Sg down to a torus where we discover it.

• Really? Although sounding easy, this is much complicated by the fact we
must not cut through our desired toroidal grid!

• Here we use: stretch(G) = min len(α)· len(β) over all “one-leaping” pairs
of dual cycles in G.
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Induction on g: higher surfaces

• Our toroidal grid minor is “hiding somewhere” in G, and we want to find
it. So we cut the handles of Sg down to a torus where we discover it.

• Really? Although sounding easy, this is much complicated by the fact we
must not cut through our desired toroidal grid!

• Here we use: stretch(G) = min len(α)· len(β) over all “one-leaping” pairs
of dual cycles in G.

First phase – cut some handles to raise the stretch up to Ω(c·`). (difficult!)

Second phase – cut the rest down to a torus (which might destroy a
particualar toroidal grid, but cannot significantly lower the stretch).
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6 Final Remarks6 Final Remarks

• Approximation factor. While the dependency on ∆ is mild (and seems
unavoidable for structural reasons – dual edge-width vs. face-width),
what could be done to reduce the exponential dep. on genus g?
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6 Final Remarks6 Final Remarks

• Approximation factor. While the dependency on ∆ is mild (and seems
unavoidable for structural reasons – dual edge-width vs. face-width),
what could be done to reduce the exponential dep. on genus g?

The exponential dep. on g pops up suddenly at many places and it is un-
avoidable on a local scale, but still, there might be a completely different
approach reducing this to a poly(g) factor. . .
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• Approximation factor. While the dependency on ∆ is mild (and seems
unavoidable for structural reasons – dual edge-width vs. face-width),
what could be done to reduce the exponential dep. on genus g?

The exponential dep. on g pops up suddenly at many places and it is un-
avoidable on a local scale, but still, there might be a completely different
approach reducing this to a poly(g) factor. . .

• Nonorientable surfaces. We believe the same approach will work, but
there are many more complications.
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• Approximation factor. While the dependency on ∆ is mild (and seems
unavoidable for structural reasons – dual edge-width vs. face-width),
what could be done to reduce the exponential dep. on genus g?

The exponential dep. on g pops up suddenly at many places and it is un-
avoidable on a local scale, but still, there might be a completely different
approach reducing this to a poly(g) factor. . .

• Nonorientable surfaces. We believe the same approach will work, but
there are many more complications.

Particularly, a “cheapest” cut though an embedding can now have three
forms: cutting a handle, an antihandle, or a crosscap.
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%Petr Hliněný, SODA 2010 19 Approximating the Crossing Number. . .

6 Final Remarks6 Final Remarks

• Approximation factor. While the dependency on ∆ is mild (and seems
unavoidable for structural reasons – dual edge-width vs. face-width),
what could be done to reduce the exponential dep. on genus g?

The exponential dep. on g pops up suddenly at many places and it is un-
avoidable on a local scale, but still, there might be a completely different
approach reducing this to a poly(g) factor. . .

• Nonorientable surfaces. We believe the same approach will work, but
there are many more complications.

Particularly, a “cheapest” cut though an embedding can now have three
forms: cutting a handle, an antihandle, or a crosscap.

• Density requirement. Our lower bound in Theorem 12 requires suffi-
cient nonseparating dual edge-width to hold true, but the cases of non-
densely embeddable graphs could, perhaps, be independently solved using
“multiple-edge insertion” analogous to Theorem 9 (apex gr. approx).
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