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Faculty of Informatics, Masaryk University
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1 Crossing Number of a Graph1 Crossing Number of a Graph

Definition. Drawing of a graph G:

– The vertices of G are distinct points,
and every edge e = uv ∈ E(G) is a simple curve joining u to v.
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1 Crossing Number of a Graph1 Crossing Number of a Graph

Definition. Drawing of a graph G:

– The vertices of G are distinct points,
and every edge e = uv ∈ E(G) is a simple curve joining u to v.

– No edge passes through another vertex,
and no three edges intersect in a common point.
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1 Crossing Number of a Graph1 Crossing Number of a Graph

Definition. Drawing of a graph G:

– The vertices of G are distinct points,
and every edge e = uv ∈ E(G) is a simple curve joining u to v.

– No edge passes through another vertex,
and no three edges intersect in a common point.

Definition. Crossing number cr(G)

– is the smallest number of edge crossings in a drawing of G.
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1 Crossing Number of a Graph1 Crossing Number of a Graph

Definition. Drawing of a graph G:

– The vertices of G are distinct points,
and every edge e = uv ∈ E(G) is a simple curve joining u to v.

– No edge passes through another vertex,
and no three edges intersect in a common point.

Definition. Crossing number cr(G)

– is the smallest number of edge crossings in a drawing of G.

Warning. There are slight variations of the definition of crossing number,
some giving different numbers! (Like counting odd-crossing pairs of edges.
[Pelsmajer, Schaeffer, Štefankovič, 2005]. . . )
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%Petr Hliněný, TAAGCN 2010, Brno CZ 3 Lower bounds on the crossing num. . . I

Basic computational complexity claims

Remark. It is (practically) very hard to determine crossing number.
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Basic computational complexity claims

Remark. It is (practically) very hard to determine crossing number.

Observation. The problem CrossingNumber(≤ k) is in NP :
Guess a suitable drawing of G, then replace crossings with new vertices, and
test planarity.
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Basic computational complexity claims

Remark. It is (practically) very hard to determine crossing number.

Observation. The problem CrossingNumber(≤ k) is in NP :
Guess a suitable drawing of G, then replace crossings with new vertices, and
test planarity.
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Theorem 1. [Garey and Johnson, 1983] CrossingNumber is NP -hard.
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Basic computational complexity claims

Remark. It is (practically) very hard to determine crossing number.

Observation. The problem CrossingNumber(≤ k) is in NP :
Guess a suitable drawing of G, then replace crossings with new vertices, and
test planarity.
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Theorem 1. [Garey and Johnson, 1983] CrossingNumber is NP -hard.

Fact (sad. . . ). We know of no natural graph class with nontrivial and yet
efficiently computable CrossingNumber problem.
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More on complexity of crossing number

Theorem 2. [Grohe, 2001] CrossingNumber(≤ k) is in FPT with param-
eter k, i.e. solvable in time O(f(k) · n2).

– A beautiful, though totally impractical algorithm,

– now improved by [Kawarabayashi and Reed, 2007] to O(f(k) · n).
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%Petr Hliněný, TAAGCN 2010, Brno CZ 4 Lower bounds on the crossing num. . . I

More on complexity of crossing number

Theorem 2. [Grohe, 2001] CrossingNumber(≤ k) is in FPT with param-
eter k, i.e. solvable in time O(f(k) · n2).

– A beautiful, though totally impractical algorithm,

– now improved by [Kawarabayashi and Reed, 2007] to O(f(k) · n).

Theorem 3. [Even, Guha and Schieber, 2002] CrossingNumber can be
efficiently approximated: cr(G) + |V (G)| up to a factor of log3 |V (G)| for
graphs G of bounded degree.

– This is a quite good and practical approximation, but the result is weak in the
case of small cr(G) (note the +|V (G)| term).
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More on complexity of crossing number

Theorem 2. [Grohe, 2001] CrossingNumber(≤ k) is in FPT with param-
eter k, i.e. solvable in time O(f(k) · n2).

– A beautiful, though totally impractical algorithm,

– now improved by [Kawarabayashi and Reed, 2007] to O(f(k) · n).

Theorem 3. [Even, Guha and Schieber, 2002] CrossingNumber can be
efficiently approximated: cr(G) + |V (G)| up to a factor of log3 |V (G)| for
graphs G of bounded degree.

– This is a quite good and practical approximation, but the result is weak in the
case of small cr(G) (note the +|V (G)| term).

Theorem 4. [PH, 2004] CrossingNumber is NP -complete even on simple
3-connected cubic graphs.

– The reduction by Garey and Johnson created vertices of very high degrees.

– The important cubic case is minor–monotone, and yet the problem remains hard.
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2 Using “Natural” Drawing Approaches2 Using “Natural” Drawing Approaches

We know of no natural graph class with nontrivial and yet
efficiently computable CrossingNumber problem.
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2 Using “Natural” Drawing Approaches2 Using “Natural” Drawing Approaches

We know of no natural graph class with nontrivial and yet
efficiently computable CrossingNumber problem.

So what can we solve?

• Planar graphs – a really trivial case for CrossingNumber. . .
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2 Using “Natural” Drawing Approaches2 Using “Natural” Drawing Approaches

We know of no natural graph class with nontrivial and yet
efficiently computable CrossingNumber problem.

So what can we solve?

• Planar graphs – a really trivial case for CrossingNumber. . .

• What is the next step from triviality?

— Consider planar graphs with one extra edge. . .
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2 Using “Natural” Drawing Approaches2 Using “Natural” Drawing Approaches

We know of no natural graph class with nontrivial and yet
efficiently computable CrossingNumber problem.

So what can we solve?

• Planar graphs – a really trivial case for CrossingNumber. . .

• What is the next step from triviality?

— Consider planar graphs with one extra edge. . .

Theorem 5. [Cabello and Mohar, 2010]
Given a planar graph G and two non-adjacent vertices u, v ∈ V (G), it is
NP -complete to determine the crossing number of G+ uv !

– The reduction by Cabello and Mohar uses unbounded vertex degrees.
So, what if we also bound the degrees?
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• And what about constant factor approximations?

Theorem 6. [PH and GS, 2006] Let G be a planar graph and u, v nonadjacent
vertices of G. Then there is a planar embedding of G to which the edge uv
can be inserted using at most ∆(G) · cr(G + uv) crossings.
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• And what about constant factor approximations?

Theorem 6. [PH and GS, 2006] Let G be a planar graph and u, v nonadjacent
vertices of G. Then there is a planar embedding of G to which the edge uv
can be inserted using at most ∆(G) · cr(G + uv) crossings.

– this gives a useful lower bound on cr(G+ uv). . .

– improved down to factor ∆(G)/2 by [Cabello and Mohar, 2008].
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3 Topological Approximations for CrossingNumber3 Topological Approximations for CrossingNumber

Definition. Face-width of a graph G in Σ is the smallest number of points in
which a Σ-noncontractible loop intersects the drawing of G.
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%Petr Hliněný, TAAGCN 2010, Brno CZ 7 Lower bounds on the crossing num. . . I

3 Topological Approximations for CrossingNumber3 Topological Approximations for CrossingNumber

Definition. Face-width of a graph G in Σ is the smallest number of points in
which a Σ-noncontractible loop intersects the drawing of G.

Graphs in the projective plane

Drawing idea. [Gitler, Leaños, PH and GS, 2007]

• Cut the projective embedding of G at r points (and open it to the plane).

• There are at most s = r · b∆/2c affected edges, and redrawing those
induces at most s2/2 crossings.
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3 Topological Approximations for CrossingNumber3 Topological Approximations for CrossingNumber

Definition. Face-width of a graph G in Σ is the smallest number of points in
which a Σ-noncontractible loop intersects the drawing of G.

Graphs in the projective plane

Drawing idea. [Gitler, Leaños, PH and GS, 2007]

• Cut the projective embedding of G at r points (and open it to the plane).

• There are at most s = r · b∆/2c affected edges, and redrawing those
induces at most s2/2 crossings.

Claim. If G embeds in the projective plane with face-width r, then the
crossing number of G in the plane is at most r2∆(G)2/8.
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3 Topological Approximations for CrossingNumber3 Topological Approximations for CrossingNumber

Definition. Face-width of a graph G in Σ is the smallest number of points in
which a Σ-noncontractible loop intersects the drawing of G.

Graphs in the projective plane

Drawing idea. [Gitler, Leaños, PH and GS, 2007]

• Cut the projective embedding of G at r points (and open it to the plane).

• There are at most s = r · b∆/2c affected edges, and redrawing those
induces at most s2/2 crossings.

Claim. If G embeds in the projective plane with face-width r, then the
crossing number of G in the plane is at most r2∆(G)2/8.

Now a matching lower bound is needed to derive the foll. conclusion. . .

Theorem 7. CrossingNumber of a (sufficiently dense embedded) projective
graph G can be approximated within the factor 4.5∆(G)2.
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The key: Getting a suitable lower-boundThe key: Getting a suitable lower-bound

Theorem 8. [Gitler, Leaños, PH and GS, 2007]
If G embeds in the projective plane with face-width at least r ≥ 6, then the
crossing number of G in the plane is at least r2/36.
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The key: Getting a suitable lower-boundThe key: Getting a suitable lower-bound

Theorem 8. [Gitler, Leaños, PH and GS, 2007]
If G embeds in the projective plane with face-width at least r ≥ 6, then the
crossing number of G in the plane is at least r2/36.

To prove this theorem, we argue:

Claim. Every graph that embeds in the projective plane with face-width r has
a minor isomorphic to the projective diamond grid Pr:
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The key: Getting a suitable lower-boundThe key: Getting a suitable lower-bound

Theorem 8. [Gitler, Leaños, PH and GS, 2007]
If G embeds in the projective plane with face-width at least r ≥ 6, then the
crossing number of G in the plane is at least r2/36.

To prove this theorem, we argue:

Claim. Every graph that embeds in the projective plane with face-width r has
a minor isomorphic to the projective diamond grid Pr:
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Claim. If G has an H-minor and ∆(H) = 4, then cr(G) ≥ 1
4 cr(H).
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Drawing toroidal graphs – the next stepDrawing toroidal graphs – the next step

• Find a “shortest nontrivial cut” of k points on the torus, using an
O(n log n) algorithm of [Kutz 2006] (k = face-width of G).
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Drawing toroidal graphs – the next stepDrawing toroidal graphs – the next step

• Find a “shortest nontrivial cut” of k points on the torus, using an
O(n log n) algorithm of [Kutz 2006] (k = face-width of G).

• After turning the torus into a cylinder, reconnect the cut edges “through”,
producing ≤ (k`+ k2/4) · b∆/2c2 crossings (so, ≤ (3∆2/8) · k`).
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Again: Getting a suitable lower-boundAgain: Getting a suitable lower-bound

Theorem 9. Respecting the above sketch of redrawing a toroidal graph into
the plane,

cr(G) ≥
1

16
· k` , provided k ≥ 16.

k = face-width of G, attained by a loop γ,

` = “γ-switching-width” of G
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Again: Getting a suitable lower-boundAgain: Getting a suitable lower-bound

Theorem 9. Respecting the above sketch of redrawing a toroidal graph into
the plane,

cr(G) ≥
1

16
· k` , provided k ≥ 16.

k = face-width of G, attained by a loop γ,

` = “γ-switching-width” of G

Proof outline:

• Find a large toroidal grid minor H in G, relative to k and `. Precisely,

max (b2k/3c, `) × b2k/3c .
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Again: Getting a suitable lower-boundAgain: Getting a suitable lower-bound

Theorem 9. Respecting the above sketch of redrawing a toroidal graph into
the plane,

cr(G) ≥
1

16
· k` , provided k ≥ 16.

k = face-width of G, attained by a loop γ,

` = “γ-switching-width” of G

Proof outline:

• Find a large toroidal grid minor H in G, relative to k and `. Precisely,

max (b2k/3c, `) × b2k/3c .

• Again, cr(G) ≥ 1
4 cr(H) since ∆(H) = 4.
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Again: Getting a suitable lower-boundAgain: Getting a suitable lower-bound

Theorem 9. Respecting the above sketch of redrawing a toroidal graph into
the plane,

cr(G) ≥
1

16
· k` , provided k ≥ 16.

k = face-width of G, attained by a loop γ,

` = “γ-switching-width” of G

Proof outline:

• Find a large toroidal grid minor H in G, relative to k and `. Precisely,

max (b2k/3c, `) × b2k/3c .

• Again, cr(G) ≥ 1
4 cr(H) since ∆(H) = 4.

• The crossing n. of the p× q toroidal grid (p ≥ q ≥ 3) is ≥ 1
2(q − 2)p.
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Again: Getting a suitable lower-boundAgain: Getting a suitable lower-bound

Theorem 9. Respecting the above sketch of redrawing a toroidal graph into
the plane,

cr(G) ≥
1

16
· k` , provided k ≥ 16.

k = face-width of G, attained by a loop γ,

` = “γ-switching-width” of G

Proof outline:

• Find a large toroidal grid minor H in G, relative to k and `. Precisely,

max (b2k/3c, `) × b2k/3c .

• Again, cr(G) ≥ 1
4 cr(H) since ∆(H) = 4.

• The crossing n. of the p× q toroidal grid (p ≥ q ≥ 3) is ≥ 1
2(q − 2)p.

Theorem 10. CrossingNumber of a (sufficiently dense embedded) toroidal
graph G can be approximated within the factor 6 ∆(G)2.
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4 How to find Large Toroidal Grids4 How to find Large Toroidal Grids

Theorem 11. [de Graaf, Schrijver, 1994] A graph embedded in the torus
contains a minor isomorphic to the s×s–toroidal grid for s = b2fw(G)/3c ≥ 5.
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4 How to find Large Toroidal Grids4 How to find Large Toroidal Grids

Theorem 11. [de Graaf, Schrijver, 1994] A graph embedded in the torus
contains a minor isomorphic to the s×s–toroidal grid for s = b2fw(G)/3c ≥ 5.

This result is best possible, but is it the claim we need?
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4 How to find Large Toroidal Grids4 How to find Large Toroidal Grids

Theorem 11. [de Graaf, Schrijver, 1994] A graph embedded in the torus
contains a minor isomorphic to the s×s–toroidal grid for s = b2fw(G)/3c ≥ 5.

This result is best possible, but is it the claim we need?

NO, we need to “take control” over both dimensions of the toroidal grid minor!

Instead, we prove the following:

Theorem 12. Assume G is embedded in the torus, and the following
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4 How to find Large Toroidal Grids4 How to find Large Toroidal Grids

Theorem 11. [de Graaf, Schrijver, 1994] A graph embedded in the torus
contains a minor isomorphic to the s×s–toroidal grid for s = b2fw(G)/3c ≥ 5.

This result is best possible, but is it the claim we need?

NO, we need to “take control” over both dimensions of the toroidal grid minor!

Instead, we prove the following:

Theorem 12. Assume G is embedded in the torus, and the following

• a collection C1, C2, . . . , Cp of pairw. disjoint and freely hom. cycles in G,

• a collection D1, D2, . . . , Dq of pairw. disjoint and freely hom. cycles in G,

• and D1 is not freely homeomorphic to C1.
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4 How to find Large Toroidal Grids4 How to find Large Toroidal Grids

Theorem 11. [de Graaf, Schrijver, 1994] A graph embedded in the torus
contains a minor isomorphic to the s×s–toroidal grid for s = b2fw(G)/3c ≥ 5.

This result is best possible, but is it the claim we need?

NO, we need to “take control” over both dimensions of the toroidal grid minor!

Instead, we prove the following:

Theorem 12. Assume G is embedded in the torus, and the following

• a collection C1, C2, . . . , Cp of pairw. disjoint and freely hom. cycles in G,

• a collection D1, D2, . . . , Dq of pairw. disjoint and freely hom. cycles in G,

• and D1 is not freely homeomorphic to C1.

Then G contains a minor isomorphic to the p× q–toroidal grid.
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Applying Theorem 12

• As in Thm 9, let γ be a nontriv. loop (on the torus) attaining the face-
width k of G, and σ be the optimal “γ-switching” arc.
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Applying Theorem 12

• As in Thm 9, let γ be a nontriv. loop (on the torus) attaining the face-
width k of G, and σ be the optimal “γ-switching” arc.

• Cut the torus along γ ∪ σ into a rectangle, and then use Menger’s thm
to find the p = ` (=γ-switching-width) cycles C1, C2, . . . , Cp.
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Applying Theorem 12

• As in Thm 9, let γ be a nontriv. loop (on the torus) attaining the face-
width k of G, and σ be the optimal “γ-switching” arc.

• Cut the torus along γ ∪ σ into a rectangle, and then use Menger’s thm
to find the p = ` (=γ-switching-width) cycles C1, C2, . . . , Cp.

• Use Thm 11 [de Graaf, Schrijver] to get the other collection of q =
b2k/3c (k = face-width) cycles D1, D2, . . . , Dq.
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Applying Theorem 12

• As in Thm 9, let γ be a nontriv. loop (on the torus) attaining the face-
width k of G, and σ be the optimal “γ-switching” arc.

• Cut the torus along γ ∪ σ into a rectangle, and then use Menger’s thm
to find the p = ` (=γ-switching-width) cycles C1, C2, . . . , Cp.

• Use Thm 11 [de Graaf, Schrijver] to get the other collection of q =
b2k/3c (k = face-width) cycles D1, D2, . . . , Dq.

• Thus, our lower-bound Thm 9 follows. . .
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Proving Theorem 12

– a really tricky task. . .
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Proving Theorem 12

– a really tricky task. . .

The idea is to iteratively modify the two collections of cycles, until they cross
in an “orderly fashion”. This gives the minor.
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5 Final note: Minor Crossing Number5 Final note: Minor Crossing Number

Definition. Minor crossing number mcr(G)

= min cr(H) over all H having G-minor.
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5 Final note: Minor Crossing Number5 Final note: Minor Crossing Number

Definition. Minor crossing number mcr(G)

= min cr(H) over all H having G-minor.

The same machinery (as above) can be applied here. . .

Drawing algorithm. Producing k`+ k2/4≤ 3k`/2 crossings for a suitable
H having G as a minor.
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%Petr Hliněný, TAAGCN 2010, Brno CZ 14 Lower bounds on the crossing num. . . I

5 Final note: Minor Crossing Number5 Final note: Minor Crossing Number

Definition. Minor crossing number mcr(G)

= min cr(H) over all H having G-minor.

The same machinery (as above) can be applied here. . .

Drawing algorithm. Producing k`+ k2/4≤ 3k`/2 crossings for a suitable
H having G as a minor.

Lower bound. The exactly same argument gives mcr(G) ≥ 1
16
· k`.
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5 Final note: Minor Crossing Number5 Final note: Minor Crossing Number

Definition. Minor crossing number mcr(G)

= min cr(H) over all H having G-minor.

The same machinery (as above) can be applied here. . .

Drawing algorithm. Producing k`+ k2/4≤ 3k`/2 crossings for a suitable
H having G as a minor.

Lower bound. The exactly same argument gives mcr(G) ≥ 1
16
· k`.

Theorem 13. MinorCrossingNumber of a (sufficiently dense embedded)
toroidal graph G can be approximated within the factor of 24.
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5 Final note: Minor Crossing Number5 Final note: Minor Crossing Number

Definition. Minor crossing number mcr(G)

= min cr(H) over all H having G-minor.

The same machinery (as above) can be applied here. . .

Drawing algorithm. Producing k`+ k2/4≤ 3k`/2 crossings for a suitable
H having G as a minor.

Lower bound. The exactly same argument gives mcr(G) ≥ 1
16
· k`.

Theorem 13. MinorCrossingNumber of a (sufficiently dense embedded)
toroidal graph G can be approximated within the factor of 24.

TO BE CONTINUED. . .

Thank you for your attention.
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