Crossing Number is Hard for Kernelization

Petr Hliněný

Faculty of Informatics, Masaryk University
Brno, Czech Republic
http://www.fi.muni.cz/~hlineny
joint work with Marek Derňár

1 Crossing Minimization is Hard

1 Crossing Minimization is Hard

Definition. $\boldsymbol{C R}(\boldsymbol{k}) \equiv$ the problem to draw a graph with $\leq k$ edge crossings.

1 Crossing Minimization is Hard

Definition. $\boldsymbol{C R}(\boldsymbol{k}) \equiv$ the problem to draw a graph with $\leq k$ edge crossings.

- The vertices of G are distinct points in the plane, and every edge $e=u v \in E(G)$ is a simple curve joining u to v.

1 Crossing Minimization is Hard

Definition. $\boldsymbol{C R}(\boldsymbol{k}) \equiv$ the problem to draw a graph with $\leq k$ edge crossings.

- The vertices of G are distinct points in the plane, and every edge $e=u v \in E(G)$ is a simple curve joining u to v.
- No edge passes through another vertex, and no three edges intersect in a common point.
- A very hard algorithmic problem, indeed. . .

Traditional complexity of $C R(k)$

NP-hardness

- The general case (no surprise); [Garey and Johnson, 1983]

Traditional complexity of $C R(k)$

NP-hardness

- The general case (no surprise); [Garey and Johnson, 1983]
- The degree-3 and minor-monotone cases; [PH, 2004]

Traditional complexity of $C R(k)$

NP-hardness

- The general case (no surprise); [Garey and Johnson, 1983]
- The degree-3 and minor-monotone cases; [PH, 2004]
- With fixed rotation scheme; [Pelsmajer, Schaeffer, Štefankovič, 2007]

Traditional complexity of $C R(k)$

NP-hardness

- The general case (no surprise); [Garey and Johnson, 1983]
- The degree-3 and minor-monotone cases; [PH, 2004]
- With fixed rotation scheme; [Pelsmajer, Schaeffer, Štefankovič, 2007]
- And even for almost-planar (planar graphs plus one edge)!
[Cabello and Mohar, 2010]

Traditional complexity of $C R(k)$

NP-hardness

- The general case (no surprise); [Garey and Johnson, 1983]
- The degree-3 and minor-monotone cases; [PH, 2004]
- With fixed rotation scheme; [Pelsmajer, Schaeffer, Štefankovič, 2007]
- And even for almost-planar (planar graphs plus one edge)!
[Cabello and Mohar, 2010]
Approximations, at least?
- Up to factor $\log ^{3}|V(G)|\left(\log ^{2} \cdot\right)$ for $\operatorname{cr}(G)+|V(G)|$ with bounded degs.;
[Even, Guha and Schieber, 2002]

Traditional complexity of $C R(k)$

NP-hardness

- The general case (no surprise); [Garey and Johnson, 1983]
- The degree-3 and minor-monotone cases; [PH, 2004]
- With fixed rotation scheme; [Pelsmajer, Schaeffer, Štefankovič, 2007]
- And even for almost-planar (planar graphs plus one edge)!
[Cabello and Mohar, 2010]
Approximations, at least?
- Up to factor $\log ^{3}|V(G)|\left(\log ^{2} \cdot\right)$ for $\operatorname{cr}(G)+|V(G)|$ with bounded degs.; [Even, Guha and Schieber, 2002]
- No constant factor approximation for some $c>1$; [Cabello, 2013].

Parameterized complexity of $C R(k)$

Definition. Fixed-parameter tractability:

- FPT $=$ the class of problems which can be solved in time $f(k) \cdot n^{c}$.

Parameterized complexity of $C R(k)$

Definition. Fixed-parameter tractability:

- $F P T=$ the class of problems which can be solved in time $f(k) \cdot n^{c}$.
- Yes, $C R(k)$ is in FPT when parameterized by k :
- [Grohe, 2001] with runtime $f(k) \cdot n^{2}$,
- [Kawarabayashi and Reed, 2007] with linear $f(k) \cdot n$.

Parameterized complexity of $C R(k)$

Definition. Fixed-parameter tractability:

- FPT $=$ the class of problems which can be solved in time $f(k) \cdot n^{c}$.
- Yes, $C R(k)$ is in FPT when parameterized by k :
- [Grohe, 2001] with runtime $f(k) \cdot n^{2}$,
- [Kawarabayashi and Reed, 2007] with linear $f(k) \cdot n$.
- For example, [Grohe] starts with removal of "irrelevant vertices"... (preprocessing)

Going further: Preprocessing

Definition. Kernelization:
equiv. instance

small $P^{\prime} \leq f^{\prime}(k)$

Going further: Preprocessing

Definition. Kernelization:
equiv. instance

A big instance P

- Actually, it holds

Computable + "Having a kernelization" \equiv FPT

- with a straightforward proof.

Going further: Preprocessing

Definition. Kernelization:
equiv. instance

A big instance P

- Actually, it holds

Computable + "Having a kernelization" \equiv FPT

- with a straightforward proof.
- The prime question is; how big is the function $f^{\prime}(k)$?
- A polynomial kernel $\longleftrightarrow f^{\prime}$ is a polynomial.

2 Polynomial Kernel for $\operatorname{CR}(k)$?

- Recall the concept of polynomial kernelization:
equiv. instance

A big instance P

2 Polynomial Kernel for $\operatorname{CR}(k)$?

- Recall the concept of polynomial kernelization:
equiv. instance
A big instance P

- Can we have a polynomial kernel for $C R(k)$?
- The way existing FPT algorithms for $C R(k)$ work may suggests so.

2 Polynomial Kernel for $\operatorname{CR}(k)$?

- Recall the concept of polynomial kernelization:
equiv. instance
A big instance P (k) $\xrightarrow[\text { in P-time }]{\rightarrow} \quad k^{\prime} \leq \operatorname{pmall} P^{\prime}(k)$
- Can we have a polynomial kernel for $C R(k)$?
- The way existing FPT algorithms for $C R(k)$ work may suggests so.
- There has been great advance in algorithmic graph minors theory recently.

2 Polynomial Kernel for $\operatorname{CR}(k)$?

- Recall the concept of polynomial kernelization:
equiv. instance
A big instance P (k) $\xrightarrow[\text { in P-time }]{\rightarrow} \quad k^{\prime} \leq \operatorname{pmall} P^{\prime}(k)$
- Can we have a polynomial kernel for $C R(k)$?
- The way existing FPT algorithms for $C R(k)$ work may suggests so.
- There has been great advance in algorithmic graph minors theory recently.
- And yet...
- So, why NOT?

No polynomial kernel for $\boldsymbol{C R}(k)$

- a sketch by means of contradiction:
- Imagine a heap of $2^{o(k)}$ small instances of $C R(k)$

No polynomial kernel for $\boldsymbol{C R}(k)$

- a sketch by means of contradiction:
- Imagine a heap of $2^{o(k)}$ small instances of $C R(k)$

- and make them into one large "OR" composed instance of $C R(k)$

No polynomial kernel for $\boldsymbol{C R}(k)$

- a sketch by means of contradiction:
- Imagine a heap of $2^{o(k)}$ small instances of $C R(k)$
\square

- and make them into one large " $O R^{\prime \prime}$ composed instance of $C R(k)$

- Now, kernelize to

$$
\underbrace{3 / k^{\prime}} \leq \operatorname{poly}(k) \ll 2^{o(k)}
$$

No polynomial kernel for $\boldsymbol{C R}(k)$

- a sketch by means of contradiction:
- Imagine a heap of $2^{o(k)}$ small instances of $C R(k)$
$>$

\geqq

- and make them into one large " $O R^{\prime \prime}$ composed instance of $C R(k)$

- Now, kernelize to

$$
\underbrace{N / 2}_{\left(k^{\prime}\right)} \leq \operatorname{poly}(k) \ll 2^{o(k)}
$$

- What does this mean? Most of orig. instances have no bit in the kernel! Have some of them been solved? Unlikely in $\operatorname{poly}\left(2^{o(k)}\right)$ time. . .

The formal tool: OR-cross-composition

Definition. Let \mathcal{L} be an (NP-hard) problem. Consider that,

- for arbitrary instances $x_{1}, x_{2}, \ldots, x_{t}$ of \mathcal{L} (of "related type"),

The formal tool: OR-cross-composition

Definition. Let \mathcal{L} be an (NP-hard) problem. Consider that,

- for arbitrary instances $x_{1}, x_{2}, \ldots, x_{t}$ of \mathcal{L} (of "related type"),
- we can, in time poly $\left(\left|x_{1}\right|+\ldots\left|x_{t}\right|\right)$, compute parameterized (y, k) of \mathcal{P}
- such that $k \leq \operatorname{poly}\left(\max \left|x_{i}\right|+\log t\right)$, and

The formal tool: OR-cross-composition

Definition. Let \mathcal{L} be an (NP-hard) problem. Consider that,

- for arbitrary instances $x_{1}, x_{2}, \ldots, x_{t}$ of \mathcal{L} (of "related type"),
- we can, in time poly $\left(\left|x_{1}\right|+\ldots\left|x_{t}\right|\right)$, compute parameterized (y, k) of \mathcal{P}
- such that $k \leq \operatorname{poly}\left(\max \left|x_{i}\right|+\log t\right)$, and
- $(y, k) \in \mathcal{P}$ if and only if $x_{i} \in \mathcal{L}$ for some $1 \leq i \leq t$.

Then we say that \mathcal{L} has an or-cross-composition into \mathcal{P}.

The formal tool: Or-cross-composition

Definition. Let \mathcal{L} be an (NP-hard) problem. Consider that,

- for arbitrary instances $x_{1}, x_{2}, \ldots, x_{t}$ of \mathcal{L} (of "related type"),
- we can, in time poly $\left(\left|x_{1}\right|+\ldots\left|x_{t}\right|\right)$, compute parameterized (y, k) of \mathcal{P}
- such that $k \leq \operatorname{poly}\left(\max \left|x_{i}\right|+\log t\right)$, and
- $(y, k) \in \mathcal{P}$ if and only if $x_{i} \in \mathcal{L}$ for some $1 \leq i \leq t$.

Then we say that \mathcal{L} has an or-cross-composition into \mathcal{P}.
Theorem 1. (Bodlaender, Jansen and Kratsch 2014)
If an NP-hard language \mathcal{L} has an OR-cross-composition into the parameterized problem \mathcal{P}, then \mathcal{P} does not admit a polynomial kernel unless NP \subseteq coNP/poly.

Though, how to compose $C R(k)$?

- Recall;

$$
t \times
$$

\square

of $C R(k)$.

Though, how to compose $C R(k)$?

- Recall;
$t \times \boxtimes$

\boxtimes

$$
\geqq
$$

\geqq

of $C R(k)$.

- If every instance \boxtimes is nontrivial, then it likely contributes ≥ 1 crossing to the composition, and hence $k=\Omega(t)>\operatorname{poly}(\log t)$.
- Does not work straightforwardly yet. . .

$3 \boldsymbol{C R}(k)$ for Twisted Planar Tiles

- Drawing stretched between the left and right walls of a "tile":

planar tile

twisted tile

$3 C R(k)$ for Twisted Planar Tiles

- Drawing stretched between the left and right walls of a "tile":

planar tile

twisted tile
- TPT-CR $(k) \equiv$ problem to draw a twisted planar tile with $\leq k$ crossings.

$3 \boldsymbol{C R}(k)$ for Twisted Planar Tiles

- Drawing stretched between the left and right walls of a "tile":

planar tile

twisted tile
- TPT-CR $(k) \equiv$ problem to draw a twisted planar tile with $\leq k$ crossings.
- Tiles (and specially twisted planar tiles) have been considered for long time in crossing number research...

But, no complexity results published so far.

RESULT \#1: TPT-CR(k) is NP-hard

- We borrow the construction from [Cabello and Mohar, 2013]:
(Originally for so called anchored crossing number.)

Q a "very thick" red path

RESULT \#1: TPT-CR(k) is NP-hard

- We borrow the construction from [Cabello and Mohar, 2013]:
(Originally for so called anchored crossing number.)

Q a "very thick" red path
- \rightarrow Crossing minimization of the "overlap picture" is NP-hard (in traditional complexity).

RESULT \#2: TPT-CR(k) is Or-composable

- A high-level "picture proof":

RESULT \#2: $T P T-C R(k)$ is Or-composable

- A high-level "picture proof":

RESULT \#2: $T P T-C R(k)$ is Or-composable

- A high-level "picture proof":

- A schematic realization, ensuring that a "full twist" happens at once:

CONCLUSION: No polynomial kernel for $\boldsymbol{C R}(\boldsymbol{k})$

- So far, we have proved that $T P T-C R(k)$ has no polynomial kernel.

CONCLUSION: No polynomial kernel for $\boldsymbol{C R}(\boldsymbol{k})$

- So far, we have proved that $T P T-C R(k)$ has no polynomial kernel.
- Though, the cross-composition framework allows for "embedding" of the composed problem into any other target problem...

CONCLUSION: No polynomial kernel for $C R(k)$

- So far, we have proved that $T P T-C R(k)$ has no polynomial kernel.
- Though, the cross-composition framework allows for "embedding" of the composed problem into any other target problem...
- We hence embed the tiles into an ordinary $C R(k)$ instance:

- Note; the resulting graph is again almost-planar.

4 Final Remarks

- Crossing minimization is NP-hard also under other restrictions, e.g.
- for cubic graphs, or graphs with fixed (prescribed) rotation system.

4 Final Remarks

- Crossing minimization is NP-hard also under other restrictions, e.g.
- for cubic graphs, or graphs with fixed (prescribed) rotation system.
- Our construction is incompatible with these restrictions:

4 Final Remarks

- Crossing minimization is NP-hard also under other restrictions, e.g.
- for cubic graphs, or graphs with fixed (prescribed) rotation system.
- Our construction is incompatible with these restrictions:

- Yet we expect the same to be true in the other cases:

Conjecture. The problem $C R$-ROT (k), asking for a drawing with $\leq k$ crossings under the restriction of a given rotation system, has no polynomial kernel.

Consequently, $C R(k)$ has no polynomial kernel even for cubic graphs.

