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G THE TUTTE POLYNOMIAL \

As everybody here probably knows. ..
Definition. For a graph G = (V, E),

T(G;z,y) = Z (z — 1)"E)=r(E) (y — 1) IFl=r(F)
FCE

where r(F') = |V|—k(F') and k(F’) is the num. of components induc. by (V, F').

This definition of the Tutte polynomial follows its matroid aspects:

T(M; a,y) = Y (z— 1M E )y qylal=ra)
ACE

Fact. Knowing T'(G;x,y) ~ knowing the number of spanning subgraphs
on edges F' with |F| =i and k(F) = j.
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fFact.

e and many more. ..
So, not surprisingly, its computation is very hard in general. ..

Theorem 1.1. [Jaeger, Vertigan, and Welsh, 1990]
Evaluating the Tutte polynomial T(G;x,y) at (x,y) = (a,b) is # P-hard unless

1)(b—1) =1or(a,b) € {(1,1),(—1,—1),(0, 1), (=1,0), (i, —4), (—i,4),
(4,52, (5%, 7)}, where i> = —1 and j = €27/3

(a—
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The Tutte polynomial captures a number of interesting graph properties:\

7(
7(
T(G;
7(

Gi1,1) =
G;2,1) =

G;0,1 —

# spanning trees,
# spanning forests,
,0) - x = the chromatic polynomial,

y) - * = the flow polynomial.
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6 COMPUTING FOR RESTRICTED “WIDTH” \

2.1 Tree-width / branch-width

Motivation: Many hard graph properties can be computed efficiently for graphs
of bounded tree-width (for example, all MSO-definable properties).

e Independently [Andrzejak / Noble, both 1998]:

The Tutte polynomial T'(G; x,y) can be computed in polynomial time on
a graph G of bounded tree-width.

— The (stronger) version of Noble gives an FPT algorithm, and

— an evaluation scheme using linear number of arithmetic operations.

e Our matroidal extension:

Theorem 2.1. [PH, 2003] The Tutte polynomial T'(M;x,y) can be
computed in polynomial FPT time on a matroid M, which is represented
by a matrix over a finite field and has bounded branch-width.

— We generalize the approach of Noble, and provide a “cleaner view" of the
computation using branch-width instead of tree-width.
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6.2 Cographs (i.e. clique-width 2) \

This is a simplified version of the full (and difficult) algorithm for graphs of
bounded clique-width. . .

Theorem 2.2. [Giménez, PH, Noy, 2005]
The Tutte polynomial of a cograph can be computed in subexponential time

exp (0(n?/3)).

Note: Subexponential algorithms — 2°(%)
For NP-complete problems, no better solutions than an exhaustive search are
expected to exist.

Hence, for naturally defined problems like the SAT with n variables, no 2°(%)
algorithm (called often subexponential) is expected to exist.
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f2.3 Clique-width / rank-width \

Theorem 2.3. [Giménez, PH, Noy, 2005]

Let G be a graph with n vertices of clique-width < k along with a k-expression
for G as an input. Then the Tutte polynomial of G can be computed in
subexponential time

exp <O(n1_k+L2)> .

Do we need a k-expression (i.e. a given decomposition) for G?

Clique-width is difficult to compute.
However, it is efficiently approximable via rank-width. [Oum, Seymour, 03]

Fact. A subexp. 2°(") algorithm for the Tutte polynomial on an n-vertex graph

— a 2°(") algorithm for 3-colouring,

— a 2°(") algorithm for 3-SAT — unexpected!

So it is very unlikely to have a subexponential algorithm for the Tutte polynomial
on general graphs. ..
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3 SKETCHING THE PROOFS I

Starting with a few words about represented matroids. . .

e Matroids represented by matrices over a finite field IF;
e — elements give actual points in the projective geometry over .

e An illustration of the relation between graphic and represented matroids:
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f3.1 The Tutte Polynomial on Matroids \

Introducing the boundaried Tutte polynomial. ..

e Boundaried matroid M, — a represented matroid M equipped with an
arbitrary boundary subspace 0.

t-boundary — boundary of rank ¢.

e t-boundary mark K(M |A) — marking the subspace O(M) N (A) of the
boundary 9(M) that is spanned by A.

K; - the set of all t--boundary marks.

e Let M = (M, ) be a t-boundaried represented matroid on E.
The boundaried Tutte polynomial of M is given by

Tp (M; 2y, Z:) = ) 2K |a) " (T = 1@t (y — 1)l A=)
ACT

where Z; = (zk : K € K7') is a vector of |K;| free variables.

Proposition 3.1. T(M; z,y) = Tp (M; z,y,(1,...,1)).
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KRecursive Computation of the Boundaried Tutte Polynomial \

Theorem 3.2. Let a tree T' be parsing a t-branch-decomposition of a repre-
sented boundaried matroid M = M(T). If T is an empty tree, then

T (M(T); z,y, Zo) = Tg (Qo; 2,9, Z0) = ZK(010)
If T has exactly one vertex labelled by Y or Y, then
T (Y5 z,y,Z1) = 2K(T 10) (x—1)+ KT 1))+ O
T (Yo; 2.y, Zo) = K(To |0) + K(Ty |I(TO))(y —-1).

If r is the root with composition ®, and T,Ty are the sons of r inT', then

TB (M(T)’ xayaZtS) =

= TB (M(T1)7 z,Y, Zél) : TB (M(T2)7 z,Y, Zé;) )
where

e ey = i o116, 1 (@ = DECTID Oy ey

for each pair K; € fK;(G), i=1,2.
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KI'heorem 3.3. Computing time summary for the Tutte polynomial on repre—\
sented matroids:

Assume that TV is a finite field, and that t is an integer constant.

e If M is an n-element IF-represented matroid of branch-width at most t,
then the Tutte polynomial T(M; x,y) can be computed in time

O(n®lognloglogn).

e Suppose that a,b are rational numbers a = f]’—z, b = % of combined
length [ bits. Then T'(M; a,b) can be evaluated at a,b in time

O(n® + n?l - log(nl) - loglog(nl)) .

Remark. Noble evaluates the Tutte polynomial T'(G; a,b) at a,b for a graph G of
bounded tree-width in time

O((v+p)-el-logelogloge - loglloglogl),

where v is the number of vertices, e is the number of edges, and p the the size of the
largest parallel class in G. Note that n = e in our setting.

Our algorithm almost matches this performance, the extra O(n?) term is needed to
construct the necessary branch-decomposition.
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f3.2 Forests in Cographs \

The first (simplified) step towards the algorithm for graphs of bounded clique-
width. ..

Definition. Cograph is a graph constructed from vertices using

e a disjoint union (no added edges), or

e a “complete” union (adding all edges across).
Fact. (folklore)

e All cliques are cographs.

e Precisely those graphs without induced P.

e Cographs are closed on complements, contractions, induced subgraphs.
e Not closed on normal subgraphs / edge deletion.

e Recognizable in P.

Theorem 3.4. Spanning forests can be enumerated on cographs in time

exp (O(n*/?)).
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fAlgorithm on Cographs \

A forest signature o — a multiset of component sizes (positive integers);

e represented by a characteristic vector o = (ay,aq,...,ay),

® size Sq = i q4-a; (and cardinality as usual || = >, a;).
Lemma 3.5. (folklore) There are 2°V™) signatures of sizen (~integer parts.).

A forest double-signature 3 — a multiset of ordered pairs of integers,
counting dual-labeled (nonempty) component sizes;

e a refinement of a forest signature,
e having a characteristic vector 3 = (b(o,1y,b(0,2),- - - 0(1,0): 0(1,1)> - - ).
® size 83 =23 (3.,)(T +Y) bz

Lemma 3.6. There are exp (©(n?/®)) distinct double-signatures of size n.

— Quite difficult to prove, but easy a slightly worse bound exp (©(n?/3logn)).
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fWe apply the following two exp (O(n?/?)) algorithms along the decomposition\
scheme of the given cograph:

Algorithm 3.7. Combining the spanning forest signature tables of graphs F
and G into the one of the disjoint union H = F'UG. (Simple.)

Input: Graphs F, G, and their forest signature tables T'r, T';.

Output: The forest signature table Ty of H = FUG.

create empty table T'j; of forest signatures of size |V (H)|;

for all signatures ap € X, ag € L do exp (O(n?/3)) x
set @ = apWag (a multiset union);
add TH[a] += TF[aF] . T(;[a(;];

done.

Algorithm 3.8. Combining the spanning forest signature tables of graphs F
and G into the one of the complete union H = F & G. (Difficult.)

Input: Graphs F, G, and their forest signature tables T'p, T'.
Output: The forest signature table Ty of H = F & G.

kcreate empty table T of forest signatures of size |V (H)|;
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Kfor all signatures ar € X, ag € Xg do exp (O(n*?)) x\
set z = |[V(F)|;

create empty table X of forest double-signatures of size z;
set X [double-signature {(a,0):a € ap}] = 1;

for each ¢ € ag (with repetition) do O(n)x
create empty table X' of forest double-signatures of size z + c¢;

for all double signatures 3 of size z s.t. X[3] >0 do exp (O(n??))x

*) for all submultisets v C 3 (with repetition) do exp (O(n??))x

set di = Z(w,y)E‘y x, do = E(w7y)e.yy;
set double-signature 3’ = (8 —~) W{(d1,d2 +¢)};

2dd X[ += X[8]- [Ty ey o)
done
done
copy X = X', 2 =2+ c¢; dispose X';
done
for all double-signatures 3 of size |V (H)| do exp (O(n*?))x

set signature ag = {z+y: (z,y) € B};
add TH[C!()] += X[,B] . TF[OCF] -Tg[ag];
done
done.
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6.3 The Tutte Polynomial on Cographs \

Extending Algorithms 3.7,3.8 for the Tutte polynomial is not so difficult. . .
Extensions:
e Enumerate edge-subsets (spanning subgraphs) instead of forests.

e Subgraph signatures analogously record the component sizes.
Moreover, we record the total number of edges.

e When joining components, we may add many (> 1) edges between two
components, — computing “cellular selections”.

Definition. Cellular selection from Cq,...,C}:
Selecting an f-element subset L C Cy U...Cy, st. LNC; # ) for all 4.

A nice exercise: Let d; = |C;|, and w; ; be the number of partial selections of
j elements from the first ¢ cells. Then

r dz
Uij = Y Uin1jos :
s=1 §

Theorem 3.9. The Tutte polynomial of a cograph can be computed in time

exp (0(n*/?)).
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K3.4 Clique-Width \

e Formal definition [Courcelle, Olariu, 00] (implicit [Courcelle et al, 93]).

Definition. Constructing a vertex-labeled graph G using the operations
a new labeled vertex,

a disjoint union of two graphs

- pi—; relabeling of all i's to j's,

— 1;—; adding all edges between labels i and j.

(Called a k-expression.)
Clique-width = min number of labels needed to construct (unlabeled) G.
e Cographs have clique-width = 2, paths < 3, cycles < 4.

e Bounding the clique-width of a graph allows to efficiently solve all prob-
lems expressed in the MSO logic of adjacency graphs (MS1) — quantifying
over vertices and their sets. [Courcelle, Makowsky, Rotics, 00]

(Bounding the tree-width allows to efficiently solve all problems in MS5.)

e The chromatic number (and the chromatic polynomial) is polynomial
time (not FPT) for graphs of bounded clique-width. [Kobler, Rotics, 03]
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fAlgorithm on Bounded Clique-Width \

A subgraph k-signature 8 — a multiset of ordered k-tuples of integers,
counting k-labeled (nonempty) component sizes.

(Analogous to double-signatures. . .)
Lemma 3.10. There are exp (O (n*/(*+1)) distinct k-signatures of size n.
Extending the algorithm — processing the 7);,_; operation:

e Using only one signature table for the whole graph.

e Thus need an artificial new label O for iterative processing of components
intersecting label j (corresp. to the sign. table of the second graph).

e A new (easy) point of adding edges inside a component.
Our full result:

Theorem 3.11. Let G be a graph with n vertices of clique-width < k along
with a k-expression for G as an input. Then the Tutte polynomial of G can be
computed in time

exp <O(n1_$)> .
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ﬁ OPEN QUESTIONS \

Just a few ones related to our talk. ..

e [Kobler, Rotics, 03] compute the chromatic number of a graph of bounded
clique-width in polynomial time, however, not in FPT.

Is the chromatic number FPT wrt. clique-width?
(i.e. polynomial with a fixed exponent?)

e Is the Tutte polynomial on graphs of bounded clique-width in P, or #P-
hard, or between?
(#P-hardness is not yet excluded by a subexponential algorithm!)

e What structural or “width” restriction is sufficient to efficiently compute
the Tutte polynomial of an abstract matroid?

(The polynomial is #P-hard over all matroids of branch-width three!)
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