Faster than Courcelle's thm. . .

?

Jakub Gajarský and Petr Hliněný

Faculty of Informatics Masaryk University, Brno, CZ

Faster than Courcelle's thm. . .

on Shrubs!

Jakub Gajarský and Petr Hliněný

Faculty of Informatics Masaryk University, Brno, CZ

1 The Story at a Glance...

Courcelle's Theorem

- Perhaps the best known algorithmic metatheorem on graphs ~1988,

1 The Story at a Glance...

Courcelle's Theorem

- Perhaps the best known algorithmic metatheorem on graphs ~1988,
- all MSO_{2}-def. properties in linear-time FPT for bounded tree-width.
- A clique-width $+\mathrm{MSO}_{1}$ version by [Courcelle-Makowsky-Rotics].

1 The Story at a Glance...

Courcelle's Theorem

- Perhaps the best known algorithmic metatheorem on graphs ${ }^{\sim} 1988$,
- all MSO_{2}-def. properties in linear-time FPT for bounded tree-width.
- A clique-width $+\mathrm{MSO}_{1}$ version by [Courcelle-Makowsky-Rotics].

The end of the story, or can one get more?

- Hmmmm, the runtime is (roughly) $\left.|V(G)| \cdot 2^{2^{2 \cdot \cdot^{*}}}\right\}^{\sim}{ }^{\sim} \phi$, but

1 The Story at a Glance. . .

Courcelle's Theorem

- Perhaps the best known algorithmic metatheorem on graphs ~1988,
- all MSO_{2}-def. properties in linear-time FPT for bounded tree-width.
- A clique-width $+\mathrm{MSO}_{1}$ version by [Courcelle-Makowsky-Rotics].

The end of the story, or can one get more?

- Hmmmm, the runtime is (roughly) $\left.|V(G)| \cdot 2^{2^{2 \cdot^{* *}}}\right\}^{\sim} \phi$, but
- [Frick-Grohe] non-elementary dep. on ϕ unavoidable unless $\mathrm{P}=\mathrm{NP}$!

1 The Story at a Glance...

Courcelle's Theorem

- Perhaps the best known algorithmic metatheorem on graphs ~1988,
- all MSO_{2}-def. properties in linear-time FPT for bounded tree-width.
- A clique-width $+\mathrm{MSO}_{1}$ version by [Courcelle-Makowsky-Rotics].

The end of the story, or can one get more?

- Hmmmm, the runtime is (roughly) $\left.|V(G)| \cdot 2^{2^{2}}\right\}^{\sim} \phi$, but
- [Frick-Grohe] non-elementary dep. on ϕ unavoidable unless $\mathrm{P}=\mathrm{NP}$!
- Yet, more on "optimality": cannot get much above bd. tree-width, for MSO_{2} by [Kreutzer-Tazari], and col.- MSO_{1} by [Ganian et al.]

The Story at a Glance; Courcelle's thm. . .

- Tackling the exponential tower issue?

Though the runtime $\left.|V(G)| \cdot 2^{2^{2 \cdot \cdot^{*}}}\right\}^{\sim} \phi$ is generally optimal, one would like to "improve on something"... But how?

The Story at a Glance; Courcelle's thm. . .

- Tackling the exponential tower issue?

Though the runtime $\left.|V(G)| \cdot 2^{2^{2 \cdot *}}\right\}^{\sim} \phi$ is generally optimal, one would like to "improve on something". .. But how?

- [Lampis, 2010]: only $2^{2^{k|\phi|}}$ for MSO_{2} on the graphs of vertex cover k, [Ganian, 2011]: some particular improvements for MSO_{1}.

The Story at a Glance; Courcelle's thm. . .

- Tackling the exponential tower issue?

Though the runtime $\left.|V(G)| \cdot 2^{2^{2 \cdot \cdot^{*}}}\right\}{ }^{\sim} \phi$ is generally optimal, one would like to "improve on something". .. But how?

- [Lampis, 2010]: only $2^{2^{k|\phi|}}$ for MSO_{2} on the graphs of vertex cover k, [Ganian, 2011]: some particular improvements for MSO_{1}.

YES - can do elementary model checking

- [NEW]: Namely, $\forall d$ can do all MSO_{2} in time $|V(G)| \cdot f_{d}(\phi)$, where $f_{d}(\phi)$ is elementary, on the graphs of tree-depth $\leq d$. (much wider than bounded vertex cover)

The Story at a Glance; Courcelle's thm. . .

- Tackling the exponential tower issue?

Though the runtime $\left.|V(G)| \cdot 2^{2^{2 \cdot \cdot^{*}}}\right\}{ }^{\sim} \phi$ is generally optimal, one would like to "improve on something"... But how?

- [Lampis, 2010]: only $2^{2^{k|\phi|}}$ for MSO_{2} on the graphs of vertex cover k, [Ganian, 2011]: some particular improvements for MSO_{1}.

YES - can do elementary model checking

- [NEW]: Namely, $\forall d$ can do all MSO_{2} in time $|V(G)| \cdot f_{d}(\phi)$, where $f_{d}(\phi)$ is elementary, on the graphs of tree-depth $\leq d$. (much wider than bounded vertex cover)
- and, can find new wider classes with elementary MSO_{1} m.c.

2 Preliminaries

MSO logic: propositional logic \rightarrow (FO) quantifying over elements
\rightarrow (MSO) quantifying also over element sets.

2 Preliminaries

MSO logic: propositional logic \rightarrow (FO) quantifying over elements
\rightarrow (MSO) quantifying also over element sets.
$\mathbf{M S O}_{1}$ on graphs: using only vertices and an $\operatorname{edge}(x, y)$ predicate, e.g., $\forall x \in X \exists y(x \neq y \wedge \neg \operatorname{edge}(x, y))$.
$\mathbf{M S O}_{2}$ on graphs: additionally using edges (and edge-set variables), and an $\operatorname{inc}(x, e)$ predicate, then $\operatorname{edge}(x, y) \equiv \exists e(\operatorname{inc}(x, e) \wedge \operatorname{inc}(y, e))$.

2 Preliminaries

MSO logic: propositional logic \rightarrow (FO) quantifying over elements
\rightarrow (MSO) quantifying also over element sets.
$\mathbf{M S O}_{1}$ on graphs: using only vertices and an $\operatorname{edge}(x, y)$ predicate, e.g., $\forall x \in X \exists y(x \neq y \wedge \neg e d g e(x, y))$.
MSO_{2} on graphs: additionally using edges (and edge-set variables), and an $\operatorname{inc}(x, e)$ predicate, then $\operatorname{edge}(x, y) \equiv \exists e(\operatorname{inc}(x, e) \wedge \operatorname{inc}(y, e))$.

Expressive power

- Can express, e.g., connectivity, 3-colourability (MSO_{1}),
- can do Hamiltonian, spanning tree $\left(\mathrm{MSO}_{2}\right.$, but not $\left.\mathrm{MSO}_{1}\right)$,

2 Preliminaries

MSO logic: propositional logic \rightarrow (FO) quantifying over elements
\rightarrow (MSO) quantifying also over element sets.
$\mathbf{M S O}_{1}$ on graphs: using only vertices and an $\operatorname{edge}(x, y)$ predicate, e.g., $\forall x \in X \exists y(x \neq y \wedge \neg e d g e(x, y))$.
MSO_{2} on graphs: additionally using edges (and edge-set variables), and an $\operatorname{inc}(x, e)$ predicate, then $\operatorname{edge}(x, y) \equiv \exists e(\operatorname{inc}(x, e) \wedge \operatorname{inc}(y, e))$.

Expressive power

- Can express, e.g., connectivity, 3-colourability (MSO_{1}),
- can do Hamiltonian, spanning tree $\left(\mathrm{MSO}_{2}\right.$, but not $\left.\mathrm{MSO}_{1}\right)$,
- and extensions can enumerate / optimize over solutions...

Courcelle's MSO_{2} Theorem, once again

Tree-width $t w(G) \leq k$ if whole G can be covered by bags of size $\leq k+1$, arranged in a "tree-like fashion".

Courcelle's MSO_{2} Theorem, once again

Tree-width $t w(G) \leq k$ if whole G can be covered by bags of size $\leq k+1$, arranged in a "tree-like fashion".

The underlying idea: G is recursively decomposed along small v. separators,

Courcelle's MSO_{2} Theorem, once again

Tree-width $t w(G) \leq k$ if whole G can be covered by bags of size $\leq k+1$, arranged in a "tree-like fashion".

The underlying idea: G is recursively decomposed along small v. separators, Or,
$k+1$ "heli-cops" catch a visible robber.

Courcelle's MSO_{2} Theorem, once again

Tree-width $t w(G) \leq k$ if whole G can be covered by bags of size $\leq k+1$, arranged in a "tree-like fashion".

The underlying idea: G is recursively decomposed along small v. separators, or,

$k+1$ "heli-cops" catch a visible robber.

Theorem. (Courcelle)
Assume ϕ is an MSO_{2} sentence, and G is of tree-width k, given along with a tree-decomposition. Then $G \models \phi$ can be decided by an FPT algorithm, in time $\mathcal{O}(g(k, \phi) \cdot|V(G)|)$ for some g.

Courcelle-Makowsky-Rotics MSO_{1} Theorem

Clique-width $\operatorname{cwd}(G) \leq k$ if G given by a k-expression (over k-labelled gr.), k-expression \sim disjoint unions, relabelling, edge-add. between labels.

Courcelle-Makowsky-Rotics MSO_{1} Theorem

Clique-width $\operatorname{cwd}(G) \leq k$ if G given by a k-expression (over k-labelled gr.), k-expression \sim disjoint unions, relabelling, edge-add. between labels.

The underlying idea: G rec. constructed in a way that only k groups of vertices can be distiguished at any moment.

Courcelle-Makowsky-Rotics MSO_{1} Theorem

Clique-width $\operatorname{cwd}(G) \leq k$ if G given by a k-expression (over k-labelled gr.), k-expression \sim disjoint unions, relabelling, edge-add. between labels.

The underlying idea: G rec. constructed in a way that only k groups of vertices can be distiguished at any moment.

Theorem. (Courcelle-Makowsky-Rotics)
Assume ψ is an MSO_{1} sentence, and G is of clique-width k, given along with a k-expression. Then $G \models \psi$ can be decided by an FPT algorithm, in time $\mathcal{O}(g(k, \psi) \cdot|V(G)|)$ for some g.

3 A Brief Proof Idea

for the $\mathrm{MSO}_{2} / \mathrm{MSO}_{1}$ theorems

One can use classical logic interpretation:

3 A Brief Proof Idea

for the $\mathrm{MSO}_{2} / \mathrm{MSO}_{1}$ theorems

One can use classical logic interpretation:

- tree-decomposition \rightarrow small (bounded-size) bags \rightarrow encoded with finitely colours in tree nodes,

3 A Brief Proof Idea
 for the $\mathrm{MSO}_{2} / \mathrm{MSO}_{1}$ theorems

One can use classical logic interpretation:

- tree-decomposition \rightarrow small (bounded-size) bags \rightarrow encoded with finitely colours in tree nodes,
- tree-decomposition \rightarrow bag intersections \rightarrow tree edges, and

3 A Brief Proof Idea
 for the $\mathrm{MSO}_{2} / \mathrm{MSO}_{1}$ theorems

One can use classical logic interpretation:

- tree-decomposition \rightarrow small (bounded-size) bags \rightarrow encoded with finitely colours in tree nodes,
- tree-decomposition \rightarrow bag intersections \rightarrow tree edges, and
- MSO_{2} sentence $\rightarrow \mathrm{MSO}$ over the coloured tree.

3 A Brief Proof Idea

for the $\mathrm{MSO}_{2} / \mathrm{MSO}_{1}$ theorems

One can use classical logic interpretation:

- tree-decomposition \rightarrow small (bounded-size) bags \rightarrow encoded with finitely colours in tree nodes,
- tree-decomposition \rightarrow bag intersections \rightarrow tree edges, and
- MSO_{2} sentence $\rightarrow \mathrm{MSO}$ over the coloured tree.
- (Similarly for clique-width and $\mathrm{MSO}_{1} \ldots$)

The conclusion. Enough to study MSO properties of coloured trees!

4 The Ground: Trees vs. Shrubs

Coloured MSO model checking in time...

$\left.|T| \cdot \quad 2^{2^{2 \cdot \cdot^{*}}}\right\}$ quant-alt (ϕ)
vs. $\left.\quad|T|+2^{2^{2}}\right\}$ shrub height

About the Shrub Case - FO

Claim. (almost folklore) A given FO sentence ϱ cannot distinguish too many copies of an arb. relational structure R.

$$
R^{+}=R \quad R \quad R \quad \ldots \begin{array}{ll}
& R \\
\hline
\end{array}
$$

About the Shrub Case - FO

Claim. (almost folklore) A given FO sentence ϱ cannot distinguish too many copies of an arb. relational structure R.

$$
R^{+}=\begin{array}{ll}
2 & R \\
\hline
\end{array}
$$

- Proof sketch. Even full valuation of all quantifiers in ϱ can "hit" only $\leq q$ (the number of quantifiers) copies of R.

$$
\begin{array}{lllllll}
R^{+} \leadsto & R \bullet & R \bullet & R \bullet & \ldots & R \bullet & R \\
\hline
\end{array}
$$

About the Shrub Case - FO

Claim. (almost folklore) A given FO sentence ϱ cannot distinguish too many copies of an arb. relational structure R.

$$
R^{+}=\begin{array}{llll}
R & R & R & R \\
\hline
\end{array}
$$

- Proof sketch. Even full valuation of all quantifiers in ϱ can "hit" only $\leq q$ (the number of quantifiers) copies of R.

$$
\begin{array}{llllll}
R^{+} \leadsto & R \bullet & R \bullet & R \bullet & \ldots & R \bullet \\
\hline
\end{array}
$$

The remaining copies are irrelevant for $R^{+} \models \varrho$.

About the Shrub Case - FO

Claim. (almost folklore) A given FO sentence ϱ cannot distinguish too many copies of an arb. relational structure R.

$$
R^{+}=\begin{array}{llll}
R & R & R & R \\
\hline
\end{array}
$$

- Proof sketch. Even full valuation of all quantifiers in ϱ can "hit" only $\leq q$ (the number of quantifiers) copies of R.

$$
\begin{array}{llllll}
R^{+} \leadsto & R \bullet & R \bullet & R \bullet & \ldots & R \bullet \\
\hline
\end{array}
$$

The remaining copies are irrelevant for $R^{+} \models \varrho$.
Corollary. For a given tree T, there is (efficiently) a subtree $T^{\prime} \subseteq T$ such that $T \models \varrho \Longleftrightarrow T^{\prime} \models \varrho$, and T^{\prime} is of bounded size.

About the Shrub Case - FO

Claim. (almost folklore) A given FO sentence ϱ cannot distinguish too many copies of an arb. relational structure R.

$$
R^{+}=\begin{array}{llll}
R & R & R & R \\
\hline
\end{array}
$$

- Proof sketch. Even full valuation of all quantifiers in ϱ can "hit" only $\leq q$ (the number of quantifiers) copies of R.

$$
\begin{array}{llllll}
R^{+} \leadsto & R \bullet & R \bullet & R \bullet & \ldots & R \bullet \\
\hline
\end{array}
$$

The remaining copies are irrelevant for $R^{+} \models \varrho$.
Corollary. For a given tree T, there is (efficiently) a subtree $T^{\prime} \subseteq T$ such that $T \models \varrho \Longleftrightarrow T^{\prime} \models \varrho$, and T^{\prime} is of bounded size. Hence there is a kernelization FPT algorithm with runtime

$$
\left.\mathcal{O}\left(|T|+\left|T^{\prime}\right|^{q}\right) \quad \text { where }\left|T^{\prime}\right| \sim 2^{2}\right\} \text { height }
$$

And, Stepping for MSO

Apply the same argument as for FO-no distinction detected among too many repeating copies of such R...

And, Stepping for MSO

Apply the same argument as for FO-no distinction detected among too many repeating copies of such R...???

Re-Thinking the MSO Step

- Return to [Lampis, ESA2010] - R is a single coloured vertex:

Re-Thinking the MSO Step

- Return to [Lampis, ESA2010] - R is a single coloured vertex:

An MSO sentence with q element and s set quantifiers cannot distinguish $>q \cdot 2^{s}$ singletons in each colour.

$$
(q=1, s=2)
$$

Re-Thinking the MSO Step

- Return to [Lampis, ESA2010] - R is a single coloured vertex: An MSO sentence with q element and s set quantifiers cannot distinguish $>q \cdot 2^{s}$ singletons in each colour.

$$
(q=1, s=2)
$$

- So, what is the main problematic point of handling general R ?

Re-Thinking the MSO Step

- Return to [Lampis, ESA2010] - R is a single coloured vertex: An MSO sentence with q element and s set quantifiers cannot distinguish $>q \cdot 2^{s}$ singletons in each colour.

$$
(q=1, s=2)
$$

- So, what is the main problematic point of handling general R ?

Set variables so much different?
Not quite, just treat their valuation as unary predicates (add. labels).

Re-Thinking the MSO Step

- Return to [Lampis, ESA2010] - R is a single coloured vertex: An MSO sentence with q element and s set quantifiers cannot distinguish $>q \cdot 2^{s}$ singletons in each colour.

$$
(q=1, s=2)
$$

- So, what is the main problematic point of handling general R ?

Set variables so much different?
Not quite, just treat their valuation as unary predicates (add. labels).
One set valuation can "hit" all the copies of R.
Yes, this makes a difference, but already handled in [Lampis] above.

Re-Thinking the MSO Step

- Return to [Lampis, ESA2010] - R is a single coloured vertex: An MSO sentence with q element and s set quantifiers cannot distinguish $>q \cdot 2^{s}$ singletons in each colour.

$$
(q=1, s=2)
$$

- So, what is the main problematic point of handling general R ?

Set variables so much different?
Not quite, just treat their valuation as unary predicates (add. labels).
One set valuation can "hit" all the copies of R.
Yes, this makes a difference, but already handled in [Lampis] above.
Where is the problem, exactly?
Every copy of R may be "hit" differently!

Re-Thinking the MSO Step

- Return to [Lampis, ESA2010] - R is a single coloured vertex: An MSO sentence with q element and s set quantifiers cannot distinguish $>q \cdot 2^{s}$ singletons in each colour.

$$
(q=1, s=2)
$$

- So, what is the main problematic point of handling general R ?

Set variables so much different?
Not quite, just treat their valuation as unary predicates (add. labels).
One set valuation can "hit" all the copies of R.
Yes, this makes a difference, but already handled in [Lampis] above.
Where is the problem, exactly?
Every copy of R may be "hit" differently!
Cons., the repetition threshold depends on ϕ and on the size of R.

5 Conclusions

- In general, trading an ugly dependence on the formula for such on the tree height - useful (theor.) whenever the height is fixed.

5 Conclusions

- In general, trading an ugly dependence on the formula for such on the tree height - useful (theor.) whenever the height is fixed.
for MSO_{2} :
- Faster (elementary in ϕ) MSO_{2} model checking on all the graphs of bounded tree-depth.

5 Conclusions

- In general, trading an ugly dependence on the formula for such on the tree height - useful (theor.) whenever the height is fixed.

for MSO_{2} :

- Faster (elementary in ϕ) MSO_{2} model checking on all the graphs of bounded tree-depth.
[Nešetřil, Ossona de Mendez]:
Tree-depth of $G=$ the min. height of a rooted forest whose closure contains G,

5 Conclusions

- In general, trading an ugly dependence on the formula for such on the tree height - useful (theor.) whenever the height is fixed.

for MSO_{2} :

- Faster (elementary in ϕ) MSO_{2} model checking on all the graphs of bounded tree-depth.
[Nešetřil, Ossona de Mendez]:
Tree-depth of $G=$ the min. height of a rooted forest whose closure contains G,
or, catching the robber with cops that cannot be lifted back to
 the helicopter.

for MSO_{1} :

- Faster (elementary in ϕ) MSO_{1} model checking on ...

for MSO_{1} :

- Faster (elementary in ϕ) MSO_{1} model checking on ... clique-width-like graph classes of bounded depth (???).
- Which "depth" we mean?

for MSO_{1} :

- Faster (elementary in ϕ) MSO_{1} model checking on ... clique-width-like graph classes of bounded depth (???).
- Which "depth" we mean?

Say, m-partite cographs having a co-tree repres. of bounded depth: [Ganian, PH, Nešetřil, Obdržálek, Ossona de Mendez, Ramadurai]

for MSO_{1} :

- Faster (elementary in ϕ) MSO_{1} model checking on ... clique-width-like graph classes of bounded depth (???).
- Which "depth" we mean?

Say, m-partite cographs having a co-tree repres. of bounded depth: [Ganian, PH, Nešetřil, Obdržálek, Ossona de Mendez, Ramadurai]

- Shrub-depth (of a graph class) = the smallest depth for which all the graphs are m-partite cographs (for some m).

Open Questions

Many..., but will particularly mention two:

Open Questions

Many. .., but will particularly mention two:

- Is $\left.\left|T^{\prime}\right| \sim 2^{2{ }^{\prime \prime}}\right\}$ height $r e a l l y ~ u n a v o i d a b l e ? ~$

Open Questions

Many. . ., but will particularly mention two:

- Is $\left|T^{\prime}\right| \sim 2^{2{ }^{\prime}}$ \}height really unavoidable? In our approach, YES; but even elementary dependence on height could be possible...

Open Questions

Many. . ., but will particularly mention two:

- Is $\left|T^{\prime}\right| \sim 2^{2{ }^{\prime}}$ \}height really unavoidable? In our approach, YES; but even elementary dependence on height could be possible...
- Trying to get elementary MSO model checking,
can one go the other way?

Open Questions

Many. .., but will particularly mention two:

- Is $\left|T^{\prime}\right| \sim 2^{\left.2 \text { ® }^{\prime}\right\} \text { height }}$ really unavoidable? In our approach, YES; but even elementary dependence on height could be possible...
- Trying to get elementary MSO model checking, can one go the other way?

That is, to find a reasonably restricted (and still "expressive") fragment of graph MSO giving elementary runtime dependence on the quantifier alternation depth?

