COMPUTING THE TUTTE POLYNOMIAL FOR RESTRICTED "WIDTH"

Petr Hliněný
Faculty of Informatics, Masaryk University in Brno, Botanická 68a, 60200 Brno, Czech Rep.
e-mail: hlineny@fi.muni.cz
http://www.cs.vsb.cz/hlineny
Parts of the talk present joint work with
Omer Gimenez and Marc Noy
Dept. of Applied Mathematics
UPC Barcelona

1 THE TUTTE POLYNOMIAL

As everybody here probably knows. . .
Definition. For a graph $G=(V, E)$,

$$
T(G ; x, y)=\sum_{F \subseteq E}(x-1)^{r(E)-r(F)}(y-1)^{|F|-r(F)}
$$

where $r(F)=|V|-k(F)$ and $k(F)$ is the num. of components induc. by (V, F).
This definition of the Tutte polynomial follows its matroid aspects:

$$
T(M ; x, y)=\sum_{A \subseteq E}(x-1)^{r_{M}(E)-r_{M}(A)}(y-1)^{|A|-r_{M}(A)}
$$

Fact. Knowing $T(G ; x, y) \sim$ knowing the number of spanning subgraphs on edges F with $|F|=i$ and $k(F)=j$.

Fact. The Tutte polynomial captures a number of interesting graph properties:

- $T(G ; 1,1)=\#$ spanning trees,
- $T(G ; 2,1)=\#$ spanning forests,
- $T(G ; 1-x, 0) \cdot *=$ the chromatic polynomial,
- $T(G ; 0,1-y) \cdot *=$ the flow polynomial.
- and many more...

So, not surprisingly, its computation is very hard in general...
Theorem 1.1. [Jaeger, Vertigan, and Welsh, 1990]
Evaluating the Tutte polynomial $T(G ; x, y)$ at $(x, y)=(a, b)$ is \#P-hard unless $(a-1)(b-1)=1$ or $(a, b) \in\{(1,1),(-1,-1),(0,-1),(-1,0),(i,-i),(-i, i)$, $\left.\left(j, j^{2}\right),\left(j^{2}, j\right)\right\}$, where $i^{2}=-1$ and $j=e^{2 \pi i / 3}$.

2 COMPUTING FOR RESTRICTED "WIDTH"

2.1 Tree-width / branch-width

Motivation: Many hard graph properties can be computed efficiently for graphs of bounded tree-width (for example, all MSO-definable properties).

- Independently [Andrzejak / Noble, both 1998]:

The Tutte polynomial $T(G ; x, y)$ can be computed in polynomial time on a graph G of bounded tree-width.

- The (stronger) version of Noble gives an FPT algorithm, and
- an evaluation scheme using linear number of arithmetic operations.
- Our matroidal extension:

Theorem 2.1. [PH, 2003] The Tutte polynomial $T(M ; x, y)$ can be computed in polynomial FPT time on a matroid M, which is represented by a matrix over a finite field and has bounded branch-width.

- We generalize the approach of Noble, and provide a "cleaner view" of the computation using branch-width instead of tree-width.

2.2 Cographs (i.e. clique-width 2)

This is a simplified version of the full (and difficult) algorithm for graphs of bounded clique-width...

Theorem 2.2. [Giménez, PH, Noy, 2005]
The Tutte polynomial of a cograph can be computed in subexponential time

$$
\exp \left(O\left(n^{2 / 3}\right)\right)
$$

Note: Subexponential algorithms $-2^{o(n)}$
For NP-complete problems, no better solutions than an exhaustive search are expected to exist.
Hence, for naturally defined problems like the SAT with n variables, no $2^{o(n)}$ algorithm (called often subexponential) is expected to exist.

2.3 Clique-width / rank-width

Theorem 2.3. [Giménez, PH, Noy, 2005]
Let G be a graph with n vertices of clique-width $\leq k$ along with a k-expression for G as an input. Then the Tutte polynomial of G can be computed in subexponential time

$$
\exp \left(O\left(n^{1-\frac{1}{k+2}}\right)\right)
$$

Do we need a k-expression (i.e. a given decomposition) for G ?
Clique-width is difficult to compute.
However, it is efficiently approximable via rank-width. [Oum, Seymour, 03]

Fact. A subexp. $2^{o(n)}$ algorithm for the Tutte polynomial on an n-vertex graph \rightarrow a $2^{o(n)}$ algorithm for 3-colouring,
\rightarrow a $2^{o(n)}$ algorithm for 3-SAT - unexpected!
So it is very unlikely to have a subexponential algorithm for the Tutte polynomial on general graphs...

3 SKETCHING THE PROOFS

Starting with a few words about represented matroids. . .

- Matroids represented by matrices over a finite field \mathbb{F};
- \rightarrow elements give actual points in the projective geometry over \mathbb{F}.
- An illustration of the relation between graphic and represented matroids:
\boldsymbol{K}_{4}

3.1 The Tutte Polynomial on Matroids

Introducing the boundaried Tutte polynomial...

- Boundaried matroid \bar{M}, ∂ - a represented matroid M equipped with an arbitrary boundary subspace ∂.
t-boundary - boundary of rank t.
- t-boundary mark $\mathrm{K}(\bar{M} \mid A)$ - marking the subspace $\partial(\bar{M}) \cap\langle A\rangle$ of the boundary $\partial(\bar{M})$ that is spanned by A.
\mathcal{K}_{t}^{\sim} - the set of all t-boundary marks.
- Let $\bar{M}=(M, \partial)$ be a t-boundaried represented matroid on E.

The boundaried Tutte polynomial of \bar{M} is given by
$T_{B}\left(\bar{M} ; x, y, Z_{t}\right)=\sum_{A \subseteq I} z_{\mathrm{K}(\bar{M} \mid A)} \cdot(x-1)^{r_{M}(I)-r_{M}(A)} \cdot(y-1)^{|A|-r_{M}(A)}$, where $Z_{t}=\left(z_{\mathrm{K}}: \mathrm{K} \in \mathcal{K}_{t}^{\sim}\right)$ is a vector of $\left|\mathcal{K}_{t}^{\sim}\right|$ free variables.

Proposition 3.1. $T(M ; x, y)=T_{B}(\bar{M} ; x, y,(1, \ldots, 1))$.

Recursive Computation of the Boundaried Tutte Polynomial

Theorem 3.2. Let a tree T be parsing a t-branch-decomposition of a represented boundaried matroid $\bar{M}=\bar{M}(T)$. If T is an empty tree, then

$$
T_{B}\left(\bar{M}(T) ; x, y, Z_{0}\right)=T_{B}\left(\bar{\Omega}_{0} ; x, y, Z_{0}\right)=z_{\mathrm{K}\left(\bar{\Omega}_{0} \mid \emptyset\right)}
$$

If T has exactly one vertex labelled by $\bar{\Upsilon}$ or $\bar{\Upsilon}_{0}$, then

$$
\begin{gathered}
T_{B}\left(\bar{\Upsilon} ; x, y, Z_{1}\right)=z_{\mathrm{K}(\bar{\Upsilon} \mid \emptyset)}(x-1)+z_{\mathrm{K}(\bar{\Upsilon} \mid I(\bar{\Upsilon}))}, \text { or } \\
T_{B}\left(\bar{\Upsilon}_{0} ; x, y, Z_{0}\right)=z_{\mathrm{K}\left(\bar{\Upsilon}_{0} \mid \emptyset\right)}+z_{\mathrm{K}\left(\bar{\Upsilon}_{0} \mid I\left(\bar{\Upsilon}_{0}\right)\right)}(y-1) .
\end{gathered}
$$

If r is the root with composition \odot, and T_{1}, T_{2} are the sons of r in T, then

$$
\begin{gathered}
T_{B}\left(\bar{M}(T) ; x, y, Z_{t_{3}}\right)= \\
=T_{B}\left(\bar{M}\left(T_{1}\right) ; x, y, Z_{t_{1}}^{\prime}\right) \cdot T_{B}\left(\bar{M}\left(T_{2}\right) ; x, y, Z_{t_{2}}^{\prime \prime}\right),
\end{gathered}
$$

where

$$
z_{\mathrm{K}_{1}}^{\prime} \cdot z_{\mathrm{K}_{2}}^{\prime \prime}=z_{\mathrm{K}_{3}\left(\odot ; \mathrm{K}_{1}, \mathrm{~K}_{2}\right)} \cdot(x-1)^{\varrho\left(\odot ; \mathrm{K}_{1}, \mathrm{~K}_{2}\right)-\sigma(\odot)} \cdot(y-1)^{\varrho\left(\odot ; \mathrm{K}_{1}, \mathrm{~K}_{2}\right)}
$$

for each pair $\mathrm{K}_{i} \in \mathcal{K}_{t_{i}(\odot)}^{\sim}, i=1,2$.

Theorem 3.3. Computing time summary for the Tutte polynomial on represented matroids:

Assume that \mathbb{F} is a finite field, and that t is an integer constant.

- If M is an n-element \mathbb{F}-represented matroid of branch-width at most t, then the Tutte polynomial $T(M ; x, y)$ can be computed in time

$$
O\left(n^{6} \log n \log \log n\right)
$$

- Suppose that a, b are rational numbers $a=\frac{p_{a}}{q_{a}}, b=\frac{p_{b}}{q_{b}}$ of combined length l bits. Then $T(M ; a, b)$ can be evaluated at a, b in time

$$
O\left(n^{3}+n^{2} l \cdot \log (n l) \cdot \log \log (n l)\right)
$$

Remark. Noble evaluates the Tutte polynomial $T(G ; a, b)$ at a, b for a graph G of bounded tree-width in time

$$
O((v+p) \cdot e l \cdot \log e \log \log e \cdot \log l \log \log l)
$$

where v is the number of vertices, e is the number of edges, and p the the size of the largest parallel class in G. Note that $n=e$ in our setting.
Our algorithm almost matches this performance, the extra $O\left(n^{3}\right)$ term is needed to construct the necessary branch-decomposition.

3.2 Forests in Cographs

The first (simplified) step towards the algorithm for graphs of bounded cliquewidth...

Definition. Cograph is a graph constructed from vertices using

- a disjoint union (no added edges), or
- a "complete" union (adding all edges across).

Fact. (folklore)

- All cliques are cographs.
- Precisely those graphs without induced P_{4}.
- Cographs are closed on complements, contractions, induced subgraphs.
- Not closed on normal subgraphs / edge deletion.
- Recognizable in P.

Theorem 3.4. Spanning forests can be enumerated on cographs in time

$$
\exp \left(O\left(n^{2 / 3}\right)\right)
$$

Algorithm on Cographs

A forest signature $\boldsymbol{\alpha}-$ a multiset of component sizes (positive integers);

- represented by a characteristic vector $\boldsymbol{\alpha}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$,
- size $s_{\boldsymbol{\alpha}}=\sum_{i=1}^{n} i \cdot a_{i}$ (and cardinality as usual $|\boldsymbol{\alpha}|=\sum_{i=1}^{n} a_{i}$).

Lemma 3.5. (folklore) There are $2^{\Theta(\sqrt{n})}$ signatures of sizen (~integer parts.).
A forest double-signature $\boldsymbol{\beta}$ - a multiset of ordered pairs of integers, counting dual-labeled (nonempty) component sizes;

- a refinement of a forest signature,
- having a characteristic vector $\boldsymbol{\beta}=\left(b_{(0,1)}, b_{(0,2)}, \ldots, b_{(1,0)}, b_{(1,1)}, \ldots\right)$,
- size $s_{\boldsymbol{\beta}}=\sum_{(x, y)}(x+y) \cdot b_{(x, y)}$.

Lemma 3.6. There are $\exp \left(\Theta\left(n^{2 / 3}\right)\right)$ distinct double-signatures of size n.

- Quite difficult to prove, but easy a slightly worse bound $\exp \left(\Theta\left(n^{2 / 3} \log n\right)\right)$.

We apply the following two $\exp \left(O\left(n^{2 / 3}\right)\right)$ algorithms along the decomposition scheme of the given cograph:

Algorithm 3.7. Combining the spanning forest signature tables of graphs F and G into the one of the disjoint union $H=F \dot{\cup} G$. (Simple.)

Input: Graphs F, G, and their forest signature tables $\boldsymbol{T}_{F}, \boldsymbol{T}_{G}$.
Output: The forest signature table \boldsymbol{T}_{H} of $H=F \dot{\cup} G$.
create empty table \boldsymbol{T}_{H} of forest signatures of size $|V(H)|$;
for all signatures $\boldsymbol{\alpha}_{F} \in \Sigma_{F}, \boldsymbol{\alpha}_{G} \in \Sigma_{G}$ do
set $\boldsymbol{\alpha}=\boldsymbol{\alpha}_{F} \uplus \boldsymbol{\alpha}_{G}$ (a multiset union);
add $\boldsymbol{T}_{H}[\boldsymbol{\alpha}]+=\boldsymbol{T}_{F}\left[\boldsymbol{\alpha}_{F}\right] \cdot \boldsymbol{T}_{G}\left[\boldsymbol{\alpha}_{G}\right] ;$
done.

Algorithm 3.8. Combining the spanning forest signature tables of graphs F and G into the one of the complete union $H=F \oplus G$. (Difficult.)
Input: Graphs F, G, and their forest signature tables $\boldsymbol{T}_{F}, \boldsymbol{T}_{G}$.
Output: The forest signature table \boldsymbol{T}_{H} of $H=F \oplus G$.
create empty table \boldsymbol{T}_{H} of forest signatures of size $|V(H)|$;
for all signatures $\boldsymbol{\alpha}_{F} \in \Sigma_{F}, \boldsymbol{\alpha}_{G} \in \Sigma_{G}$ do set $z=|V(F)|$;
create empty table \boldsymbol{X} of forest double-signatures of size z;
set $\boldsymbol{X}\left[\right.$ double-signature $\left.\left\{(a, 0): a \in \boldsymbol{\alpha}_{F}\right\}\right]=1$;
for each $c \in \boldsymbol{\alpha}_{G}$ (with repetition) do
create empty table \boldsymbol{X}^{\prime} of forest double-signatures of size $z+c$;
for all double signatures $\boldsymbol{\beta}$ of size z s.t. $\boldsymbol{X}[\boldsymbol{\beta}]>0$ do
$\exp \left(O\left(n^{2 / 3}\right)\right) \times$
(*) for all submultisets $\gamma \subseteq \boldsymbol{\beta}$ (with repetition) do
$\exp \left(O\left(n^{2 / 3}\right)\right) \times$ set $d_{1}=\sum_{(x, y) \in \gamma} x, d_{2}=\sum_{(x, y) \in \gamma} y$;
set double-signature $\boldsymbol{\beta}^{\prime}=(\boldsymbol{\beta}-\boldsymbol{\gamma}) \uplus\left\{\left(d_{1}, d_{2}+c\right)\right\}$;
add $\boldsymbol{X}^{\prime}\left[\boldsymbol{\beta}^{\prime}\right]+=\boldsymbol{X}[\boldsymbol{\beta}] \cdot \prod_{(x, y) \in \boldsymbol{\gamma}} c x ;$ done
done
copy $\boldsymbol{X}=\boldsymbol{X}^{\prime}, z=z+c$; dispose \boldsymbol{X}^{\prime};
done
for all double-signatures $\boldsymbol{\beta}$ of size $|V(H)|$ do
set signature $\boldsymbol{\alpha}_{0}=\{x+y:(x, y) \in \boldsymbol{\beta}\}$;
$\operatorname{add} \boldsymbol{T}_{H}\left[\boldsymbol{\alpha}_{0}\right]+=\boldsymbol{X}[\boldsymbol{\beta}] \cdot \boldsymbol{T}_{F}\left[\boldsymbol{\alpha}_{F}\right] \cdot \boldsymbol{T}_{G}\left[\boldsymbol{\alpha}_{G}\right] ;$
done
done.

3.3 The Tutte Polynomial on Cographs

Extending Algorithms 3.7,3.8 for the Tutte polynomial is not so difficult. . .

Extensions:

- Enumerate edge-subsets (spanning subgraphs) instead of forests.
- Subgraph signatures analogously record the component sizes. Moreover, we record the total number of edges.
- When joining components, we may add many (≥ 1) edges between two components, \rightarrow computing "cellular selections".

Definition. Cellular selection from C_{1}, \ldots, C_{k} :
Selecting an ℓ-element subset $L \subseteq C_{1} \cup \ldots C_{k}$, st. $L \cap C_{i} \neq \emptyset$ for all i.
A nice exercise: Let $d_{i}=\left|C_{i}\right|$, and $u_{i, j}$ be the number of partial selections of j elements from the first i cells. Then

$$
u_{i, j}=\sum_{s=1}^{r} u_{i-1, j-s} \cdot\binom{d_{i}}{s} .
$$

Theorem 3.9. The Tutte polynomial of a cograph can be computed in time

$$
\exp \left(O\left(n^{2 / 3}\right)\right)
$$

3.4 Clique-Width

- Formal definition [Courcelle, Olariu, 00] (implicit [Courcelle et al, 93]).

Definition. Constructing a vertex-labeled graph G using the operations

- a new labeled vertex,
- a disjoint union of two graphs
- $\rho_{i \rightarrow j}$ relabeling of all i 's to j 's,
- η_{i-j} adding all edges between labels i and j.
(Called a k-expression.)
Clique-width $=\min$ number of labels needed to construct (unlabeled) G.
- Cographs have clique-width $=2$, paths ≤ 3, cycles ≤ 4.
- Bounding the clique-width of a graph allows to efficiently solve all problems expressed in the MSO logic of adjacency graphs (MS_{1}) - quantifying over vertices and their sets. [Courcelle, Makowsky, Rotics, 00]
(Bounding the tree-width allows to efficiently solve all problems in MS_{2}.)
- The chromatic number (and the chromatic polynomial) is polynomial time (not FPT) for graphs of bounded clique-width. [Kobler, Rotics, 03]

Algorithm on Bounded Clique-Width

A subgraph k-signature $\boldsymbol{\beta}$ - a multiset of ordered k-tuples of integers, counting k-labeled (nonempty) component sizes.
(Analogous to double-signatures...)
Lemma 3.10. There are $\exp \left(\Theta\left(n^{k /(k+1)}\right)\right)$ distinct k-signatures of size n.
Extending the algorithm - processing the η_{i-j} operation:

- Using only one signature table for the whole graph.
- Thus need an artificial new label 0 for iterative processing of components intersecting label j (corresp. to the sign. table of the second graph).
- A new (easy) point of adding edges inside a component.

Our full result:

Theorem 3.11. Let G be a graph with n vertices of clique-width $\leq k$ along with a k-expression for G as an input. Then the Tutte polynomial of G can be computed in time

$$
\exp \left(O\left(n^{1-\frac{1}{k+2}}\right)\right)
$$

4 OPEN QUESTIONS

Just a few ones related to our talk. . .

- [Kobler, Rotics, 03] compute the chromatic number of a graph of bounded clique-width in polynomial time, however, not in FPT.
Is the chromatic number FPT wrt. clique-width?
(i.e. polynomial with a fixed exponent?)
- Is the Tutte polynomial on graphs of bounded clique-width in P , or \# P hard, or between?
(\#P-hardness is not yet excluded by a subexponential algorithm!)
- What structural or "width" restriction is sufficient to efficiently compute the Tutte polynomial of an abstract matroid?
(The polynomial is \#P-hard over all matroids of branch-width three!)

