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1 THE TUTTE POLYNOMIAL

As everybody here probably knows. . .

Definition. For a graph G = (V,E),

T (G;x, y) =
∑

F⊆E

(x − 1)r(E)−r(F )(y − 1)|F |−r(F ),

where r(F ) = |V |−k(F ) and k(F ) is the num. of components induc. by (V, F ).

This definition of the Tutte polynomial follows its matroid aspects:

T (M ; x, y) =
∑

A⊆E

(x − 1)rM (E)−rM (A)(y − 1)|A|−rM (A)

Fact. Knowing T (G;x, y) ∼ knowing the number of spanning subgraphs
on edges F with |F | = i and k(F ) = j.

Petr Hliněný, W.Tutte 2005 2 Tutte Polynomial for Restricted “Width”



Fact. The Tutte polynomial captures a number of interesting graph properties:

• T (G; 1, 1) = # spanning trees,

• T (G; 2, 1) = # spanning forests,

• T (G; 1 − x, 0) · ∗ = the chromatic polynomial,

• T (G; 0, 1 − y) · ∗ = the flow polynomial.

• and many more. . .

So, not surprisingly, its computation is very hard in general. . .

Theorem 1.1. [Jaeger, Vertigan, and Welsh, 1990]
Evaluating the Tutte polynomial T (G;x, y) at (x, y) = (a, b) is #P -hard unless
(a−1)(b−1) = 1 or (a, b) ∈ {(1, 1), (−1,−1), (0,−1), (−1, 0), (i,−i), (−i, i),
(j, j2), (j2, j)}, where i2 = −1 and j = e2πi/3.
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2 COMPUTING FOR RESTRICTED “WIDTH”

2.1 Tree-width / branch-width

Motivation: Many hard graph properties can be computed efficiently for graphs
of bounded tree-width (for example, all MSO-definable properties).

• Independently [Andrzejak / Noble, both 1998]:

The Tutte polynomial T (G;x, y) can be computed in polynomial time on
a graph G of bounded tree-width.

– The (stronger) version of Noble gives an FPT algorithm, and

– an evaluation scheme using linear number of arithmetic operations.

• Our matroidal extension:

Theorem 2.1. [PH, 2003] The Tutte polynomial T (M ;x, y) can be
computed in polynomial FPT time on a matroid M , which is represented
by a matrix over a finite field and has bounded branch-width.

– We generalize the approach of Noble, and provide a “cleaner view” of the
computation using branch-width instead of tree-width.
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2.2 Cographs (i.e. clique-width 2)

This is a simplified version of the full (and difficult) algorithm for graphs of
bounded clique-width. . .

Theorem 2.2. [Giménez, PH, Noy, 2005]
The Tutte polynomial of a cograph can be computed in subexponential time

exp (O(n2/3)) .

Note: Subexponential algorithms – 2o(n)

For NP-complete problems, no better solutions than an exhaustive search are
expected to exist.

Hence, for naturally defined problems like the SAT with n variables, no 2o(n)

algorithm (called often subexponential) is expected to exist.
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2.3 Clique-width / rank-width

Theorem 2.3. [Giménez, PH, Noy, 2005]
Let G be a graph with n vertices of clique-width ≤ k along with a k-expression
for G as an input. Then the Tutte polynomial of G can be computed in
subexponential time

exp
(

O(n
1−

1
k+2 )

)

.

Do we need a k-expression (i.e. a given decomposition) for G?

Clique-width is difficult to compute.
However, it is efficiently approximable via rank-width. [Oum, Seymour, 03]

Fact. A subexp. 2o(n) algorithm for the Tutte polynomial on an n-vertex graph

→ a 2o(n) algorithm for 3-colouring,

→ a 2o(n) algorithm for 3-SAT – unexpected!

So it is very unlikely to have a subexponential algorithm for the Tutte polynomial
on general graphs. . .
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3 SKETCHING THE PROOFS

Starting with a few words about represented matroids. . .

• Matroids represented by matrices over a finite field
�

;

• → elements give actual points in the projective geometry over
�

.

• An illustration of the relation between graphic and represented matroids:
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3.1 The Tutte Polynomial on Matroids

Introducing the boundaried Tutte polynomial. . .

• Boundaried matroid M̄, ∂ – a represented matroid M equipped with an
arbitrary boundary subspace ∂.

t-boundary – boundary of rank t.

• t-boundary mark K
(

M̄ |A
)

– marking the subspace ∂(M̄ ) ∩ 〈A〉 of the
boundary ∂(M̄ ) that is spanned by A.

K
∼

t – the set of all t-boundary marks.

• Let M̄ = (M,∂) be a t-boundaried represented matroid on E.
The boundaried Tutte polynomial of M̄ is given by

TB
(

M̄ ; x, y, Zt
)

=
∑

A⊆I

zK(M̄ |A) · (x− 1)rM (I)−rM (A) · (y − 1)|A|−rM (A) ,

where Zt = (zK : K ∈ K
∼

t ) is a vector of |K∼

t | free variables.

Proposition 3.1. T (M ; x, y) = TB
(

M̄ ; x, y, (1, . . . , 1)
)

.
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Recursive Computation of the Boundaried Tutte Polynomial

Theorem 3.2. Let a tree T be parsing a t-branch-decomposition of a repre-
sented boundaried matroid M̄ = M̄(T ). If T is an empty tree, then

TB
(

M̄(T ); x, y, Z0
)

= TB
(

Ω̄0; x, y, Z0
)

= zK(Ω̄0 |∅) .

If T has exactly one vertex labelled by Ῡ or Ῡ0, then

TB
(

Ῡ; x, y, Z1
)

= zK(Ῡ |∅)(x − 1) + zK(Ῡ |I(Ῡ)) , or

TB
(

Ῡ0; x, y, Z0
)

= zK(Ῡ0 |∅) + zK(Ῡ0 |I(Ῡ0))(y − 1) .

If r is the root with composition �, and T1, T2 are the sons of r in T , then

TB
(

M̄(T ); x, y, Zt3

)

=

= TB
(

M̄(T1); x, y, Z ′
t1

)

· TB
(

M̄(T2); x, y, Z ′′
t2

)

,

where

z′K1
· z′′K2

= zK
3
(�;K1,K2)

· (x − 1)%(�;K1,K2)−σ(�) · (y − 1)%(�;K1,K2)

for each pair Ki ∈ K
∼

ti(�), i = 1, 2.
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Theorem 3.3. Computing time summary for the Tutte polynomial on repre-
sented matroids:

Assume that
�

is a finite field, and that t is an integer constant.

• If M is an n-element
�

-represented matroid of branch-width at most t,
then the Tutte polynomial T (M ; x, y) can be computed in time

O(n6 log n log log n) .

• Suppose that a, b are rational numbers a = pa

qa
, b = pb

qb
of combined

length l bits. Then T (M ; a, b) can be evaluated at a, b in time

O( n3 + n2l · log(nl) · log log(nl) ) .

Remark. Noble evaluates the Tutte polynomial T (G; a, b) at a, b for a graph G of
bounded tree-width in time

O((v + p) · el · log e log log e · log l log log l) ,

where v is the number of vertices, e is the number of edges, and p the the size of the
largest parallel class in G. Note that n = e in our setting.

Our algorithm almost matches this performance, the extra O(n3) term is needed to
construct the necessary branch-decomposition.

Petr Hliněný, W.Tutte 2005 10 Tutte Polynomial for Restricted “Width”



3.2 Forests in Cographs

The first (simplified) step towards the algorithm for graphs of bounded clique-
width. . .

Definition. Cograph is a graph constructed from vertices using

• a disjoint union (no added edges), or

• a “complete” union (adding all edges across).

Fact. (folklore)

• All cliques are cographs.

• Precisely those graphs without induced P4.

• Cographs are closed on complements, contractions, induced subgraphs.

• Not closed on normal subgraphs / edge deletion.

• Recognizable in P.

Theorem 3.4. Spanning forests can be enumerated on cographs in time

exp (O(n2/3)) .
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Algorithm on Cographs

A forest signature α – a multiset of component sizes (positive integers);

• represented by a characteristic vector α = (a1, a2, . . . , an),

• size sα =
∑n

i=1 i · ai (and cardinality as usual |α| =
∑n

i=1 ai).

Lemma 3.5. (folklore) There are 2Θ(
√

n) signatures of size n (∼integer parts.).

A forest double-signature β – a multiset of ordered pairs of integers,
counting dual-labeled (nonempty) component sizes;

• a refinement of a forest signature,

• having a characteristic vector β = (b(0,1), b(0,2), . . . , b(1,0), b(1,1), . . .),

• size sβ =
∑

(x,y)(x + y) · b(x,y).

Lemma 3.6. There are exp (Θ(n2/3)) distinct double-signatures of size n.

– Quite difficult to prove, but easy a slightly worse bound exp (Θ(n2/3 log n)).
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We apply the following two exp (O(n2/3)) algorithms along the decomposition
scheme of the given cograph:

Algorithm 3.7. Combining the spanning forest signature tables of graphs F

and G into the one of the disjoint union H = F ∪̇G. (Simple.)

Input: Graphs F,G, and their forest signature tables T F ,T G.

Output: The forest signature table T H of H = F ∪̇G.

create empty table T H of forest signatures of size |V (H)|;

for all signatures αF ∈ ΣF , αG ∈ ΣG do exp (O(n2/3))×

set α = αF ] αG (a multiset union);

add T H [α] += T F [αF ] · T G[αG];

done.

Algorithm 3.8. Combining the spanning forest signature tables of graphs F

and G into the one of the complete union H = F ⊕ G. (Difficult.)

Input: Graphs F,G, and their forest signature tables T F ,T G.

Output: The forest signature table T H of H = F ⊕ G.

create empty table T H of forest signatures of size |V (H)|;
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for all signatures αF ∈ ΣF , αG ∈ ΣG do exp
(

O(n2/3)
)

×

set z = |V (F )|;

create empty table X of forest double-signatures of size z;

set X
[

double-signature {(a, 0) : a ∈ αF }
]

= 1;

for each c ∈ αG (with repetition) do O(n)×

create empty table X ′ of forest double-signatures of size z + c;

for all double signatures β of size z s.t. X [β] > 0 do exp
(

O(n2/3)
)

×

for(*) all submultisets γ ⊆ β (with repetition) do exp
(

O(n2/3)
)

×

set d1 =
∑

(x,y)∈γ x, d2 =
∑

(x,y)∈γ y;

set double-signature β′ = (β − γ) ] {(d1, d2 + c)};

add X ′[β′] += X[β] ·
∏

(x,y)∈γ cx; O(n)

done

done

copy X = X ′, z = z + c; dispose X ′;

done

for all double-signatures β of size |V (H)| do exp
(

O(n2/3)
)

×

set signature α0 = {x + y : (x, y) ∈ β};

add T H [α0] += X[β] · T F [αF ] · T G[αG];

done

done.
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3.3 The Tutte Polynomial on Cographs

Extending Algorithms 3.7,3.8 for the Tutte polynomial is not so difficult. . .

Extensions:

• Enumerate edge-subsets (spanning subgraphs) instead of forests.

• Subgraph signatures analogously record the component sizes.
Moreover, we record the total number of edges.

• When joining components, we may add many (≥ 1) edges between two
components, → computing “cellular selections”.

Definition. Cellular selection from C1, . . . , Ck:
Selecting an `-element subset L ⊆ C1 ∪ . . . Ck, st. L ∩ Ci 6= ∅ for all i.

A nice exercise: Let di = |Ci|, and ui,j be the number of partial selections of
j elements from the first i cells. Then

ui,j =
r
∑

s=1

ui−1,j−s ·

(

di

s

)

.

Theorem 3.9. The Tutte polynomial of a cograph can be computed in time

exp (O(n2/3)) .

Petr Hliněný, W.Tutte 2005 15 Tutte Polynomial for Restricted “Width”



3.4 Clique-Width

• Formal definition [Courcelle, Olariu, 00] (implicit [Courcelle et al, 93]).

Definition. Constructing a vertex-labeled graph G using the operations

– a new labeled vertex,

– a disjoint union of two graphs

– ρi→j relabeling of all i’s to j’s,

– ηi−j adding all edges between labels i and j.

(Called a k-expression.)

Clique-width = min number of labels needed to construct (unlabeled) G.

• Cographs have clique-width = 2, paths ≤ 3, cycles ≤ 4.

• Bounding the clique-width of a graph allows to efficiently solve all prob-
lems expressed in the MSO logic of adjacency graphs (MS1) – quantifying
over vertices and their sets. [Courcelle, Makowsky, Rotics, 00]

(Bounding the tree-width allows to efficiently solve all problems in MS2.)

• The chromatic number (and the chromatic polynomial) is polynomial
time (not FPT) for graphs of bounded clique-width. [Kobler, Rotics, 03]
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Algorithm on Bounded Clique-Width

A subgraph k-signature β – a multiset of ordered k-tuples of integers,
counting k-labeled (nonempty) component sizes.

(Analogous to double-signatures. . . )

Lemma 3.10. There are exp (Θ(nk/(k+1))) distinct k-signatures of size n.

Extending the algorithm – processing the ηi−j operation:

• Using only one signature table for the whole graph.

• Thus need an artificial new label 0 for iterative processing of components
intersecting label j (corresp. to the sign. table of the second graph).

• A new (easy) point of adding edges inside a component.

Our full result:

Theorem 3.11. Let G be a graph with n vertices of clique-width ≤ k along
with a k-expression for G as an input. Then the Tutte polynomial of G can be
computed in time

exp
(

O(n
1−

1
k+2 )

)

.
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4 OPEN QUESTIONS

Just a few ones related to our talk. . .

• [Kobler, Rotics, 03] compute the chromatic number of a graph of bounded
clique-width in polynomial time, however, not in FPT.

Is the chromatic number FPT wrt. clique-width?
(i.e. polynomial with a fixed exponent?)

• Is the Tutte polynomial on graphs of bounded clique-width in P, or #P-
hard, or between?

(#P-hardness is not yet excluded by a subexponential algorithm!)

• What structural or “width” restriction is sufficient to efficiently compute
the Tutte polynomial of an abstract matroid?

(The polynomial is #P-hard over all matroids of branch-width three!)
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