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Definition. CR(k) ≡ the problem to draw a graph with ≤ k edge crossings.
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Definition. CR(k) ≡ the problem to draw a graph with ≤ k edge crossings.

– The vertices of G are distinct points in the plane,
and every edge e = uv ∈ E(G) is a simple curve joining u to v.
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Definition. CR(k) ≡ the problem to draw a graph with ≤ k edge crossings.

– The vertices of G are distinct points in the plane,
and every edge e = uv ∈ E(G) is a simple curve joining u to v.

– No edge passes through another vertex,
and no three edges intersect in a common point.

• A very hard algorithmic problem, indeed. . .
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Petr Hliněný, SoCG, Boston, 2016 3 / 14 Crossing Number is Hard for Kernelization

Traditional complexity of CR(k)Traditional complexity of CR(k)

NP-hardness

• The general case (no surprise); [Garey and Johnson, 1983]
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Traditional complexity of CR(k)Traditional complexity of CR(k)

NP-hardness

• The general case (no surprise); [Garey and Johnson, 1983]

• The degree-3 and minor-monotone cases; [PH, 2004]

• With fixed rotation scheme; [Pelsmajer, Schaeffer, Štefankovič, 2007]

• And even for almost-planar (planar graphs plus one edge)!
[Cabello and Mohar, 2010]

Approximations, at least?

• Up to factor log3 |V (G)| (log2 ·) for cr(G)+|V (G)| with bounded degs.;
[Even, Guha and Schieber, 2002]

• No constant factor approximation for some c > 1; [Cabello, 2013].
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Parameterized complexity of CR(k)Parameterized complexity of CR(k)

Definition. Fixed-parameter tractability:

A big problem instance P
k – and a tiny parameter k

– FPT = the class of problems which can be solved in time f(k) · nc.
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k – and a tiny parameter k

– FPT = the class of problems which can be solved in time f(k) · nc.

• Yes, CR(k) is in FPT when parameterized by k:

– [Grohe, 2001] with runtime f(k) · n2,

– [Kawarabayashi and Reed, 2007] with linear f(k) · n.
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Parameterized complexity of CR(k)Parameterized complexity of CR(k)

Definition. Fixed-parameter tractability:

A big problem instance P
k – and a tiny parameter k

– FPT = the class of problems which can be solved in time f(k) · nc.

• Yes, CR(k) is in FPT when parameterized by k:

– [Grohe, 2001] with runtime f(k) · n2,

– [Kawarabayashi and Reed, 2007] with linear f(k) · n.

• For example, [Grohe] starts with removal of “irrelevant vertices”. . .
(preprocessing)
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Going further: PreprocessingGoing further: Preprocessing

Definition. Kernelization:

A big instance P
k

;
in P-time small P ′

equiv. instance

k′ ≤ f ′(k)
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• Actually, it holds

Computable + “Having a kernelization” ≡ FPT

– with a straightforward proof.



page.14
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Going further: PreprocessingGoing further: Preprocessing

Definition. Kernelization:

A big instance P
k

;
in P-time small P ′

equiv. instance

k′ ≤ f ′(k)

• Actually, it holds

Computable + “Having a kernelization” ≡ FPT

– with a straightforward proof.

• The prime question is; how big is the function f ′(k)?

• A polynomial kernel ←→ f ′ is a polynomial.
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2 Polynomial Kernel for CR(k)?2 Polynomial Kernel for CR(k)?

• Recall the concept of polynomial kernelization:

A big instance P
k

;
in P-time small P ′

equiv. instance

k′ ≤ poly(k)
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2 Polynomial Kernel for CR(k)?2 Polynomial Kernel for CR(k)?

• Recall the concept of polynomial kernelization:

A big instance P
k

;
in P-time small P ′

equiv. instance

k′ ≤ poly(k)

• Can we have a polynomial kernel for CR(k)?

– The way existing FPT algorithms for CR(k) work may suggests so.

– There has been great advance in algorithmic graph minors theory
recently.

– And yet. . .

• So, why NOT ?
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No polynomial kernel for CR(k)No polynomial kernel for CR(k)

– a sketch by means of contradiction:

• Imagine a heap of 2o(k) small instances of CR(k)

,
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k
.



page.14
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– a sketch by means of contradiction:

• Imagine a heap of 2o(k) small instances of CR(k)

,

• and make them into one large “OR” composed instance of CR(k)

k
.• Now, kernelize to

k

;
k′ ≤ poly(k) << 2o(k)

.
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No polynomial kernel for CR(k)No polynomial kernel for CR(k)

– a sketch by means of contradiction:

• Imagine a heap of 2o(k) small instances of CR(k)

,

• and make them into one large “OR” composed instance of CR(k)

k
.• Now, kernelize to

k

;
k′ ≤ poly(k) << 2o(k)

.

• What does this mean? Most of orig. instances have no bit in the kernel!

Have some of them been solved? Unlikely in poly(2o(k)) time. . .
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Definition. Let L be an (NP-hard) problem. Consider that,

• for arbitrary instances x1, x2, . . . , xt of L (of “related type”),
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The formal tool: Or-cross-compositionThe formal tool: Or-cross-composition

Definition. Let L be an (NP-hard) problem. Consider that,

• for arbitrary instances x1, x2, . . . , xt of L (of “related type”),

• we can, in time poly(|x1|+ . . . |xt|), compute parameterized (y, k) of P
– such that k ≤ poly( max |xi|+ log t), and

– (y, k) ∈ P if and only if xi ∈ L for some 1 ≤ i ≤ t.

Then we say that L has an or-cross-composition into P.

Theorem 1. (Bodlaender, Jansen and Kratsch 2014)
If an NP-hard language L has an or-cross-composition into the parameterized
problem P, then P does not admit a polynomial kernel unless NP⊆ coNP/poly.
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Though, how to compose CR(k)?Though, how to compose CR(k)?

• Recall;

t×

k

;

of CR(k).
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Though, how to compose CR(k)?Though, how to compose CR(k)?

• Recall;

t×

k

;

of CR(k).

• If every instance is nontrivial, then it likely contributes ≥ 1 crossing
to the composition, and hence k = Ω(t) > poly(log t).

• Does not work straightforwardly yet. . .
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3 CR(k) for Twisted Planar Tiles3 CR(k) for Twisted Planar Tiles

• Drawing stretched between the left and right walls of a “tile”:

;

planar tile twisted tile
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• TPT -CR(k) ≡ problem to draw a twisted planar tile with ≤ k crossings.
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3 CR(k) for Twisted Planar Tiles3 CR(k) for Twisted Planar Tiles

• Drawing stretched between the left and right walls of a “tile”:

;

planar tile twisted tile

• TPT -CR(k) ≡ problem to draw a twisted planar tile with ≤ k crossings.

• Tiles (and specially twisted planar tiles) have been considered for long
time in crossing number research. . .

But, no complexity results published so far.
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RESULT #1: TPT -CR(k) is NP-hardRESULT #1: TPT -CR(k) is NP-hard

• We borrow the construction from [Cabello and Mohar, 2013]:

(Originally for so called anchored crossing number.)

planarG1

planar G2

Q
;
twist

G1G2 overlap

Q

Q a “very thick” red path
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RESULT #1: TPT -CR(k) is NP-hardRESULT #1: TPT -CR(k) is NP-hard

• We borrow the construction from [Cabello and Mohar, 2013]:

(Originally for so called anchored crossing number.)

planarG1

planar G2

Q
;
twist

G1G2 overlap

Q

Q a “very thick” red path

• → Crossing minimization of the “overlap picture” is NP-hard
(in traditional complexity).
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RESULT #2: TPT -CR(k) is Or-composableRESULT #2: TPT -CR(k) is Or-composable

• A high-level “picture proof”:
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RESULT #2: TPT -CR(k) is Or-composableRESULT #2: TPT -CR(k) is Or-composable

• A high-level “picture proof”:

↓

, or

, or
. . . . . . . . .

• A schematic realization, ensuring that a “full twist” happens at once:

very thickQ

G1
1

G2
1

G2
2

G1
2

G1
3

G2
3

G2
4

G1
4 l

G1
5

G2
5
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CONCLUSION: No polynomial kernel for CR(k)CONCLUSION: No polynomial kernel for CR(k)

• So far, we have proved that TPT -CR(k) has no polynomial kernel.
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composed problem into any other target problem. . .
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CONCLUSION: No polynomial kernel for CR(k)CONCLUSION: No polynomial kernel for CR(k)

• So far, we have proved that TPT -CR(k) has no polynomial kernel.

• Though, the cross-composition framework allows for “embedding” of the
composed problem into any other target problem. . .

• We hence embed the tiles into an ordinary CR(k) instance:

a1

a2 a3

a4

• Note; the resulting graph is again almost-planar.
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4 Final Remarks4 Final Remarks

• Crossing minimization is NP-hard also under other restrictions, e.g.

– for cubic graphs, or graphs with fixed (prescribed) rotation system.
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;
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4 Final Remarks4 Final Remarks

• Crossing minimization is NP-hard also under other restrictions, e.g.

– for cubic graphs, or graphs with fixed (prescribed) rotation system.

• Our construction is incompatible with these restrictions:

;
twist

• Yet we expect the same to be true in the other cases:

Conjecture. The problem CR-rot(k), asking for a drawing with ≤ k crossings
under the restriction of a given rotation system, has no polynomial kernel.

Consequently, CR(k) has no polynomial kernel even for cubic graphs.
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