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Abstract. Contact graphs are a special kind of intersection graphs of geometrical
objects in which the objects are not allowed to cross but only to touch each other.
Contact graphs of simple curves, and line segments as a special case, in the plane are
considered. Various classes of contact graphs are introduced and the inclusions between
them are described, also the recognition of the contact graphs is studied. As one of the
main results, it is proved that the recognition of 3–contact graphs is NP–complete for
planar graphs, while the same question for planar triangulations is polynomial.

1 Introduction

The intersection graphs of geometrical objects have been extensively studied for their many
practical applications. Formally the intersection graph of a set family M is defined as a
graph G with the vertex set V (G) = M and the edge set E(G) =

{

{A,B} ⊆ M|A 6=

B, A∩B 6= ∅
}

. Probably the first type studied were interval graphs, see [15],[1]; we may also
mention other kinds such as the intersection graphs of chords of a circle [2], or of curves or
line segments in the plane [3],[12],[13].

A special type of geometrical intersection graphs—the contact graphs, in which the geo-
metrical objects are not allowed to cross but only to touch each other, are considered here.
Unlike the general intersection graphs, only a few results are known in this field. There is
a nice old result of Koebe [11] about representations of planar graphs as contact graphs of
circles in the plane. In [6] a similar result about contact graphs of triangles is proved. The
contact graphs of line segments are considered in works of de Fraysseix with de Mendez and of
Thomassen [5],[7] and [18]: It is proved that every bipartite planar graph is a contact graph of
vertical and horizontal line segments [5] (see also an earlier related work [17]), and for contact
graphs of line segments of any direction, with contact of 2 segments in one contact point, a
characterization is given in [18].

We follow the ideas of intersection graphs of curves and of contact graphs of segments, and
define the contact graphs of simple curves in the plane. We also allow a contact of more than
2 curves in a point—in such situation we consider “one-sided” contacts. We define various
classes of curve or line-segment contact graphs, and study mainly the inclusions among them
and their recognition.

This paper provides proofs for results announced in [9], concerning the contact graph
classes and their recognition. A related paper [10] deals with the chromatic number and the
maximal cliques in the curve contact graphs. The complete formal definitions and proofs may
be also found in the technical report [8].

2 Curve Contact Representations

2.1 Definitions

Simple curves of finite length (Jordan curves) in the plane are considered. Each curve has two
endpoints and all of its other points are called interior points; they form the interior of the
curve. We say that a curve ϕ ends in (passes through) a point X if X is an endpoint (interior
point) of ϕ.
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Definition. A finite set R of curves in the plane is called a curve contact representation of
a graph G if interiors of any two curves of R are disjoint and G is the intersection graph
of R. The graph G is called the contact graph of R and denoted by G(R). A curve contact
representation R is said to be a line segment contact representation if each curve of R is a line
segment.
A graph H is called a contact graph of curves (contact graph of line segments) if there exists
a curve contact representation (line segment contact representation) S such that H ∼= G(S).
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Fig. 1. An example of a curve contact representation of a graph

A curve contact representation is called simply a representation, a contact graph of curves
simply a contact graph. Any subset S ⊆ R is called a subrepresentation of R. A point C is
said to be a contact point of a representation R if it is contained in at least two curves of R.
The degree of a contact point C in R is the number of curves of R containing C, a contact
point of degree k is called a k–contact point. We say that an endpoint of a curve is free if it
is not a contact point.

In Figure 1 an example of a curve contact representation and its contact graph are given.
For a better view, every contact point is emphasized by a circle around it. Note that for any
k–contact point C either all k curves containing C end in C or one curve is passing through
C and the other k − 1 curves end in C.

h h

Fig. 2. The difference between one-sided and two-sided contact points

A representation R is called a k–contact representation if each contact point of R has
degree at most k. A representation R is said to be simple if each pair of curves from R has at
most one common contact point. A representation R is one-sided if each of its contact points is
one-sided—that means either all its curves are ending in the point, or other curves are going to
one side of the passing through curve, see the example in Figure 2. The same definitions of a k–
contact or one-sided representations are applied for line segment representations. It is clear
that every line segment representation is simple. All these properties of contact representations
are transferred to contact graphs, and we refer to contact graphs as k-contact, simple or
one-sided contact in the obvious sense. Unless explicitly stated otherwise, we will consider
one-sided contact representations.

2.2 The structure of contact representations

For a description of a curve contact representation we define the following tool.
The incidence graph of a representation R (denoted by I(R)) is a directed bipartite graph,
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whose vertices correspond to curves and to contact points of R, and each vertex of a curve
is connected with all contact points that lie on it; the edge is oriented from the curve to the
contact point iff the point is an endpoint of the curve. We consider here a directed graph as
an orientation of undirected graph, i.e. without multiple edges and 2-cycles. An example of
the incidence graph of a representation is shown in Figure 3.
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Fig. 3. An example of the incidence graph of a representation

We say that two contact representations are similar if their incidence graphs are isomor-
phic. The next theorem enables us to handle a curve contact representation easier and to
describe it using finite (polynomial) space.

Theorem 1. For each two-sided representation R, |R| = n, there exists a two-sided represen-
tation S similar to R, so that each curve from S is a piecewise linear curve with its vertices
embedded on a grid of size O(n) × O(n). Additionally, if R is one-sided, then S can be also
chosen one-sided.

Proof. We define on R a plane graph in the following way: The vertices are put into each
contact point of R and into each free endpoint of a curve of R. The edges are exactly the pieces
of curves of R between the vertices. Then, to avoid multiple edges, each edge is subdivided
by a new vertex. Clearly, the obtained graph H is a planar graph of size |V (H)| = O(n).

By [16], every planar graph on v vertices can be embedded on a (v − 1) × (v − 1) grid,
which produces the required similar representation S. For one-sided R we can preserve the
cyclic order of edges around the vertices of H , hence we get one-sided S.

2

Using the previous nice embedding of a contact representation, it is not hard to prove
(details can be found in [8]) a useful characterization of incidence graphs of one-sided repre-
sentations.

Proposition 2.1 For a graph G there exists a contact representation R such that G ∼= I(R)
iff G is a planar directed graph and its vertices can be divided into two independent set V (G) =
A ∪ B so that the outdegrees in A are at most 2, the outdegrees in B are at most 1 and the
total degrees in B are at least 2.

An immediate consequence of this assertion is:

Proposition 2.2 Graph G is a 2–contact graph iff G is planar and for each subgraph H ⊆
G, |E(H)| ≤ 2 · |V (H)|.

It is more difficult to characterize the line segment 2–contact graphs, the result of [18]
solves it.

Theorem (Thomassen).
Graph G is a 2–contact graph of line segments iff G is planar and for each subgraph H ⊆ G,
|E(H)| ≤ 2 · |V (H)| − 3.
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Another consequence of Proposition 2.1 is that one-sided 3–contact graphs are also planar.
However, there is most likely no such nice characterization (in the meaning of recognition
complexity) as the previous ones, due to the results presented in the last section.

Proposition 2.3 If R is a 3–contact representation, then there exists a planar drawing
of G(R) such that for each 3–contact point X of curves u, v, w ∈ R the triangle u, v, w forms
a face.

Sketch of proof. The drawing of the graph G(R) is obtained from the planar incidence graph
I(R) by replacing each contact vertex of degree 2 with one edge and each contact vertex of
degree 3 with a triangle on its neighbouring vertices.

2

For further proofs we need to define an operation of splitting a contact point X of curves
%, σ1, . . . , σk along the curve %; it produces a new contact representation in which the contact
point X is replaced by k new 2–contact points X1, . . . , Xk of the pairs of curves %σ1,. . . ,%σk.
Clearly, using the piecewise-linear embedding from Theorem 1, we may apply this operation
on any one-sided contact representation, in both cases of ending or passing-through curve %.

Lemma2.4. Let R be a 2–contact ( 3–contact) representation. Then there exists a simple
2–contact (simple 3–contact) representation S of an isomorphic graph G(S) ∼= G(R).

Sketch of proof. Suppose there exists a pair of curves %, σ ∈ R such that X,Y ∈ %∩σ, X 6= Y .
If Y is a 2–contact, we simply shorten the curve ending in Y . If Y is a 3–contact of curves
%, σ, ϑ, we split Y along the curve ϑ. In both cases we get a representation of an isomorphic
graph, and we proceed by induction.

2

3 Classes of Contact Graphs

Various classes of (one-sided) contact graphs of curves or line segments, with respect to
contact degrees and simplicity, are defined; and inclusions among them are studied. The
complete description of the partially ordered set (Figure 4) formed by inclusions among the
classes, is presented in Theorem 2, and it is proved by a sequence of following lemmas.

Definition. For an integer k ≥ 2, we denote by CONCUR (k–CONCUR) the class of all
contact (k–contact) graphs of curves, by SCONCUR (k–SCONCUR) the class of all simple
contact (simple k–contact) graphs of curves, and by CONSEG (k–CONSEG) the class of all
contact (k–contact) graphs of line segments.

Theorem2. All the inclusions among contact graph classes, described by a poset in Figure 4,
are strict and no other inclusion holds.

Lemma3.1. 2–CONCUR 6⊆ CONSEG.

Proof. Let H be the graph constructed from the graph of a regular octahedron by adding 4
new vertices and 6 new edges into each face as is shown in Figure 5. By Proposition 2.2 the
graph H is a 2–contact graph.

Suppose there exists a segment contact representation S of H. Since H contains no clique
of size 4, S must be 3–contact. The planar drawing of H is unique and contains no triangular
face, so S is 2–contact by Proposition 2.3. This is a contradiction to the characterization of
segment 2–contact graphs because the regular octahedron has 6 vertices and 12 edges.

2

Lemma3.2. 4–CONCUR 6⊆ SCONCUR.
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Fig. 4. The inclusions between classes of contact graphs
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Fig. 5. A 2–contact graph that has no line segment contact representation
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Fig. 6. A 4–contact graph that has no simple contact representation
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Proof. In Figure 6 we can see the graph F and its 4–contact representation. Suppose there ex-
ists a simple contact representation R of F . Clearly R is a 4–contact representation. Because
R is simple, both subrepresentations S1 = {a, b, c, d}, S2 = {c, d, f, g} cannot simultaneously
contain a contact point of degree 4. Hence let S1 be a 3–contact representation, then also
S = S1 ∪ {e, f} = {a, b, c, d, e, f} is 3–contact, but the contact graph G(S) is not planar, a
contradiction to Proposition 2.3.

2

Lemma3.3. (k + 1)–CONSEG 6⊆ k–CONCUR for k ≥ 2.
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Fig. 7. A 3–contact graph of segments that has no 2–contact representation

Proof. For k = 2 we take the graph from Figure 7 that is a 3–contact graph of segments, but
it has 10 vertices and 21 edges, so it has no 2–contact representation.
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Fig. 8. A (k + 1)–contact graph of segments that has no k–contact representation

For k ≥ 3 let Gk be the graph from Figure 8, consisting of two disjoint (k + 1)–cliques on
the vertex sets V1, V2 and a perfect matching between them. Clearly there exists a segment
(k + 1)–contact representation of Gk.

Firstly we show, using induction on m ≥ 3, that any m–contact representation K of
the graph Km+1 contains four curves forming a 3–contact subrepresentation: It is clear for
m = 3, otherwise let X be a contact point of degree m ≥ 4 and % a curve containing X.
If the subrepresentation K \ {%} is (m − 1)–contact, we proceed by induction. If not, there
is another m–contact point Y in K, and counting endpoints of curves in K implies that at
most one other contact point Z has degree 4 or 5. Then it is enough to take one curve not
containing X, one not containing Y , one not containing Z and an arbitrary one.

Let us suppose, for contradiction, that there exists a k–contact representation R of Gk.
Denoting by V1,V2 the subrepresentations of complete graphs on the vertex sets V1, V2, we
apply the previous assertion on K = V1, hence there is a 3–contact subrepresentation S ⊆ V1,
|S| = 4. If we denote by T ⊆ V2 its matching subrepresentation in V2, and split all possible
4–contact points of T into 2–contacts, producing a new T ′, we get a 3–contact representation
S ∪ T ′ of a graph containing K5 as a minor, which is a contradiction to Proposition 2.3.

2

Proof. (of Theorem 2)
All the stated inclusions are clear from definitions, and the equalities for 2– and 3–contact
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classes are proved in Lemma 2.4. Finally, one can easily check that the rest of the theorem
results from Lemmas 3.1,3.2,3.3.

2

4 Recognition of Curve Contact Graphs

The problem to decide, whether a given graph can be represented as an intersection graph
of specified objects, is important in studying the intersection graphs. The decision version
of the problem is called the recognition of intersection graphs (of a special kind). For the
interval graphs a simple characterization is given in [15], and a more efficient algorithm for
their recognition is in [1]. Circle graphs (intersection graphs of chords of a circle) may be
mentioned [2] as other kind of intersection graphs that can be quickly recognized. On the
other hand, the recognition of intersection graphs of curves in the plane is proved to be NP–
hard [12], moreover graphs with at least exponential complex representations [14] are known
in that case.

4.1 Contact Representations of Planar Graphs

First we present an important lemma that is used to restrict the existence of certain contact
representations of planar graphs.

Lemma 4.1. Let R be a two-sided 3–contact representation of a graph G containing f free
endpoints of curves. Then the representation R must contain at least (|E(G)| − 2 · |V (G)|+
f) 3–contact points forming non-neighbouring triangles in G (two triangles are said to be
neighbouring if they have a common edge).

Proof. We construct a mapping t : E(G) → T (R) that assigns to each edge e ∈ E(G) a
contact point of R representing the edge e. If R is not simple and an edge e is represented
by more contact points, we choose an arbitrary one of them. Then for a 2–contact point X,
| t−1(X)| ≤ 1, and for a 3–contact point X, | t−1(X)| ≤ 3.

Let T (R) = T1 ∪ T2 ∪ T3 be a partition of the contact points such that T1 = {X :
| t−1(X)| ≤ 1}, T2 = {X : | t−1(X)| = 2} and T3 = {X : | t−1(X)| = 3}. In each contact point
of T1 at least one curve must end, each contact point of T2 or T3 is a 3–contact point so at
least 2 curves must end in it. Therefore, by counting the number of endpoints of curves in R,
|T1|+2|T2|+2|T3| ≤ 2|V (G)|−f , but from the mapping t we know |E(G)| ≤ |T1|+2|T2|+3|T3|,
so |E(G)| − 2|V (G)| + f ≤ |T3|. That is what we need, because each 3–contact point of T3

forms a triangle of G, and two such triangles cannot share an edge due to the mapping t.
2

4.2 A Polynomial Algorithm For Planar Triangulations

A planar triangulation is a planar graph, whose all faces, including the outer face, are triangles.
We already know by Proposition 2.2 that the recognition of 2–contact graphs is polynomial—
the edge number condition may be checked using the polynomial algorithm for network flows,
and the planarity is linear. The result [5] is worth mentioning: Every bipartite planar graph is
a 2–contact graph of horizontal and vertical line segments. A similar statement for 3–contacts
of segments (that also results in a simple algorithm) is included in [7]:

Theorem (de Fraysseix, de Mendez).
A 4–connected planar triangulation is a 3–contact graph of segments iff it is 3–colourable.

We study the curve contact representations of planar triangulations.
Suppose we have a planar triangulation G on n vertices, n ≥ 3, then G has 3n − 6 edges
and 2n − 4 triangular faces. Since a triangulation is 3–connected, the planar drawing of G

is unique. By Proposition 2.3, in a 3–contact representation of G each 3–contact point forms
a triangular face, i.e. corresponds to a vertex of the dual graph of G. In connection with
Lemma 4.1 we get the following:
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Observation. Let G be a planar triangulation, and H be the dual graph of G. If G has a
3–contact representation R, then R contains, by Lemma 4.1, (3n − 6) − (2n) + 0 = (n − 6)
3–contact points corresponding to an independent set of size n − 6 = ( 1

2
|V (H)| − 4) in H .

From this observation we can already derive a polynomial algorithm for finding a 3–contact
representation of a given triangulation.

Theorem3. There is a polynomial algorithm that for a given planar triangulation G decides
whether G is a 3–contact graph, and finds a representation if one exists.

Proof. First we show how all independent sets of size at least ( 1

2
v−4) in a connected 3–regular

graph H on v vertices may be generated in polynomial time. Let A ⊂ V (H), |A| ≥ ( 1

2
v − 4)

be an independent set, F ⊂ E(H) be the set of all edges of H that are disjoint with A, so
the graph H \ F is bipartite. Then |E(H)| = 3

2
v, |E(H) \ F | ≥ 3( 1

2
v − 4) = ( 3

2
v − 12) and

|F | ≤ 12. In fact, |F | ∈ {0, 3, 6, 9, 12}, and we simply try all possible choices of such F . If
we find out that H

′ = H \ F is bipartite, we must also check whether a 2–colouring of H
′

may be chosen so that all vertices incident with F have the same colour, then A is formed by
the vertices in the other colour. The whole process of generating the independent sets takes
about O(v13).

Now we return to the problem whether G is a 3–contact graph. If G has a 3–contact repre-
sentation R, the 3–contact points of R correspond to an independent set of size at least 1

2
v−4

in the dual graph H, |V (H)| = v; and this set is surely generated by our algorithm. Con-
versely, if we get an independent set A ⊂ E(H), |A| = ( 1

2
v − 4), we construct the graph I

from G by replacing each triangle uvw corresponding to a vertex of A in the dual graph with
a new vertex adjacent to each u, v, w, and by subdividing all remaining edges (corresponding
to the set F in the dual) with a vertex.

In that way we get a symmetrization of every possible incidence graph of a representation
of G. Then it is enough to check whether I can be oriented according to the assumptions
of Proposition 2.1. Generally, an orientation of a given graph satisfying prescribed maximal
outdegrees, can be found in polynomial time using Ford–Fulkerson’s algorithm for the maximal
flow in a network. Thus the whole process takes only polynomial time.

2

Corollary 4.2. The problem to decide whether a given 4–connected planar triangulation is a
two-sided contact graph (and to find the representation) can be solved in polynomial time.

Proof. The condition of 4–connectivity of the triangulation G means that G contains no
non-face triangle, especially, it contains no K4. Thus any contact representation of G is 3–
contact, and the 3–contact points must correspond to face triangles. So we may use the above
algorithm, and produce a one-sided representation (if any).

2

5 3–contact Graphs are NP–complete

Unlike the planar triangulations, the problem of deciding whether a given general planar
graph is a 3–contact graph, is NP–complete (NP–hard for line segments). The recognition of
one-sided or two-sided contact graphs of curves clearly belongs to NP from Theorem 1. For
the NP–hardness reduction of our problem we use the PLANAR 3–SAT problem, see [4]; that
is defined as a special case of the satisfiability problem (a formula Φ with a set variables V

and a set of clauses C) for which the bipartite graph F , V (F ) = C ∪ V , E(F ) = {xc : x ∈
c or ¬x ∈ c}, is planar with degrees of all vertices bounded by 3.

5.1 The End-eating graph

In further constructions we need a special graph that has a simple 3–contact representation,
but no contact representation in which some curve has a free endpoint. This graph is presented
in Figure 9, we denote it by E . The property of having no free endpoint in any contact
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Fig. 9. The end-eating graph E and a scheme of its contact representation

representation follows from Lemma 4.1; reader may check that E has 22 vertices, 60 edges,
but only 16 non-neighbouring triangles.

The graph E is used to “eat” an endpoint of a curve in a contact representation—if one of
its vertices v is adjacent to some vertex w of another graph G, the only way to represent the
edge {v, w} is to use one end of the curve w in the contact point of v, w. The graph produced
by joining vertices w1, . . . , wk of a graph G with disjoint copies of E in the above sense will
be denoted by ENDEAT (G, w1, . . . , wk).

5.2 A Reduction to Satisfiability Problem

Given a formula Φ (of the PLANAR 3–SAT problem), we construct a graph R(Φ) that has
a contact representation iff the formula Φ is satisfiable. We may clearly suppose that each
variable has at most 2 positive and at most 2 negated occurrences, otherwise, if some variable
has only positive (negated) occurrences, we may set it true (false) and reduce the formula.
In the construction all variable and clause vertices of the formula graph F (Φ) are replaced
by special graphs, see Figures 10, 11. Then clauses are connected with their variables by
connectors, see Figure 12; connectors are adjacent to variable and clause graphs in special
pairs of vertices called terminals, each in a different one.
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The graph V = ENDEAT (G, a, b, c, d), formed from the graph G in Figure 10 by adding
the end-eating graphs to the vertices a, b, c, d, is called the variable graph. Similarly, the graph
C = ENDEAT (H , p1, q1, p2, q2, p3, q3), obtained from the graph H in Figure 11, is called the
clause graph. The pairs of vertices ab, bc, cd, da of the variable graph and p1q1, p2q2, p3q3 of
the clause graph are terminals.

Each terminal xy encodes, in a contact representation, a logical value 1 if the edge {x, y}
is represented by a 2–contact, and 0 otherwise. The terminals bc, da of the variable graph
are used to connect it with its positive occurrences in clauses, the terminals ab, cd for its
negated occurrences. Thus the left representation from Figure 10 encodes a value TRUE of
the variable X, and the right representation a value FALSE. In the clause graph, a terminal
of value 0 means that the variable occurrence joined to this terminal must be true to satisfy
the clause. The representation from Figure 11 has the terminal p3q3 of value 0, so the literal
L3 is forced to be true.
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Fig. 12. Schemes of the connector and the false terminator

A subgraph consisting of two vertices t1, t2 and five edges joining them together and with
two terminals, see the top part of Figure 12, is called a connector. A subgraph consisting
of one vertex t3 adjacent by two edges to a terminal and by another edge to a copy of the
end-eating graph, see the bottom part of Figure 12, is called a false terminator.

Connectors are chosen so that two terminals can be connected iff at least one of them
has value 1—either the literal is true or it is not chosen to satisfy the clause. To represent a
connector, we use a 3–contact point in the terminal of value 1 and two 2–contact points in
the terminal of value 0. The false terminator can be adjacent only to a terminal of value 1 by
a 3–contact point, it is used to “fill” the third terminal of a clause with only two literals.

The graph R(Φ) representing a formula Φ may be formally defined:
Let Φ = C1 ∧C2 ∧ . . .∧Cl, where Ci = Li1 ∨Li2 ∨Li3 for i = 1, . . . , k, and Ci = Li1 ∨Li2 for
i = k +1, . . . , l, and Φ is over a set of variables x1, x2, . . . , xn. The graph R(Φ) is constructed

10



as a disjoint union of graphs V(x1), . . . ,V(xn) and C(C1), . . . ,C(Cl), with connectors added
as follows: For each literal Lij = xm (Lij = ¬xm), i = 1, . . . , l, a disjoint copy of the connector
is joining the terminal da or bc (ab or cd) of V(xm), so that no terminal is used twice, with a
terminal pjqj of C(Ci); and for each clause Ci, k < i ≤ l, the false terminator is added to the
terminal p3q3 of C(Ci).

An example of the graph R(Φ) for a simple formula Φ is presented in Figure 13, the end-
eating graphs added to vertices are schematically drawn by double circles.
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Fig. 13. An example of the graph R(Φ) for Φ = C1 ∧ C2 ∧ C3, C1 = (¬x1 ∨ ¬x2 ∨ ¬x3),
C2 = (x2 ∨ x3 ∨ ¬x4), C3 = (¬x1 ∨ x4)

Lemma 1. The graph R(Φ) of a given instance Φ of the PLANAR 3–SAT problem is planar;
and is a one-sided 3–contact graph if Φ is satisfiable, but has no two-sided contact represen-
tation if Φ is not satisfiable.

Proof. Suppose Φ is satisfiable. We represent the variable and clause graphs by schemes from
Figures 10,11, depending on the satisfying values of the variables and on true literals in the
clauses. Then we may clearly add all connectors and false terminators by schemes in Figure 12,
and the resulting representation of R(Φ) is one-sided 3–contact.

Conversely, if there exists a two-sided contact representation R of R(Φ), it must be 3–
contact (there is no 4–clique). By Lemma 4.1, the subrepresentation of the graph V(xm) for
any variable xm must contain at least (8 − 2 · 5 + 4) = 2 3–contact points forming non-
neighbouring triangles in V(xm). Thus there are only two possibilities to represent V(xm), as
shown in Figure 10, and they determine the logical value of xm. Also each subrepresentation
of the clause graph C(Ci) must contain at least (18−2 ·10+6) = 4 3–contact points forming
non-neighbouring triangles. This is possible only if at least one of them is the triangle o pjqj ,
j ∈ {1, 2, 3}, so if at least one terminal pjqj of C(Ci) has value 0.

Now it is enough to observe that a connector cannot be represented with both terminals of
value 0. Therefore each clause contains a literal that is true in the above constructed valuation
of x1, . . . , xn, so Φ is satisfiable.

2

Theorem 4. The recognition of contact graphs (simple contact graphs, k–contact graphs for
k ≥ 3) is NP–complete, so is the recognition of two-sided contact graphs (two-sided k–contact
graphs for k ≥ 3).
The recognition of contact graphs is NP–complete even within the class of planar graphs.

2
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5.3 3–contact Graphs of Line Segments

Using more involved methods, a similar reduction can be constructed for contact graphs of
line segments (the main problem is with an implementation of the end-eating graph).

Theorem5. The recognition of contact graphs (k–contact graphs, two-sided k–contact
graphs, for k ≥ 3) of line segments is NP–hard, even within the class of planar graphs.

However, we do not know whether the recognition of contact graphs of segments belongs
to NP.

Problem. Is there, for every contact graph of line segments, a line segment contact repre-
sentation with endpoints of the segments embedded on a grid of polynomial size?
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9. P. Hliněný, Contact graphs of curves (extended abstract), in Graph Drawing (F.J.Brandenburg

ed.), Proceedings Graph Drawing ’95, Passau September 1995; Lecture Notes in Computer Sci-
ence 1027, Springer Verlag, Berlin Heidelberg 1996, 312-323.
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