

Crossing Number is Hard for Kernelization

Petr Hliněný

Faculty of Informatics, Masaryk University Brno, Czech Republic http://www.fi.muni.cz/~hlineny

joint work with Marek Derňár

Definition. $CR(k) \equiv$ the problem to draw a graph with $\leq k$ edge crossings.

Definition. $CR(k) \equiv$ the problem to draw a graph with $\leq k$ edge crossings.

- The vertices of G are distinct points in the plane, and every edge $e = uv \in E(G)$ is a simple curve joining u to v.

Definition. $CR(k) \equiv$ the problem to draw a graph with $\leq k$ edge crossings.

- The vertices of G are distinct points in the plane, and every edge $e = uv \in E(G)$ is a simple curve joining u to v.
- No edge passes through another vertex, and no three edges intersect in a common point.
- A very hard algorithmic problem, indeed...

NP-hardness

• The general case (no surprise); [Garey and Johnson, 1983]

NP-hardness

- The general case (no surprise); [Garey and Johnson, 1983]
- The degree-3 and *minor-monotone* cases; [PH, 2004]

NP-hardness

- The general case (no surprise); [Garey and Johnson, 1983]
- The degree-3 and *minor-monotone* cases; [PH, 2004]
- With fixed rotation scheme; [Pelsmajer, Schaeffer, Štefankovič, 2007]

NP-hardness

- The general case (no surprise); [Garey and Johnson, 1983]
- The degree-3 and *minor-monotone* cases; [PH, 2004]
- With fixed rotation scheme; [Pelsmajer, Schaeffer, Štefankovič, 2007]
- And even for *almost-planar* (planar graphs plus one edge)!
 [Cabello and Mohar, 2010]

NP-hardness

- The general case (no surprise); [Garey and Johnson, 1983]
- The degree-3 and *minor-monotone* cases; [PH, 2004]
- With fixed rotation scheme; [Pelsmajer, Schaeffer, Štefankovič, 2007]
- And even for *almost-planar* (planar graphs plus one edge)!
 [Cabello and Mohar, 2010]

Approximations, at least?

• Up to factor $\log^3 |V(G)| (\log^2 \cdot)$ for cr(G) + |V(G)| with bounded degs.; [Even, Guha and Schieber, 2002]

NP-hardness

- The general case (no surprise); [Garey and Johnson, 1983]
- The degree-3 and *minor-monotone* cases; [PH, 2004]
- With fixed rotation scheme; [Pelsmajer, Schaeffer, Štefankovič, 2007]
- And even for *almost-planar* (planar graphs plus one edge)!
 [Cabello and Mohar, 2010]

Approximations, at least?

- Up to factor $\log^3 |V(G)| (\log^2 \cdot)$ for cr(G) + |V(G)| with bounded degs.; [Even, Guha and Schieber, 2002]
- No constant factor approximation for some c > 1; [Cabello, 2013].

- *FPT* = the class of problems which can be solved in time $f(k) \cdot n^c$.

- FPT = the class of problems which can be solved in time $f(k) \cdot n^c$.

• Yes, CR(k) is in FPT when parameterized by k:

- [Grohe, 2001] with runtime $f(k) \cdot n^2$,

- [Kawarabayashi and Reed, 2007] with linear $f(k) \cdot n$.

- FPT = the class of problems which can be solved in time $f(k) \cdot n^c$.
- Yes, CR(k) is in FPT when parameterized by k:
 - [Grohe, 2001] with runtime $f(k) \cdot n^2$,
 - [Kawarabayashi and Reed, 2007] with linear $f(k) \cdot n$.
- For example, [Grohe] starts with removal of "irrelevant vertices"... (preprocessing)

Going further: Preprocessing

Definition. Kernelization:

equiv. instance

small P^\prime

k'

Going further: Preprocessing

Definition. Kernelization:

• Actually, it holds

Computable + "Having a kernelization" \equiv FPT

- with a straightforward proof.

Going further: Preprocessing

Definition. Kernelization:

• Actually, it holds

Computable + "Having a kernelization" \equiv FPT

- with a straightforward proof.

- The prime question is; how big is the function f'(k)?
- A polynomial kernel $\longleftrightarrow f'$ is a polynomial.

2 Polynomial Kernel for CR(k)?

• Recall the concept of polynomial kernelization:

2 Polynomial Kernel for CR(k)? • Recall the concept of polynomial kernelization: equiv. instanceA big instance Pk in P-time $small P'(k') \leq poly(k)$

- Can we have a polynomial kernel for CR(k)?
 - The way existing FPT algorithms for CR(k) work may suggests so.

2 Polynomial Kernel for CR(k)?

• Recall the concept of polynomial kernelization:

- Can we have a polynomial kernel for CR(k)?
 - The way existing FPT algorithms for CR(k) work may suggests so.
 - There has been great advance in algorithmic graph minors theory recently.

2 Polynomial Kernel for CR(k)?

• Recall the concept of polynomial kernelization:

- Can we have a polynomial kernel for CR(k)?
 - The way existing FPT algorithms for CR(k) work may suggests so.
 - There has been great advance in algorithmic graph minors theory recently.
 - And yet. . .
- So, why NOT?

No polynomial kernel for CR(k)

- a sketch by means of contradiction:

• Imagine a heap of $2^{o(k)}$ small instances of CR(k)

No polynomial kernel for CR(k)

- a sketch by means of contradiction:

• Imagine a heap of $2^{o(k)}$ small instances of CR(k)

• and make them into one large "OR" composed instance of CR(k)

Have some of them been solved? Unlikely in $poly(2^{o(k)})$ time...

Definition. Let \mathcal{L} be an (NP-hard) problem. Consider that,

• for arbitrary instances x_1, x_2, \ldots, x_t of \mathcal{L} (of "related type"),

Definition. Let \mathcal{L} be an (NP-hard) problem. Consider that,

- for arbitrary instances x_1, x_2, \ldots, x_t of \mathcal{L} (of "related type"),
- we can, in time $poly(|x_1| + ... |x_t|)$, compute parameterized (y,k) of \mathcal{P}

- such that $k \leq poly(\max |x_i| + \log t)$, and

Definition. Let \mathcal{L} be an (NP-hard) problem. Consider that,

- for arbitrary instances x_1, x_2, \ldots, x_t of \mathcal{L} (of "related type"),
- we can, in time $poly(|x_1| + ... |x_t|)$, compute parameterized (y,k) of \mathcal{P}
 - such that $k \leq poly(\max |x_i| + \log t)$, and
 - $(y,k) \in \mathcal{P}$ if and only if $x_i \in \mathcal{L}$ for some $1 \leq i \leq t$.

Then we say that \mathcal{L} has an OR-cross-composition into \mathcal{P} .

Definition. Let \mathcal{L} be an (NP-hard) problem. Consider that,

- for arbitrary instances x_1, x_2, \ldots, x_t of \mathcal{L} (of "related type"),
- we can, in time $poly(|x_1| + ... |x_t|)$, compute parameterized (y,k) of \mathcal{P}
 - such that $k \leq poly(\max |x_i| + \log t)$, and
 - $(y,k) \in \mathcal{P}$ if and only if $x_i \in \mathcal{L}$ for some $1 \leq i \leq t$.

Then we say that \mathcal{L} has an OR-cross-composition into \mathcal{P} .

Theorem 1. (Bodlaender, Jansen and Kratsch 2014) If an NP-hard language \mathcal{L} has an OR-cross-composition into the parameterized problem \mathcal{P} , then \mathcal{P} does not admit a polynomial kernel unless NP \subseteq coNP/poly.

Though, how to compose CR(k)?

• Recall;

Though, how to compose CR(k)?

• Recall;

- If every instance is nontrivial, then it likely contributes ≥ 1 crossing to the composition, and hence k = Ω(t) > poly(log t).
- Does not work straightforwardly yet...

3 CR(k) for Twisted Planar Tiles

• Drawing stretched between the left and right walls of a "tile":

3 CR(k) for Twisted Planar Tiles

• Drawing stretched between the left and right walls of a "tile":

• $TPT-CR(k) \equiv$ problem to draw a twisted planar tile with $\leq k$ crossings.

3 CR(k) for Twisted Planar Tiles

• Drawing stretched between the left and right walls of a "tile":

- $TPT-CR(k) \equiv$ problem to draw a twisted planar tile with $\leq k$ crossings.
- Tiles (and specially twisted planar tiles) have been considered for long time in crossing number research...
 - But, no complexity results published so far.

RESULT #1: TPT-CR(k) is NP-hard

• We borrow the construction from [Cabello and Mohar, 2013]: (Originally for so called *anchored crossing number*.)

RESULT #1: TPT-CR(k) is NP-hard

• We borrow the construction from [Cabello and Mohar, 2013]: (Originally for so called *anchored crossing number*.)

 → Crossing minimization of the "overlap picture" is NP-hard (in traditional complexity).

RESULT #2: TPT-CR(k) is OR-composable

• A high-level "picture proof":

RESULT #2: TPT-CR(k) is OR-composable

• A high-level "picture proof":

.

RESULT #2: TPT-CR(k) is OR-composable

• A high-level "picture proof":

• A schematic realization, ensuring that a "full twist" happens at once:

CONCLUSION: No polynomial kernel for CR(k)

• So far, we have proved that TPT-CR(k) has no polynomial kernel.

CONCLUSION: No polynomial kernel for CR(k)

- So far, we have proved that TPT-CR(k) has no polynomial kernel.
- Though, the cross-composition framework allows for "embedding" of the composed problem into any other target problem...

CONCLUSION: No polynomial kernel for CR(k)

- So far, we have proved that TPT-CR(k) has no polynomial kernel.
- Though, the cross-composition framework allows for "embedding" of the composed problem into any other target problem...
- We hence embed the tiles into an ordinary CR(k) instance:

• Note; the resulting graph is again almost-planar.

4 Final Remarks

- Crossing minimization is NP-hard also under other restrictions, e.g.
 - for cubic graphs, or graphs with fixed (prescribed) rotation system.

4 Final Remarks

- Crossing minimization is NP-hard also under other restrictions, e.g.
 - for cubic graphs, or graphs with fixed (prescribed) rotation system.
- Our construction is incompatible with these restrictions:

4 Final Remarks

- Crossing minimization is NP-hard also under other restrictions, e.g.
 - for cubic graphs, or graphs with fixed (prescribed) rotation system.
- Our construction is incompatible with these restrictions:

• Yet we expect the same to be true in the other cases:

Conjecture. The problem CR-ROT(k), asking for a drawing with $\leq k$ crossings under the restriction of a given rotation system, has no polynomial kernel. Consequently, CR(k) has no polynomial kernel even for cubic graphs.