
On Possible Counterexamples to Negami’s

Planar Cover Conjecture
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Abstract

A simple graph H is a cover of a graph G if there exists a mapping
ϕ from H onto G such that ϕ maps the neighbors of every vertex v
in H bijectively to the neighbors of ϕ(v) in G. Negami conjectured
in 1986 that a connected graph has a finite planar cover if and only
if it embeds in the projective plane. The conjecture is still open. It
follows from the results of Archdeacon, Fellows, Negami, and the first
author that the conjecture holds as long as the graph K1,2,2,2 has no
finite planar cover. However, those results seem to say little about
counterexamples if the conjecture was not true. We show that there
are, up to obvious constructions, at most 16 possible counterexamples
to Negami’s conjecture. Moreover, we exhibit a finite list of sets of
graphs such that the set of excluded minors for the property of having
finite planar cover is one of the sets in our list.

1 Introduction

All graphs in this paper are finite, and may have loops or multiple edges.
The vertex set of a graph G is denoted by V (G), the edge set by E(G). A
graphH is a cover of a graph G if there exist a pair of onto mappings (ϕ,ψ),
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called a (cover) projection, ϕ : V (H) → V (G), ψ : E(H) → E(G), such
that ψ maps the edges incident with any vertex v in H bijectively onto the
edges incident with ϕ(v) in G. In particular, this definition implies that for
any edge e in H with endvertices u, v, the edge ψ(e) in G has endvertices
ϕ(u), ϕ(v). Therefore if we deal with simple graphs, it is enough to specify
the vertex cover projection ϕ that maps the neighbors of each vertex v in
H bijectively onto the neighbors of ϕ(v) in G (a traditional approach). A
cover is called planar if it is a finite planar graph. (Notice that every graph
can be covered by an infinite tree, but that is not what we are looking for.)
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Figure 1: A double planar cover of K5, constructed by lifting its projec-
tive embedding into the sphere. The projection is determined by labels of
vertices.

Every planar graph has a planar cover by the identity projection, but
there are also nonplanar graphs having planar covers. If a graph G has an
embedding in the projective plane, then the lifting of the embedding of G
into the universal covering surface of the projective plane (the sphere) is a
planar cover of G, see an example in Fig. 1. Thus every projective-planar
graph has a planar cover. The converse is false, because for instance the
graph consisting of two disjoint copies of K5 has a planar cover, and yet has
no embedding in the projective plane. On the other hand, in 1986 Negami
made the following interesting conjecture.

Conjecture 1.1 (S. Negami, [9]) A connected graph has a finite planar
cover if and only if it has an embedding in the projective plane.

Curiously, in order to prove the conjecture it suffices to prove that a
certain graph has no planar cover. Let us explain that now. A graph F
is a minor of a graph G if F can be obtained from a subgraph of G by
contracting edges. We say that G has an F minor if some graph isomorphic
to F is a minor of G. The following is easy to see.

Lemma 1.2 If a graph G has a planar cover, then so does every minor
of G.

Glover, Huneke and Wang [3] found a family Λ′ of 35 graphs such that
each member of Λ′ has no embedding in the projective plane, and is minor-
minimal with that property. (See Appendix A for a complete list of Λ′.)
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Archdeacon [1] then proved that those are the only such graphs. Three
members of Λ′ are disconnected; let Λ denote the remaining 32 connected
members of Λ′. The next statement follows easily from Archdeacon’s result.

Theorem 1.3 (D. Archdeacon, [1]) A connected graph has no embedding
in the projective plane if and only if it has a minor isomorphic to a member
of Λ.

Thus in order to prove Conjecture 1.1 it suffices to show that no member
of Λ has a planar cover. The number of graphs to check can be further
reduced using Y∆-transformations, defined as follows. A vertex of degree 3
with three distinct neighbors is called cubic. If w is a cubic vertex in a graph
with neighbors v1, v2, v3, then the operation of deleting the vertex w and
adding three new edges forming a triangle on the vertices v1, v2, v3 is called
a Y∆-transformation (of w). The following two facts are reasonably easy to
see. They were first noticed by Archdeacon [2] in about 1987, although he
did not publish proofs until 2002.

Proposition 1.4 Let G be a graph, and let e be an edge of G such that
some cubic vertex of G is adjacent to both endvertices of e. If G− e has a
planar cover, then so does G.

Corollary 1.5 Let a graph G be obtained from a graph H by a sequence of
Y∆-transformations. If H has a planar cover, then so does G.

K1,2,2,2 B7 C3

C4 D2 E2

Figure 2:

Let K1,2,2,2,B7,C3,C4,D2,E2 ∈ Λ be the graphs depicted in Fig. 2.
(Our notation of these graphs mostly follows [3].) Archdeacon [2], Fellows,
Negami [10], and the first author [4] have shown the following.
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Theorem 1.6 (D. Archdeacon, M. Fellows, S. Negami, P. Hliněný) No
member of the family Λ− {K1,2,2,2,B7,C3,C4,D2,E2} has a planar cover.

Since each of the graphs B7,C3,C4,D2,E2 can be Y∆-transformed to
K1,2,2,2, Theorem 1.6 and Corollary 1.5 imply that Conjecture 1.1 is equiv-
alent to the statement that the complete four-partite graph K1,2,2,2 has no
finite planar cover. Thus it is tempting to say that Negami’s conjecture is
almost proven, but that is not quite accurate. Testing whetherK1,2,2,2 has a
planar cover does not seem to be a finite problem, because no apriori bound
on the size of a planar cover is known. Moreover, the arguments outlined
above seem to imply little about possible counterexamples.

Our main result, Theorem 2.2 on page 6, states that there are, up to ob-
vious constructions, at most 16 possible counterexamples to Conjecture 1.1.
The result (with a slightly different proof) is included in the Ph.D. thesis
of the first author [6]. Some possible extensions of Conjecture 1.1 are dis-
cussed in [5]. Moreover, the arguments developed throughout this paper are
used to exhibit a list of sets of graphs such that one of them is the set of
excluded minors for the property of having finite planar cover (Theorem 6.2
on page 22).

The following statement [7, 6] is used in the proof.

Theorem 1.7 (P. Hliněný) The graphs C4 and E2 have no planar covers.

The reader will certainly notice that if someone found an ad hoc ar-
gument showing that K1,2,2,2 has no planar cover, then the present paper
would become irrelevant. Why, then, did we bother with proving Theo-
rem 2.2 rather than proving directly that K1,2,2,2 has no planar cover? In
fact, we tried moderately hard to do that, and failed. While we hope that
someone will be more successful, we decided to step back at look at possible
strategies. Showing that K1,2,2,2 has no planar cover appears beyond reach
at the moment (at least to us), but how about an easier problem?

Proposition 6.1 orders the 16 possible counterexamples in order of their
relative difficulty with respect to showing that they have no planar cover.
Thus if one was to look for the next easiest step toward proving Negami’s
conjecture, it would be showing that D◦2 or D•2 has no planar cover. A more
ambitious plan would be to show that D′′′2 has no planar cover, and so on.
(See Appendix B for pictures of these graphs.) In fact, it was work on the
present paper that lead the first author to prove Theorem 1.7. By finding
an easier (and hopefully solvable) problem one might be able to develop
techniques that could settle Negami’s conjecture itself.

In fact, there is an even weaker question which is related to the proof of
Theorem 1.7. The proofs for the two graphs in [7] are completely different,
while a proof of Conjecture 1.1 would necessarily have to include a unified
argument for those two graphs. Thus a problem even weaker than those in
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the previous paragraph would be to find a unified proof that the graphs C4

and E2 have no planar cover.

2 Separations and Expansions

If G is a graph and X is a subset of its vertices, then G �X denotes the sub-
graph of G induced by the vertex set X, and G−X denotes the subgraph
of G induced on the vertex set V (G) − X. For a graph G, and an edge
e ∈ E(G), G − e denotes the graph obtained by deleting e from G. If u, v
are two vertices of G, then G+{u, v} or G+uv denotes the graph obtained
from G by adding a new edge with ends u and v (possibly parallel to an
existing edge). If there is no danger of misunderstanding between parallel
edges, then {u, v}, or shortly uv, is used for an edge with endvertices u
and v.

A separation in a graphG is a pair of sets (A,B) such that A∪B = V (G)
and there is no edge in G between the sets A−B and B −A. A separation
(A,B) is nontrivial if both A − B and B − A are nonempty. The order of
a separation (A,B) equals |A ∩ B|. A separation (A,B) in G is called flat
if the graph G �B has a planar embedding with all the vertices of A ∩ B
incident with the outer face.

Let G be a graph. Let F be a connected planar graph on the vertex set
V (F ) disjoint from V (G), and let x1 ∈ V (F ). If y1 is a vertex of G, and
the graph H1 is obtained from G∪F by identifying the vertices x1 and y1,
then H1 is called a 1-expansion of G. Let x1, x2 ∈ V (F ) be two distinct
vertices that are incident with the same face in a planar embedding of F . If
e = y1y2 is an edge of G, and the graph H2 is obtained from (G − e) ∪ F
by identifying the vertex pairs (x1, y1) and (x2, y2), then H2 is called a 2-
expansion of G. Let x1, x2, x3 ∈ V (F ) be three distinct vertices such that
F − {x1, x2, x3} is connected. Moreover, let each of the vertices x1, x2, x3

be adjacent to some vertex of V (F − {x1, x2, x3}), and let all three vertices
x1, x2, x3 be incident with the same face in a planar embedding of F . If w
is a cubic vertex of G with the neighbors y1, y2, y3, and the graph H3 is
obtained from (G− w) ∪ F by identifying the vertex pairs (x1, y1), (x2, y2)
and (x3, y3), then H3 is called a 3-expansion of G.

A graph H is an expansion of a graph G if there is a sequence of graphs
G0 = G,G1, . . . ,Gl = H such that Gi is a 1-,2-, or 3-expansion of Gi−1

for all i = 1, . . . , l. The following is easy to see.

Lemma 2.1 Let H be an expansion of a graph G.
(a) G has an embedding in the projective plane if and only if so does H.
(b) G has a planar cover if and only if so does H.
(c) G is a minor of H.
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A graph G would be a counterexample to Conjecture 1.1 if G had a
planar cover but no projective embedding. Thus if K1,2,2,2 had a planar
cover, then Lemma 2.1 would enable us to generate infinitely many coun-
terexamples to Conjecture 1.1. However, our main result is:

Theorem 2.2 Let Π be the family of 16 graphs listed in Appendix B. If a
connected graph G has a planar cover but no embedding in the projective
plane, then G is an expansion of some graph from Π.

Before proving Theorem 2.2 in Section 5, a lot of preparatory work needs
to be done. Let Λ0 = Λ − {K1,2,2,2, B7,C3,D2} denote the family of all
connected minor-minimal nonprojective graphs which are known to have no
planar cover. An immediate corollary of Theorems 1.3,1.6,1.7 is:

Corollary 2.3 If G is a connected graph that has a planar cover but no
embedding in the projective plane, then G has a minor isomorphic to one of
K1,2,2,2, B7,C3,D2, but G has no minor isomorphic to a member of Λ0.

A graph G is internally 4-connected if it is simple and 3-connected, has
at least five vertices, and for every separation (A,B) of order 3, either G �A
or G �B has at most three edges. The following lemma and its corollary
show that the search for a possible counterexample to Negami’s conjecture
may be restricted to internally 4-connected graphs. However, proving this
lemma is quite a technical task, which needs several additional results, and
so the proof of the lemma is postponed until Section 3.

Lemma 2.4 Suppose G is a connected graph that has no embedding in the
projective plane, and that has no minor isomorphic to a member of Λ0. If
k ∈ {1, 2, 3} is the least integer such that there is a nontrivial separation
(A,B) of order k in G, then either (A,B) or (B,A) is flat.

Corollary 2.5 If G is a connected graph that has no embedding in the pro-
jective plane, and that has no minor isomorphic to a member of Λ0, then
there exists an internally 4-connected graph F with the same properties such
that G is an expansion of F .

Proof. The proof proceeds by induction on the number of edges in G.
Since the graph K6 has a projective embedding, G has at least 7 vertices.
If G is an internally 4-connected graph, then there is nothing to prove. If
G is not simple, then it is an expansion of its underlying simple graph. So
suppose, for some k ∈ {1, 2, 3}, that G is a simple k-connected graph, and
that there exists a nontrivial separation (A,B) in G of order k. If k = 3,
then also suppose that both G �A and G �B have more than three edges.
By Lemma 2.4, it can be assumed that (A,B) is flat, and hence the graph
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G �B has a planar embedding in which all vertices of A ∩ B are incident
with the same face.

Observe that G �B is connected. If k = 1, then G is a 1-expansion of
G′ = G �A. If k = 2, and say A ∩ B = {u1, u2}, then G is a 2-expansion
of G′ = (G �A) + u1u2. So suppose that k = 3, and A ∩ B = {u1, u2, u3}.
SinceG is 3-connected, every vertex v ∈ B−A is connected by three disjoint
(except for v) paths to each of the vertices u1, u2, u3. In particular, each of
u1, u2, u3 is adjacent to some vertex of B−A. If the graphG �(B −A) is not
connected, let us say that v, w belong to distinct components ofG �(B −A),
then the six paths connecting each of v, w with u1, u2, u3 are pairwise disjoint
except for their ends, and hence they form a subdivision of K2,3. But then
there is no planar embedding of G �B in which u1, u2, u3 are incident with
the same face, a contradiction. Thus the planar graph F = G �B fulfills all
conditions in the definition of the 3-expansion, and hence G is a 3-expansion
of the graph G′, obtained from G by contracting the set B − A into one
vertex and deleting all edges with both ends in A ∩B.

In all three cases outlined above, the graph G′ has no embedding in
the projective plane by Lemma 2.1, and it is a proper minor of G. So the
statement follows by induction.

3 Assorted Lemmas

Recall the definition of a Y∆-transformation from page 3. If a graph G is
obtained from G′ by Y∆-transforming a vertex w ∈ V (G′), then we write
G = G′ Y∆ {w}.

Understanding the following convention is important for the next defi-
nition: Formally, a graph is a triple consisting of a vertex set, an edge set,
and an incidence relation between vertices and edges. Contracting an edge
e in a graph G means deleting the edge and identifying its ends. Thus if
F denotes the resulting graph, then E(F ) = E(G) − {e}. Now suppose
that a simple graph G is obtained from a simple graph Gs by contracting
an edge e = uv ∈ E(Gs) to a vertex w ∈ V (G). If the degrees of u, v in
Gs are at least 3, then Gs is said to be obtained from G by splitting the
vertex w. The graph Gs is formally denoted by G·{w 6 NuNv } where Nu, Nv

are the neighborhoods of u, v, respectively, excluding u, v themselves.
Let K3,5,K7−C4,D3, K4,4−e,K4,5−M4,D17 ∈ Λ0 denote the

graphs depicted in Fig. 3. Recall also the graphs C4,E2 ∈ Λ0 from
Fig. 2. Let Φ′ be the family of all simple graphs G such that one of the
graphs K7−C4, D3, or D17 can be obtained from G by a sequence of Y∆-
transformations; and let Φ = Φ′∪{K4,4−e,K3,5,K4,5−M4}. Note that Φ′

includes only finitely many nonisomorphic graphs since a Y∆-transformation
preserves the number of edges.
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K3,5 K7−C4 D3

K4,4−e K4,5−M4 D17

Figure 3:

Lemma 3.1 Suppose that G′ is a simple graph obtained from a graph G by
a Y∆-transformation, and that a simple graph F ′ is a minor of G′. Then
G has an F minor, where F = F ′ or F can be Y∆-transformed to F ′.

Proof. Let G′ = G Y∆ {w} be obtained by a Y∆-transformation car-
rying a cubic vertex w of G to a triangle τ of G′. If all three edges of τ
are in E(F ′), then they form a triangle in F ′ since F ′ is simple. Then F
is constructed from F ′ by adding a new vertex adjacent to the vertices of τ
and deleting the edges of τ . Clearly, F is a minor of G.

If an edge e of τ is not in E(F ′), let v be the vertex of τ not incident
with e. Then G′ − e has an F ′ minor, and G′ − e is obtained from G by
contracting the edge {v, w}. Thus G has an F = F ′ minor.

Lemma 3.2 If G ∈ Φ′, then G has a minor isomorphic to some member
of Λ0.

Proof. This statement follows from the arguments in [3], even though it
is not explicitly stated there. Let J0 = G,J1, . . . ,J t be a sequence of graphs
such that J t ∈ {K7−C4,D3,D17}, and for i = 1, . . . , t, J i is obtained from
J i−1 by a Y∆-transformation. It is easy to check, using Lemma 3.1, that if
J t = K7−C4 or J t = D3, then J i, i = 0, 1, . . . , t−1 has a minor isomorphic
to one of D3,K3,5,E5,F1; and if J t = D17, then J i, i = 0, 1, . . . , t− 1 has
a minor isomorphic to one of E20,G1,F4. (See Appendix A for pictures of
these graphs.)

Lemma 3.3 Let G be a graph, and let a simple graph G′ be obtained from G
by a sequence of Y∆-transformations. If G′ has a minor isomorphic to some
member of Φ, then so does G. Consequently, G has a minor isomorphic to
some member of Λ0.
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Proof. Notice that each of the graphs K4,4−e,K3,5,K4,5−M4 is
triangle-free. If G′ has a minor isomorphic to any one of them, then so does
G by Lemma 3.1. Otherwise, G′ has an F ′ minor for some F ′ ∈ Φ′. By
Lemma 3.1, the graph G has a minor isomorphic to a member F ′′ of Φ′. By
Lemma 3.2, the graph F ′′ has a minor isomorphic to a member of Λ0, and
hence so does G.
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Figure 4:

Let e be an edge of a graph G, and v a vertex of degree 3 in G adjacent
to both ends of e. Then v is called a violating vertex, e is a violating edge,
and (v, e) is a violating pair in G. The reason for this terminology is that
such a vertex and edge violate the definition of being internally 4-connected.
Let the vertices of the graphs K1,2,2,2,B7,C3,D2 be numbered as in Fig. 4.

Lemma 3.4 Let {F i}4i=1 be a sequence of graphs defined by F 1 = K1,2,2,2,
F 2 = B7, F 3 = C3, F 4 = D2. For i = 1, 2, 3, 4, the following statements
hold.
a) Suppose that F ′ = F i+xy is obtained from F i by adding an edge joining
two distinct nonadjacent vertices x, y of F i. If xy is not violating in F ′,
then F ′ has a minor isomorphic to a member of Λ0, unless i = 2 (F i = B7)
and {x, y} = {7, 8}.
b) Suppose that F ′ is obtained by splitting a vertex w in F i. Then either F ′

has a minor isomorphic to a member of Λ0, or i ≤ 3 and w 6= 7 and F ′ has
a F i+1 subgraph.
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Proof. The proof proceeds along the sequence F 1,F 2,F 3,F 4, con-
sidering parts (a) and (b) together. Up to symmetry, there is only one
possibility to add an edge to F 1 = K1,2,2,2.

– F ′ = K1,2,2,2 + {1, 4} has a K7−C4 subgraph.

The four possibilities to split vertex 7, up to symmetry, are discussed as
follows:

– F ′ = K1,2,2,2 ·{7 6 1,2,3
4,5,6} has a D17 subgraph.

– F ′ = K1,2,2,2 ·{7 6 1,2,4
3,5,6} has a K4,4−e subgraph.

– F ′ = K1,2,2,2 ·{7 6 1,2
3,4,5,6} has a D3 subgraph.

– F ′ = K1,2,2,2 ·{7 6 1,4
2,3,5,6} has a K3,5 subgraph.

All vertices other than 7 are symmetric in K1,2,2,2, so it suffices to consider
the three possible nonsymmetric splittings of vertex 1.

– F ′ = K1,2,2,2·{1 6 3,6
2,5,7} and F ′ = K1,2,2,2·{1 6 2,7

3,5,6} haveD3 subgraphs.

– F ′ = K1,2,2,2 ·{1 6 3,5
2,6,7} has a F 2 = B7 subgraph.

Since the graphs K7−C4,D17,K4,4−e, D3,K3,5 are members of Λ0, the
statement is proved for F 1.

If F ′ = B7 + xy where {x, y} is one of {1, 4}, {2, 5}, {3, 6}, then the
graph F ′ Y∆ {8} equals to the graph K1,2,2,2 +xy. So, using Lemma 3.3, the
arguments in the previous paragraph imply that F ′ has a minor isomorphic
to a graph from Λ0. The remaining possible edge addition, up to symmetry,
is covered next.

– F ′ = B7 + {2, 8} has a K7−C4 minor via contracting {5, 8}.

Let a step splitting be the splitting operation F i·{w 6 u1,u2
u3,...,uk

}, i ∈ {1, 2, 3, 4}
such that w, u1, u2 ∈ {1, 2, 3, 4, 5, 6}, and {w, u1, u2} does not contain any
one of the pairs {1, 4}, {2, 5}, {3, 6}. Notice that all non-step splittings in
F 1 produce members of Φ. The vertex 8 cannot be split in B7, so if F ′

results by a non-step splitting in B7, then the graph F ′ Y∆ {8} results by a
non-step splitting in K1,2,2,2; hence F ′ has a Λ0 minor by Lemma 3.3. All
possible step splittings in B7 are discussed as follows.

– F ′ = B7 ·{3 6 2,4
7,8} and F ′ = B7 ·{2 6 3,4

1,6,7} have F 3 = C3 subgraphs.

– F ′ = B7 ·{2 6 1,3
4,6,7} has a K4,5−M4 subgraph.

– F ′ = B7 ·{2 6 4,6
1,3,7} has a C4 subgraph.
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The discussion is continued in the same manner for F 3 = C3. If F ′ =
C3 + xy and xy is not violating in F ′, then xy is incident with at most one
of the vertices 8, 9, say 8, and it is not {7, 8}. Thus F ′ Y∆ {9} = B7 + xy
has a Λ0 minor by the previous analysis, and so does F ′ by Lemma 3.3.
Similarly, if F ′ results by a non-step splitting in C3, then F ′ Y∆ {9} results
by a non-step splitting in B7, so F ′ has a Λ0 minor again. The possible step
splittings in C3 are covered next.

– F ′ = C3 ·{1 6 2,6
7,8} and F ′ = C3 ·{6 6 1,2

4,5,7} have F 4 = D2 subgraphs.

– F ′ = C3 ·{6 6 1,5
2,4,7} has a K4,5−M4 minor via contracting {3, 9}.

Finally, the same arguments as above apply for the cases of an edge
addition or a non-step splitting in F 4 = D2. So there is only one step
splitting remaining to be checked.

– J ′ = D2 ·{5 6 4,6
7,8} has an E2 subgraph.

The following statement about planar embeddings of graphs appears
more or less explicitly in [11, 13, 14, 15].

Theorem 3.5 (N. Robertson, P.D. Seymour, Y. Shiloach, C. Thomassen)
Let G be a 3-connected graph, and let u, v, w be three distinct vertices of G.
If G has no planar embedding in which u, v and w are all incident with the
outer face, then G has an F minor such that F is isomorphic to K2,3, and
the vertices u, v, w are contracted into three distinct vertices u′, v′, w′ which
form the part of size three in F .

Suppose that G is a graph, and that v1, v2, v3 ∈ V (G) are three distinct
vertices of G. Let G 〈- {v1, v2, v3} denote the graph H defined as follows:
If there exists a cubic vertex w ∈ V (G) with the neighbors v1, v2, v3, then
H results from G by adding one new vertex t adjacent to all three vertices
v1, v2, v3. Otherwise, H results from G by adding two new vertices s, t both
adjacent to all three vertices v1, v2, v3, and by deleting all edges with both
ends in {v1, v2, v3}.

Lemma 3.6 Let G be a 3-connected graph, and let (A,B) be a non-flat sep-
aration of order three in G. Let F 0 be a simple 3-connected graph. Suppose
that F ⊆ G is a subgraph of G isomorphic to a subdivision of F 0, and that
W ⊆ V (F ) is the subset of vertices that have degree more than 2 in F .
If |W ∩ (B − A)| ≤ 1, then G contains a minor isomorphic to the graph
F 0 〈- {w1, w2, w3} for some three vertices w1, w2, w3 ∈ V (F 0).

Proof. Let A∩B = {b1, b2, b3}. By Theorem 3.5, there is a minor G′ of
G, and a 3-separation (A′, B′) in G′, such that A = A′, G′ �A′ = G �A, and
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B′ − A′ = {s, t} where each of s, t is adjacent to all three vertices b1, b2, b3.
(Hence F �A is a subgraph of G′.)

Suppose that |W ∩ B| = 1. Let W ∩ (B − A) = {w}, and let w′ be
the vertex of F 0 corresponding to w. Let Qe denote the path in F that
corresponds to an edge e ∈ E(F 0). Since F 0 is 3-connected, there are at
least three edges incident with w′ in F 0. On the other hand, the vertex
w ∈ B can be connected by at most three disjoint paths with vertices in
W −{w} ⊂ A. Hence w′ is a cubic vertex in F 0, and the edges incident with
w′ can be denoted by e1, e2, e3 ∈ E(F 0) so that bi ∈ V (Qei) for i = 1, 2, 3.
Let G′′ be the graph obtained from G′ by contracting each of the paths
Qei �A, i = 1, 2, 3, into one vertex. ThenG′′ contains a subgraph isomorphic
to a subdivision of F 0 〈- {v1, v2, v3} where v1, v2, v3 are the neighbors of w
in F 0.

So suppose that W ∩ (B − A) = ∅. Since G is 3-connected, there exist,
by Menger’s theorem, three vertices d1, d2, d3 ∈W , and three vertex-disjoint
paths P1, P2, P3 such that Pi has ends bi and di for i = 1, 2, 3. For a path P ,
let P [u, v] denote the subpath of P connecting the vertices u, v ∈ V (P ). Let
ci be the vertex of V (Pi) ∩ V (F ) closest to bi in Pi, and let P ′i = Pi[bi, ci],
for i = 1, 2, 3. (It may happen that ci = bi.)

First suppose the case that not all c1, c2, c3 belong to the same path Qe,
e ∈ E(F 0). Then, for i = 1, 2, 3, there exists an edge ei ∈ E(F 0) such that
ci ∈ V (Qei); and one of the ends of the path Qei can be denoted by xi, so
that the path Q′i = Qei [xi, ci] does not intersect the set {c1, c2, c3} − {ci}.
Also, x1, x2, x3 can be chosen all distinct since F 0 has no multiple edges.
Let G′′ denote the graph obtained from G′ by contracting each of the paths
Q′1 ∪ P ′1, Q′2 ∪ P ′2, and Q′3 ∪ P ′3 into one vertex. One can easily check that
G′′ has a subgraph isomorphic to a subdivision of F 0 〈- {x′1, x′2, x′3}, where
x′1, x

′
2, x
′
3 are the vertices of F 0 corresponding to x1, x2, x3. (If for some

e ∈ E(F 0) there exists a path Qe in G intersecting B−A, then both ends of
Qe are in {x1, x2, x3}. Thus, if there is no cubic vertex adjacent to x′1, x

′
2, x
′
3

in F 0, the edge e is not present in F 0 〈- {x′1, x′2, x′3}; and otherwise, the path
Qe can be replaced by a path Q′e that uses one of the vertices s, t in G′.)

Next, suppose that there is an edge e ∈ E(F 0) such that c1, c2, c3 ∈
V (Qe). Let x, y be the ends of the path Qe, and let U = V (Qe) − {x, y}.
For i = 1, 2, 3, let ai be the vertex of V (Pi)∩ (V (F )−U) closest to bi in Pi,
and let P ′′i = Pi[bi, ai]. Assume, without loss of generality, that, for some
vertex v ∈ V (P ′′1 )∩V (Qe), one of the paths Qe[v, x], Qe[v, y] is disjoint from
P ′′2 ∪ P ′′3 . Let v1 ∈ V (P ′′1 )∩ V (Qe) be such a vertex which is the one closest
to b1 in P ′′1 ; and assume that the path Qe[v1, x] is disjoint from P ′′2 ∪ P ′′3 .
Further, let v2 ∈ V (Qe)∩ (V (P ′′2 )∪ V (P ′′3 )) be the vertex closest to y in Qe,
and assume that v2 ∈ V (P ′′2 ). Then the path P o1 = P ′′1 [b1, v1] ∪ Qe[v1, x] is
disjoint from P ′′2 and P ′′3 , and the path P o2 = P ′′2 [b2, v2]∪Qe[v2, y] is disjoint
from P o1 and P ′′3 . In particular, a3 6∈ {x, y}. Let e′ ∈ E(F 0) be the edge
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such that a3 ∈ V (Qe′); and let z be an end of Qe′ such that z 6∈ {x, y}, and
that z = a3 if a3 is an end of Qe′ . Let P o3 = P ′′3 ∪Qe′ [a3, z]. Let G′′ denote
the graph obtained from G′ by contracting each of the paths P o1 , P o2 , and
P o3 into one vertex. Then G′′ has a subgraph isomorphic to a subdivision of
(F 0 − e) 〈- {x′, y′, z′} = F 0 〈- {x′, y′, z′}, where x′, y′, z′ are the vertices of F 0

corresponding to x, y, z.

Finally, the postponed proof of Lemma 2.4 about flat separations from
Section 2 is presented.

Proof of Lemma 2.4. Assume first that k = 1, and let GA = G �A,
GB = G �B. If neither (A,B) nor (B,A) are flat, then both graphs GA

and GB are nonplanar, and thus by Kuratowski’s theorem they contain
subgraphs FA ⊆ GA and FB ⊆ GB isomorphic to subdivisions of K5 or
K3,3. Since G is connected, it is easy to contract F A and FB into a minor
isomorphic to one of K5 ·K5,K5 ·K3,3,K3,3 ·K3,3 ∈ Λ0, a contradiction.

B3 C2 D1

D4 E6 F6

Figure 5:

The case of k = 2 is settled similarly. Let A ∩ B = {u, v}, and let
GA = (G �A) + uv, GB = (G �B) + uv. If neither (A,B) nor (B,A) are
flat, then both graphs GA and GB are nonplanar, and thus by Kuratowski’s
theorem they contain subgraphs FA ⊆ GA and FB ⊆ GB isomorphic to
subdivisions of K5 or K3,3. Without loss of generality, let us focus on the
graph GA. Since G is 2-connected in this case, there exist two disjoint paths
Pu, Pv between {u, v} and V (FA). Clearly, the graph FA ∪ Pu ∪ Pv + uv
has a minor F ′A isomorphic to K5 or K3,3 such that u, v are two distinct
vertices of F ′A. The graph F ′B is found in the same way as a minor of GB.
So the graph G′ = F ′A ∪ F ′B − uv is a minor of G. It is easy to show
that G′ is isomorphic to some member of Λ0: If F ′A ' K5, there is only
one nonsymmetric choice of u, v ∈ V (F ′A). If F ′A ' K3,3, there are two
nonsymmetric choices of u, v ∈ V (F ′A) (either from the same part, or from
different ones). Therefore G′ is isomorphic to B3 ∈ Λ0 for F ′A ' F ′B 'K5,
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G′ is isomorphic to one of D1,E6,F6 ∈ Λ0 for F ′A ' F ′B ' K3,3, and G′

is isomorphic to one of C2,D4 ∈ Λ0 for F ′A ' K5, F ′B ' K3,3, which is a
contradiction to our assumption. (See Fig. 5 for these graphs.)

Next, let k = 3, and suppose for a contradiction that neither (A,B) nor
(B,A) are flat. Notice that the assumptions guarantee thatG is 3-connected
in this case. By Theorem 1.3, G has a minor isomorphic to M = F i for
some i ∈ {1, 2, 3, 4}, where F 1 = K1,2,2,2,F 2 = B7,F 3 = C3,F 4 = D2 are
as in Lemma 3.4. Let i be the maximum such integer. Since G has no minor
isomorphic to a member of Λ0, we deduce from Lemma 3.4(b) that G has
a subgraph M 1 isomorphic to a subdivision of M . Let W ⊆ V (M 1) be
the set of the vertices that have degree more than two in M 1. Since M is
internally 4-connected, one of the sets A−B,B−A, say B−A, contains at
most one vertex of W . Thus, by Lemma 3.6, G has a minor isomorphic to
N = M 〈- {b1, b2, b3} for some three distinct vertices b1, b2, b3 ∈ V (M).

We are going to show that the graph N (and hence also G) has a minor
isomorphic to some member of Λ0 for any choice of {b1, b2, b3} from V (M).
That will be the desired contradiction. Let the vertices ofM be numbered as
in Fig. 4. Suppose first that no cubic vertex inM has the neighbors b1, b2, b3.

– If {b1, b2, b3} includes any one of the pairs {1, 4} or {2, 5} or {3, 6},
say {b1, b2}, then N contains an M + b1b2 minor. Since b1b2 is not
an edge of M , and it is not violating in M + b1b2, it follows from
Lemma 3.4(a) that M + b1b2 has a minor isomorphic to a member
of Λ0.

– If M − {b1, b2, b3} contains a subgraph G0 isomorphic to K4, then,
by the 3-connectivity of M , for some v ∈ V (G0) there exist three
disjoint paths between the sets V (G0) − {v} and {b1, b2, b3} in M −
v. Moreover, since M is internally 4-connected, there exists a path
between v and some vertex of {b1, b2, b3} avoiding V (G0)−{v}. Thus
N contains an E19 ∈ Λ0 minor, see Fig. 6.

E19

Figure 6:

LetN ′ (M ′) be the graph obtained fromN (M) by Y∆-transformations
of all vertices from the set ({8, 9, 10}∩V (M))−{b1, b2, b3}. IfM ′ 'K1,2,2,2,
and none of the two above general cases apply, then there is just one possi-
bility, up to symmetry.
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– For {b1, b2, b3} = {1, 2, 7}, the resulting graph N ′ has a D3 minor via
contracting the edge {2, 3}.

If M ′ ' B7, then |{8, 9, 10}∩{b1, b2, b3}| = 1, and so 8 ∈ {b1, b2, b3} by sym-
metry. Then all three remaining nonsymmetric possibilities are as follows.

– For {b1, b2, b3} = {4, 6, 8} or {b1, b2, b3} = {6, 7, 8}, the graph N ′ has
a K3,5 minor via contracting the edges {2, 6} and {4, 7}.

– For {b1, b2, b3} = {5, 7, 8}, the graph N ′ has a D3 minor via contract-
ing the edges {1, 8} and {3, 8}.

If M ′ ' C3, then 8, 9 ∈ {b1, b2, b3} by symmetry. There are two nonsym-
metric possibilities remaining to be checked.

– For {b1, b2, b3} = {6, 8, 9} or {b1, b2, b3} = {7, 8, 9}, the graph N ′ has
a K3,5 minor via contracting the edges {1, 2}, {4, 5}, {6, 7}.

And if M ′ ' D2, then {b1, b2, b3} = {8, 9, 10}, but the graph M ′−{8, 9, 10}
has a K4 subgraph, so this case was already covered above. Since N ′ has a
Λ0 minor, so does N by Lemma 3.3, a contradiction.

Finally, consider the case that b1, b2, b3 are the neighbors of a cubic vertex
w in M . Similarly as above, let N ′ be the graph obtained from N by Y∆-
transformations of the vertices ({8, 9, 10}∩V (M))−{w, b1, b2, b3}. It is easy
to see that there are only two nonsymmetric possibilities to consider.

– The graph N ′ constructed from B7 by adding a new vertex t adjacent
to the neighbors of s = 8 has a D3 minor via contracting the edge
{2, 4}.

– The graph N ′ constructed from C3 by adding a new vertex t adjacent
to the neighbors of s = 3 has a K3,5 minor via contracting the edges
{1, 8}, {4, 9}.

So it follows from Lemma 3.3 that N (and hence also G) has a minor
isomorphic to some member of Λ0, a contradiction.

4 A Splitter Theorem

This section presents a key tool that is used, together with the above lemmas,
in the search for possible counterexamples to Negami’s conjecture. Recall
the definition of a violating edge and pair from page 9. First, few more
specific terms are introduced. Let G be an internally 4-connected graph,
and let G0 = G,G1, . . . ,Gt = H be a sequence of graphs such that, for
i = 1, . . . , t,

– Gi is a simple graph obtained by adding an edge to Gi−1,
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– no edge is violating in both Gi−1 and Gi,

– Gi, i < t has at most one violating pair, and H is internally 4-
connected.

Then H is called a (t-step) addition extension of G. An example of an
addition extension with intermediate violating edges is presented in Fig. 7.

(3)(2)(1)

Figure 7: An illustration of a vertex splitting, and of a 3-step addition
extension.

Let G be an internally 4-connected graph. Suppose that u1, u2, u3, u4

are four cubic vertices forming a cycle of length four in G. The graph
H obtained from G by adding a new vertex x connected to the vertices
u1, u2, u3, u4 is called a quadrangular extension of G, and it is denoted
by H = G {u1, u2, u3, u4}.
Suppose that v1, v2, v3, v4, v5 in this order are five vertices of a 5-cycle
in G, and that v2, v5 have degree three. Then the graph H obtained
from G by subdividing the edge v3v4 with a new vertex y and adding the
edge v1y is called a pentagonal extension of G, and it is formally denoted
by H = G {v1; v3, v4}.
Suppose that w1, w2, w3, w4, w5, w6 in this order are six vertices of a 6-
cycle in G. Moreover, assume that w1, w3, w5 have degree three, and that
no cubic vertex of G has neighbors w2, w4, w6. Then the graph H ob-
tained from G by adding a new cubic vertex z connected to the vertices
w2, w4, w6 is called a hexagonal extension of G, and it is formally denoted
by H = G {w2, w4, w6}.

Figure 8: An illustration of a quadrangular, pentagonal, and hexagonal
extensions.

Notice that each of the above operations of addition, quadrangular, pen-
tagonal and hexagonal extension preserves internal 4-connectivity; but this
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is not always true for the vertex splitting operation. The following theorem
is a simplified version of a result proved in [8].

Theorem 4.1 (T. Johnson, R. Thomas, 1999) Suppose that G and H are
internally 4-connected graphs, that G is a proper minor of H, and that G has
no embedding in the projective plane. Assume further that each component
of the subgraph of G induced by cubic vertices is a tree or a cycle. Then
either H is an addition extension of G, or there exists a minor H ′ of H
satisfying one of the following: H ′ is a 1-step addition extension of G, or
H ′ is a quadrangular, pentagonal or hexagonal extension of G, or H ′ is
obtained by splitting a vertex of G.

Please note that if the graph H ′ is obtained by splitting a vertex of G,
then H ′ need not be internally 4-connected. There is a different version
of Theorem 4.1 (see [8]) in which all the outcome graphs H ′ are internally
4-connected. However, the above stated theorem is better suited for our
application.

5 The Generation Process

Our objective is to prove that if an internally 4-connected graph H has
a minor isomorphic to one of K1,2,2,2,B7,C3,D2, then either H itself is
isomorphic to one of the 16 specific graphs defined later in this section, or
H has a minor isomorphic to a graph from Λ0. For the readers’ convenience,
the proof is divided into four steps in Lemmas 5.1, 5.2, 5.3, and 5.4.

Lemma 5.1 Let H be an internally 4-connected graph having no minor
isomorphic to a graph from Λ0. If H contains a K1,2,2,2 minor, then either
H is isomorphic to K1,2,2,2 or it contains a B7 minor.

Proof. Assume thatK1,2,2,2 is a proper minor of H. Note that K1,2,2,2

has no cubic vertices; hence, by Theorem 4.1, H contains a minor H ′ ob-
tained by adding an edge or by splitting a vertex in K1,2,2,2. But H ′ cannot
have a minor isomorphic to a member of Λ0, thus H ′ has a B7 subgraph by
Lemma 3.4.

Suppose that the vertices of B7 are numbered as in Fig. 4 (p. 9). Let
B′7 denote the graph obtained from B7 by adding the edge {7, 8}, and let
B′′7 denote the graph obtained from B′7 by adding the edge {1, 5}. (See
Appendix B.)

Lemma 5.2 Let H be an internally 4-connected graph having no minor
isomorphic to a graph from Λ0. If H contains a B7 minor, then either H
is isomorphic to one of B7,B′7,B′′7, or it contains a C3 minor.
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Proof. If the graph H is isomorphic to B7, or H has a C3 minor,
then the proof is finished. So assume that B7 is a proper minor of H,
and that C3 is not a minor of H. Note that B7 has only one cubic ver-
tex, so Theorem 4.1 can be applied. Consider first the case that H is an
addition extension of B7: If the set E(H) − E(B7) contained any other
edge than {1, 3}, {1, 5}, {3, 5} or {7, 8}, then H would have a Λ0 minor by
Lemma 3.4(a). Moreover, since the graph B7 + {7, 8} + {1, 3} + {1, 5} has
a K7−C4 ∈ Λ0 minor via contracting the edge {3, 4}, there are only two
possibilities H = B′7 or H = B′′7, up to symmetry.

Otherwise, the graph H has a minor H ′ obtained from B7 by a 1-step
addition extension or by splitting a vertex. (There are not enough cubic
vertices in B7 to apply the other extension operations.) From Lemma 3.4
and the fact that H has no Λ0 minor, it follows that H ′ = B′7. If H 6= H ′,
then, by Theorem 4.1 again,H has a minorH ′′ obtained as a 1-step addition
extension or by splitting a vertex of H ′ = B′7. In the latter case when

H ′′ = B′7 · {w 6 N1
N2
} for w 6= 7, 8, or for w = 7 and |N1 − {8}| ≥ 2 and

|N2 − {8}| ≥ 2, the same splitting operation can be applied to B7, and
hence the statement follows from Lemma 3.4(b). So it remains to check, up
to symmetry, the following possibilities.

– H ′′ = B′7 ·{8 6 1,7
3,5} and H ′′ = B′7 ·{7 6 1,8

2,3,4,5,6} have C3 subgraphs.

– H ′′ = B′7 · {7 6 2,8
1,3,4,5,6} has a K7−C4 minor via contracting {2, 7},

{5, 8}.

Therefore, consider that H ′′ is a 1-step addition extension of B′7. Using
the same arguments as above, it follows that actually H ′′ ' B′′7. Without
loss of generality, assume that B′′7 is a proper minor of H, and apply The-
orem 4.1 once again. Since H cannot be an addition extension of B′′7 by
the above arguments, there exists a minor Ho of H obtained by splitting a
vertex in B′′7. All nonsymmetric possibilities not covered by Lemma 3.4(b)
are listed next.

– Ho = B′′7 ·{5 6 1,8
4,6,7} has a C3 subgraph.

– Ho = B′′7 ·{5 6 1,6
4,7,8} has a K4,5−M 4 ∈ Λ0 subgraph.

– Ho = B′′7 ·{5 6 1,7
4,6,8} has a D3 ∈ Λ0 minor via contracting {5, 8}.

– Ho = B′′7 ·{5 6 1,4
6,7,8} has a D3 ∈ Λ0 minor via contracting {3, 8}.

Suppose that the vertices of C3 are numbered as in Fig. 4. Let C′3 be
the graph obtained from C3 by adding the edges {7, 8}, {3, 5}, let C′′3 be
the graph obtained from C′3 by adding the edge {7, 9}, and let C◦3, C•3 be
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the graphs obtained from C′′3 by adding the edges {2, 4}, {2, 3}, respectively.
(See Appendix B.)

Lemma 5.3 Let H be an internally 4-connected graph having no minor
isomorphic to a graph from Λ0. If H contains a C3 minor, then either H
is isomorphic to one of C3,C′3,C′′3,C•3,C◦3, or it contains a D2 minor.

Proof. Assume that C3 is a proper minor of H, and that H has no
D2 minor. Since C3 is internally 4-connected, and the cubic vertices in C3

induce a path of length two, the assumptions of Theorem 4.1 are fulfilled.
Notice that a quadrangular or hexagonal extension cannot be applied to C3.
Thus, if H is not an addition extension of C3, then there exists a minor H ′

of H obtained from C3 by splitting a vertex, or as a pentagonal extension,
or as a 1-step addition extension. However, by Lemma 3.4 and the fact that
H has no Λ0 minor, the graph H ′ neither can be obtained by splitting a
vertex, nor can be a 1-step addition extension of C3.

In order to apply a pentagonal extension to a graph, one must find, in
particular, two cubic vertices with a common neighbor. It is easy to see
that there is just one such pair in C3 – the vertices 8, 9 with a common
neighbor 3. So, up to symmetry, there is only one possibility to check.

– H ′ = C3 {3; 4, 5} has a K4,5−M4 ∈ Λ0 minor via contracting {1, 8}.

Thus the graph H is an addition extension of C3. Lemma 3.4(a) im-
plies that only a subset of the edges {1, 3}, {1, 5}, {3, 5}, {2, 3}, {2, 4}, {3, 4},
{7, 8}, {7, 9}, {8, 9} may be added in H. If the edge {8, 9} was added in
H, then also some edge incident with 3 would have to be added to keep H
internally 4-connected. Up to symmetry, there is only the following possi-
bility:

– H = C3 + {8, 9}+ {1, 3} has a K7−C4 minor via contracting {2, 9},
{8, 5}.

Now suppose, for a contradiction, that at least two edges {x, y} and
{x′, y′} from {1, 3}, {1, 5}, {3, 5} were added in H. Since H is internally
4-connected, another edge incident with vertex 8 has to be added in H, and
so it is the edge {8, 7}. However, the graph (C3 + xy + x′y′ + {8, 7}) Y∆ {9}
is isomorphic to the graph B7 + {7, 8}+ {1, 3}+ {1, 5} which has a K7−C4

minor by the proof of Lemma 5.2, and hence H would have a Λ0 minor by
Lemma 3.3. The situation is symmetric for the edges {2, 3}, {2, 4}, {3, 4}.

Therefore the graph H is obtained from C3 by adding at most one of the
edges {1, 3}, {1, 5}, {3, 5}, at most one of the edges {2, 3}, {2, 4}, {3, 4}, and
a subset of the edges {7, 8}, {7, 9}. Moreover, if one of {1, 3}, {1, 5}, {3, 5} is
added, then {7, 8} must be added in order to keep H internally 4-connected.
Similarly, if {7, 8} is added, then one of {1, 3}, {5, 3}, {2, 3}, {4, 3} must be
added, too. So the possibilities for H are as follows, up to symmetry.
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– C3 + {3, 5}+ {7, 8} is the graph C′3.

– C3 + {3, 5}+ {7, 8}+ {7, 9} is the graph C ′′3.

– C3 + {3, 5}+ {3, 2}+ {7, 8}+ {7, 9} is the graph C•3.

– C3 + {3, 5}+ {2, 4}+ {7, 8}+ {7, 9} is the graph C◦3.

– C3 + {3, 5}+ {3, 4}+ {7, 8}+ {7, 9} is isomorphic to the graph C◦3.

Suppose that the vertices of D2 are numbered as in Fig. 4. Let
D′2 be the graph obtained from D2 by adding the edges {7, 8}, {1, 3},
let D′′2 be obtained from D′2 by adding the edges {7, 9}, {2, 3}, and let
D′′′2 be obtained from D′′2 by adding the edge {7, 10}. Let D•2, D◦2 be
the graphs obtained from D′′′2 by adding the edges {1, 2}, {1, 6}, respec-
tively. Let D?

2 be the graph obtained from D2 by adding the edges
{1, 5}, {3, 4}, {2, 6}, {7, 8}, {7, 9}, {7, 10}. (See Appendix B.)

Lemma 5.4 Let H be an internally 4-connected graph having no minor
isomorphic to a graph from Λ0. If H contains a D2 minor, then H is
isomorphic to one of D2,D′2,D′′2,D′′′2 , D•2,D◦2,D?

2.

Proof. Assume that D2 is a proper minor of H. Since D2 is inter-
nally 4-connected, and the cubic vertices in D2 induce a cycle of length six,
the assumptions of Theorem 4.1 are fulfilled. Note that no quadrangular
extension can be applied to D2. Moreover, by Lemma 3.4, neither a vertex
splitting nor a 1-step addition extension is allowed in this particular case.
Thus, if H is not an addition extension of D2, then there exists a minor H ′

of H obtained from D2 as a pentagonal or hexagonal extension.
The proof follows the same steps as the previous proof. In order to apply

a pentagonal or hexagonal extension to a graph, one must find, in particular,
two cubic vertices with a common neighbor. Up to symmetry, there are two
such pairs in the graph D2 – the vertices 1, 3 with common neighbors 8
and 7, or the vertices 8, 9 with a common neighbor 3. Since only the second
pair allows a pentagonal extension, and since a hexagonal extension is not
possible for the triple {7, 9, 10}, the following cases have to be checked:

– H ′ = D2 {3; 4, 5} has a K4,5−M4 minor via contracting {1, 8},
{2, 10}.

– H ′ = D2 {1, 2, 3} and H ′ = D2 {8, 9, 10} have K4,5−M4 minors
via contracting {4, 5}, {4, 6}.

Thus the graph H is an addition extension of D2. Similarly
as in the previous proof, Lemma 3.4(a) implies that only a subset
of the edges {1, 3}, {1, 5}, {3, 5}, {2, 3}, {2, 4}, {3, 4}, {1, 2}, {1, 6}, {2, 6},
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{7, 8}, {7, 9}, {7, 10}, {8, 9}, {8, 10}, {9, 10} may be added in H. If the edge
{8, 9} was present in H, then also some edge xy incident with 3 would have
to be added to keep H internally 4-connected. However, it was shown in
the proof of Lemma 5.3 that the graph (D2 + {8, 9} + xy) Y∆ {10} ' C3 +
{8, 9}+ {1, 3} has a K7−C4 minor, which contradicts our assumptions by
Lemma 3.3. By symmetry the same applies to the edges {9, 10} and {8,10}.
Similarly, if two distinct edges {x, y} and {x′, y′} from {1, 3}, {1, 5}, {3, 5}
belonged to H, then also the edge {7, 8} would have to be in H; but the
graph (D2 + xy + x′y′ + {7, 8}) Y∆ {9} Y∆ {10} has a K7−C4 minor by the
proof of Lemma 5.2, again a contradiction.

Therefore the graph H is obtained from D2 by adding at most one of
the edges {1, 3}, {1, 5}, {3, 5}, at most one of the edges {2, 3}, {2, 4}, {3, 4},
at most one of the edges {1, 2}, {1, 6}, {2, 6}, and a subset of the edges
{7, 8}, {7, 9}, {7, 10}. Moreover, if one of {1, 3}, {1, 5}, {3, 5} is added, then
{7, 8} must be added in order to keep H internally 4-connected. Similarly, if
{7, 8} is added, then either the edge {1, 3}, or two other edges – one incident
with 1 and one incident with 3, must be added in H, too. Therefore, using
symmetry, the possibilities for the graph H are as follows, ordered by the
number of edges.

– D2 + {1, 3}+ {7, 8} is the graph D′2.

– D′2 + {2, 3}+ {7, 9} is the graph D′′2.

– D′2 + {2, 4}+ {7, 9} is isomorphic to the graph D′′2.

– D′′2 + {7, 10} is the graph D′′′2 .

– D′′′2 + {1, 2} is the graph D•2.

– D′′′2 + {1, 6} is the graph D◦2.

– D′2 + {3, 4}+ {7, 9}+ {2, 6}+ {7, 10} is isomorphic to the graph D◦2.

– D2 + {1, 5}+ {7, 8}+ {3, 4}+ {7, 9}+ {2, 6}+ {7, 10} is the graph D?
2.

Proof of Theorem 2.2. Setting Π = {K1,2,2,2, B7,B′7,B′′7, C3,C′3,C′′3,
C◦3,C•3, D2,D′2,D′′2,D′′′2 , D◦2,D•2,D?

2}, the statement of the theorem imme-
diately follows from Corollaries 2.3, 2.5, and Lemmas 5.1, 5.2, 5.3, 5.4.
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6 Excluded minors

Theorem 2.2 describes all possible counterexamples to Conjecture 1.1. Fur-
thermore, Lemma 1.2 and Proposition 1.4 allow us to deduce certain impli-
cations among members of Π. Let us write G

NC
→H to mean that “if G has

no planar cover, then neither has H”.

Proposition 6.1 The following relations hold among the members of Π.

K1,2,2,2 NC
→B7 NC

→B′7 NC
→B′′7 NC

→C3 NC
→C′3 NC

→C′′3 . . .

→ C•3 → D•2↗NC ↘NC ↗NC

. . .C′′3 NC
→C◦3 NC

→ D2 NC
→D′2 NC

→D′′2 NC
→D′′′2 NC

→D◦2
lNC

D?
2

Proof. The relations in the first row of the diagram follow immediately
from Lemma 1.2, or from the next argument:
B′′7 NC
→C3: Notice that B′′7 = C3 + {1, 5}+ {7, 8} Y∆ {9}, and that the edges

{1, 5} and {7, 8} are added between neighbors of cubic vertices. Thus if C3

had a planar cover, then so would have B′′7 by Proposition 1.4.
The relations in the second row of the diagram follow similarly, except

for:
D?

2 NC
→D2: As in the previous case, D?

2 can be obtained from D2 by sub-
dividing the edges {1, 10}, {2, 9}, {3, 8} with new vertices 11, 12, 13 re-
spectively, then adding the edges {11, 7}, {12, 7}, {13, 7}, and finally Y∆-
transforming the vertices 8, 9, 10. Thus if D2 had a planar cover, then so
would have D?

2 by Proposition 1.4.

It is possible that more relations between the graphs from Π can be
derived in a similar fashion, but we did not pursue this possibility.

By Lemma 1.2 and the Graph Minor Theorem of Robertson and Sey-
mour [12], there exists a finite set Σ of graphs such that a connected graph
has no planar cover if and only if it has a minor isomorphic to a member
of Σ. Since it is not known if Conjecture 1.1 holds, it is not even known
whether K1,2,2,2 ∈ Σ. Recall that Λ0 denotes the family of all connected
minor-minimal nonprojective graphs which are known to have no planar
cover. The lemmas developed in this paper imply the following:

Theorem 6.2 The set Σ is the union of Λ0 and a subset Π0 ⊆ Π − {D?
2}

such that no graph in Π0 is a subgraph of another graph in Π0.
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Proof. Clearly, no graph in Σ is a subgraph of another member of Σ,
and all graphs in Σ are connected and have no embedding in the projective
plane. Moreover, all graphs in Λ0 are minor-minimal with respect to the
property of having no planar cover, since all of their proper minors are
projective-planar, and hence have double planar covers.

LetG ∈ Σ. IfG happens to be one of the graphs in Λ0, the proof is done;
otherwise G contains one of K1,2,2,2,B7,C3,D2 as a minor by Theorem 1.3.
In such a case it follows from Corollary 2.5 that G is internally 4-connected.
The statement then follows from Lemmas 5.1, 5.2, 5.3, 5.4. Moreover, by
Proposition 6.1, D?

2 is not a minor-minimal graph having no planar cover,
since it has a planar cover if and only if so does D2 ⊂ D?

2.

(Notice that Theorem 6.2 does not seem to be a consequence of Theo-
rem 2.2.)
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Appendix A: 35 minor minimal nonprojective graphs.

This section presents a list of all 35 minor minimal nonprojective graphs, as
found in [3, 1]. (Our notation of these graphs mostly follows [3].)

K3,3+K3,3 K5+K3,3 K5+K5 K3,3 ·K3,3 K5 ·K3,3

K5 ·K5 B3 C2 C7 D1

D4 D9 D12 D17 E6

E11 E19 E20 E27 F4

F6 G1 K3,5 K4,5−M4 K4,4−e

K7−C4 D3 E5 F1 K1,2,2,2

B7 C3 C4 D2 E2
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Appendix B: Possible counterexamples to Negami’s conjec-

ture.

This section lists 16 internally 4-connected graphs that have no embedding
in the projective plane, but possibly might have a planar cover (cf. Theo-
rem 2.2).
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