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0 Introduction0 Introduction

In this presentation, we will mix some very general (and abstract) ideas about
graph “width” decompositions and dynamic programming algorithms on those,
with specific applications to efficient algorithms for hard problems running on
rank-decompositions of graphs.
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1 Measuring Graph “Width”1 Measuring Graph “Width”

Motivation: Trees are easy to understand and to handle, so how “tree-like” our
graphs are . . . , in some well-defined sense?

• A topic occuring both in pure theory (e.g. Graph Minors),
and in algorithms (Fixed parameter tractability).
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and in algorithms (Fixed parameter tractability).

• Many definitions have been studied so far,
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1 Measuring Graph “Width”1 Measuring Graph “Width”

Motivation: Trees are easy to understand and to handle, so how “tree-like” our
graphs are . . . , in some well-defined sense?

• A topic occuring both in pure theory (e.g. Graph Minors),
and in algorithms (Fixed parameter tractability).

• Many definitions have been studied so far,
e.g. tree-width, path-width, branch-width, DAG-width . . .

• Clique-width – another graph complexity measure [Courcelle and Olariu],
defined by operations on vertex–labeled graphs:

– create a new vertex with label i,

– take the disjoint union of two labeled graphs,

– add all edges between vertices of label i and label j,

– and relabel all vertices with label i to have label j.
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Rank-Decompositions (a “better view” of clique-width)Rank-Decompositions (a “better view” of clique-width)

• [Oum and Seymour, 03] Bringing the branch-decomposition approach to
measure “complexity” of vertex subsets X ⊆ V (G) via cut-rank:

%G(X) = rank of

V (G)−X

X

0 1 0 0 1
1 0 1 0 0
1 0 0 1 1

 modulo 2
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Rank-Decompositions (a “better view” of clique-width)Rank-Decompositions (a “better view” of clique-width)

• [Oum and Seymour, 03] Bringing the branch-decomposition approach to
measure “complexity” of vertex subsets X ⊆ V (G) via cut-rank:

%G(X) = rank of

V (G)−X

X

0 1 0 0 1
1 0 1 0 0
1 0 0 1 1

 modulo 2

Definition. Decompose V (G) one-to-one into the leaves of a subcubic tree.
Then

fX V (G) −X

width(e) = %G(X) where X is displayed by f in the tree.
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Rank-Decompositions (a “better view” of clique-width)Rank-Decompositions (a “better view” of clique-width)

• [Oum and Seymour, 03] Bringing the branch-decomposition approach to
measure “complexity” of vertex subsets X ⊆ V (G) via cut-rank:

%G(X) = rank of

V (G)−X

X

0 1 0 0 1
1 0 1 0 0
1 0 0 1 1

 modulo 2

Definition. Decompose V (G) one-to-one into the leaves of a subcubic tree.
Then

fX V (G) −X

width(e) = %G(X) where X is displayed by f in the tree.

Rank-width = minrank-decs. of G max
{

width(f) : f tree edge
}
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An example. Cycle C5 and its rank-decomposition of width 2:

s s
s

s
s

a b

c

d

e

a b

cd

e

„
0 0 1
1 0 0

« 0@1 0
0 1
0 0

1A
`
1 0 0 1

´ `
1 1 0 0

´
`
0 1 1 0
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Comparing these twoComparing these two

• Rank-width t is related to clique-width k as t ≤ k ≤ 2t+1 − 1.

• Both these measures are NP -hard in general.
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%P. Hliněný et al., CSASC 2010 6 XP algorithms for bounded (bi-)rank-width

Comparing these twoComparing these two

• Rank-width t is related to clique-width k as t ≤ k ≤ 2t+1 − 1.

• Both these measures are NP -hard in general.

• Clique-width expressions seem to be much more “explicit” than rank-
decompositions, and more suited for design of actual algorithms.

On the other hand, however. . .
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• Rank-width t is related to clique-width k as t ≤ k ≤ 2t+1 − 1.

• Both these measures are NP -hard in general.

• Clique-width expressions seem to be much more “explicit” than rank-
decompositions, and more suited for design of actual algorithms.

On the other hand, however. . .

• [Corneil and Rotics, 05] Clique-width can really be up to exponentially
higher than rank-width.
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• Rank-width t is related to clique-width k as t ≤ k ≤ 2t+1 − 1.

• Both these measures are NP -hard in general.

• Clique-width expressions seem to be much more “explicit” than rank-
decompositions, and more suited for design of actual algorithms.

On the other hand, however. . .

• [Corneil and Rotics, 05] Clique-width can really be up to exponentially
higher than rank-width.

• [Oum and PH, 07] There is an FPT algorithm for computing an optimal
rank-decomposition of a graph in time O(f(t) · n3).
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Comparing these twoComparing these two

• Rank-width t is related to clique-width k as t ≤ k ≤ 2t+1 − 1.

• Both these measures are NP -hard in general.

• Clique-width expressions seem to be much more “explicit” than rank-
decompositions, and more suited for design of actual algorithms.

On the other hand, however. . .

• [Corneil and Rotics, 05] Clique-width can really be up to exponentially
higher than rank-width.

• [Oum and PH, 07] There is an FPT algorithm for computing an optimal
rank-decomposition of a graph in time O(f(t) · n3).

• And some new results suggest that algorithms designed on rank-decompo-
sitions run faster than those designed on clique-width expressions. . .
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2 Dynamic Algorithms and Parse Trees2 Dynamic Algorithms and Parse Trees

• A typical idea for a dynamic algorithm on a “tree-like” decomposition:

– Capture all relevant information about the problem on a subtree.

– Process this information bottom-up in the decomposition.

– Importantly, this information has limited polynomial size, ideally
even constant independent of the input size.
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• A typical idea for a dynamic algorithm on a “tree-like” decomposition:

– Capture all relevant information about the problem on a subtree.

– Process this information bottom-up in the decomposition.

– Importantly, this information has limited polynomial size, ideally
even constant independent of the input size.

• How to understand words “all relevant information about the problem”?

Look for inspiration in traditional finite automata theory!
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even constant independent of the input size.

• How to understand words “all relevant information about the problem”?
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Finite automaton states (this is our information) ↔

right congruence classes on the words (of a regular language).
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2 Dynamic Algorithms and Parse Trees2 Dynamic Algorithms and Parse Trees

• A typical idea for a dynamic algorithm on a “tree-like” decomposition:

– Capture all relevant information about the problem on a subtree.

– Process this information bottom-up in the decomposition.

– Importantly, this information has limited polynomial size, ideally
even constant independent of the input size.

• How to understand words “all relevant information about the problem”?

Look for inspiration in traditional finite automata theory!

Theorem. [Myhill–Nerode, folklore]
Finite automaton states (this is our information) ↔

right congruence classes on the words (of a regular language).

• Combinatorial extensions of this concept appeared e.g. in the works
[Abrahamson and Fellows, 93], [PH, 03], or [Ganian and PH, 08].



'

&

$

%

'

&

$
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The concept of a canonical equivalenceThe concept of a canonical equivalence

How does the right congruence extend
from formal words with the concatention operation

to, say, graphs with a kind of a “join” operation?



'

&

$

%

'

&

$
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The concept of a canonical equivalenceThe concept of a canonical equivalence

How does the right congruence extend
from formal words with the concatention operation

to, say, graphs with a kind of a “join” operation?

• Consider the universe of graphs Uk implicitly associated with

– some (small) distinguished “boundary of size k” of each graph, and

– a join operation G⊕H acting on the boundaries of disjoint G, H.

• Let P be a graph property we study.
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The concept of a canonical equivalenceThe concept of a canonical equivalence

How does the right congruence extend
from formal words with the concatention operation

to, say, graphs with a kind of a “join” operation?

• Consider the universe of graphs Uk implicitly associated with

– some (small) distinguished “boundary of size k” of each graph, and

– a join operation G⊕H acting on the boundaries of disjoint G, H.

• Let P be a graph property we study.

Definition. The canonical equivalence of P on Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊕H ∈ P ⇐⇒ G2 ⊕H ∈ P .
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%P. Hliněný et al., CSASC 2010 8 XP algorithms for bounded (bi-)rank-width

The concept of a canonical equivalenceThe concept of a canonical equivalence

How does the right congruence extend
from formal words with the concatention operation

to, say, graphs with a kind of a “join” operation?

• Consider the universe of graphs Uk implicitly associated with

– some (small) distinguished “boundary of size k” of each graph, and

– a join operation G⊕H acting on the boundaries of disjoint G, H.

• Let P be a graph property we study.

Definition. The canonical equivalence of P on Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊕H ∈ P ⇐⇒ G2 ⊕H ∈ P .

• Informally, the classes of ≈P,k capture all information about the property
P that can “cross” our graph boundary of size k

(regardless of actual meaning of “boundary” and “join”).
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Parse trees of decompositionsParse trees of decompositions

To give a real usable meaning to the above terms “boundary, join, and universe”
we set them in the context of tree-shaped decompositions as follows. . .
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Parse trees of decompositionsParse trees of decompositions

To give a real usable meaning to the above terms “boundary, join, and universe”
we set them in the context of tree-shaped decompositions as follows. . .

• Considering a rooted ???-decomposition of a graph G,
we build on the following correspondence:

boundary size k ↔ restricted bag-size / width / etc in decomposition

join operator ⊕ ↔ the way pieces of G “stick together” in decomp.
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Parse trees of decompositionsParse trees of decompositions

To give a real usable meaning to the above terms “boundary, join, and universe”
we set them in the context of tree-shaped decompositions as follows. . .

• Considering a rooted ???-decomposition of a graph G,
we build on the following correspondence:

boundary size k ↔ restricted bag-size / width / etc in decomposition

join operator ⊕ ↔ the way pieces of G “stick together” in decomp.

• This can be (visually) seen as. . .

...

...
...

...
...

...
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3 Parse Trees for Rank-Decompositions3 Parse Trees for Rank-Decompositions

Unlike for branch- or tree-decompositions with obvious parse trees, what is the
“boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank!
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Unlike for branch- or tree-decompositions with obvious parse trees, what is the
“boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank!

• Bilinear product approach of [Courcelle and Kanté, 07]:

– boundary ∼ labeling lab : V (G)→ 2{1,2,...,t} (multi-colouring),
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3 Parse Trees for Rank-Decompositions3 Parse Trees for Rank-Decompositions

Unlike for branch- or tree-decompositions with obvious parse trees, what is the
“boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank!

• Bilinear product approach of [Courcelle and Kanté, 07]:

– boundary ∼ labeling lab : V (G)→ 2{1,2,...,t} (multi-colouring),

– join ∼ bilinear form g over GF (2)t (i.e. “odd intersection”) s.t.

edge uv ↔ lab(u) · g · lab(v) = 1.
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3 Parse Trees for Rank-Decompositions3 Parse Trees for Rank-Decompositions

Unlike for branch- or tree-decompositions with obvious parse trees, what is the
“boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank!

• Bilinear product approach of [Courcelle and Kanté, 07]:

– boundary ∼ labeling lab : V (G)→ 2{1,2,...,t} (multi-colouring),

– join ∼ bilinear form g over GF (2)t (i.e. “odd intersection”) s.t.

edge uv ↔ lab(u) · g · lab(v) = 1.

• Join → a composition operator with relabelings f1, f2;

(G1, lab
1) ⊗[g | f1, f2] (G2, lab

2) = (H, lab)

=⇒ the rank-width parse tree [Ganian and PH, 08]:
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Unlike for branch- or tree-decompositions with obvious parse trees, what is the
“boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank!

• Bilinear product approach of [Courcelle and Kanté, 07]:

– boundary ∼ labeling lab : V (G)→ 2{1,2,...,t} (multi-colouring),

– join ∼ bilinear form g over GF (2)t (i.e. “odd intersection”) s.t.

edge uv ↔ lab(u) · g · lab(v) = 1.

• Join → a composition operator with relabelings f1, f2;

(G1, lab
1) ⊗[g | f1, f2] (G2, lab

2) = (H, lab)

=⇒ the rank-width parse tree [Ganian and PH, 08]:

t-labeling parse tree for G ⇐⇒ rank-width of G ≤ t.
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3 Parse Trees for Rank-Decompositions3 Parse Trees for Rank-Decompositions

Unlike for branch- or tree-decompositions with obvious parse trees, what is the
“boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank!

• Bilinear product approach of [Courcelle and Kanté, 07]:

– boundary ∼ labeling lab : V (G)→ 2{1,2,...,t} (multi-colouring),

– join ∼ bilinear form g over GF (2)t (i.e. “odd intersection”) s.t.

edge uv ↔ lab(u) · g · lab(v) = 1.

• Join → a composition operator with relabelings f1, f2;

(G1, lab
1) ⊗[g | f1, f2] (G2, lab

2) = (H, lab)

=⇒ the rank-width parse tree [Ganian and PH, 08]:

t-labeling parse tree for G ⇐⇒ rank-width of G ≤ t.

• Independently considered related notion of Rt-join decompositions by
[Bui-Xuan, Telle, and Vatshelle, 08].



'

&

$

%

'

&

$
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Parse tree. An example generating the cycle C5 (of rank-width 2):

⊙ a

⊙ b ⊙ c ⊙ d ⊙ e

⊗[id | · , · ]

⊗[id | id, 1→2]
⊗[id | id, 1→∅] ⊗[id |1→2, id]

s sss
b {1}

c {1}

d {1}

e {1}
→ s s sss

a {1} b {1}

c {2}

d {2}

e {1}
→ s s

sss
a {1} b ∅

c {2}

d {2}

e {1}
→

→ s s
sss

a b

c

d

e
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4 Canonical Equivalence and Algorithms4 Canonical Equivalence and Algorithms

So, how can one use a canonical equivalence when designing actual algorithms?
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4 Canonical Equivalence and Algorithms4 Canonical Equivalence and Algorithms

So, how can one use a canonical equivalence when designing actual algorithms?

• Let us recall. . .

Theorem. [Myhill–Nerode, folklore]
A finite automaton accepts a given language ⇐⇒

the number of right congruence classes on the words is finite.
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4 Canonical Equivalence and Algorithms4 Canonical Equivalence and Algorithms

So, how can one use a canonical equivalence when designing actual algorithms?

• Let us recall. . .

Theorem. [Myhill–Nerode, folklore]
A finite automaton accepts a given language ⇐⇒

the number of right congruence classes on the words is finite.

• This automaton is constructible and can be emulated in linear time.
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4 Canonical Equivalence and Algorithms4 Canonical Equivalence and Algorithms

So, how can one use a canonical equivalence when designing actual algorithms?

• Let us recall. . .

Theorem. [Myhill–Nerode, folklore]
A finite automaton accepts a given language ⇐⇒

the number of right congruence classes on the words is finite.

• This automaton is constructible and can be emulated in linear time.

• For parse trees, a straightforward generalization reads:

Theorem. (Analogy of [Myhill–Nerode])

P is accepted by a finite tree automaton on parse trees of boundary size ≤ k
⇐⇒ the canonical equivalence ≈P,k has finitely many classes on Uk.

(Actually, this is a “metatheorem” which requires several more unspoken tech-
nical conditions on the parse trees to hold true. . . )
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Extended canonical equivalenceExtended canonical equivalence

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊕H |= P ⇐⇒ G2 ⊕H |= P .

• To apply this concept to predicates P(X1, . . . ) with free variables, we
extend the universe Uk to partially-equipped graphs of boundary ≤ k.
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Extended canonical equivalenceExtended canonical equivalence

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊕H |= P ⇐⇒ G2 ⊕H |= P .

• To apply this concept to predicates P(X1, . . . ) with free variables, we
extend the universe Uk to partially-equipped graphs of boundary ≤ k.

Theorem. [Ganian and PH, 08]

Suppose φ is a formula in the language MS1. Then the canonical equivalence
≈φ,t has finite index in the universe of t-labeled partially-equipped graphs.
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Extended canonical equivalenceExtended canonical equivalence

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊕H |= P ⇐⇒ G2 ⊕H |= P .

• To apply this concept to predicates P(X1, . . . ) with free variables, we
extend the universe Uk to partially-equipped graphs of boundary ≤ k.

Theorem. [Ganian and PH, 08]

Suppose φ is a formula in the language MS1. Then the canonical equivalence
≈φ,t has finite index in the universe of t-labeled partially-equipped graphs.

• From that one easily concludes an older result:

Theorem. [Courcelle, Makowsky, and Rotics 00]

All LinEMSO graph optimization problems (in MS1 language – only vertices!)
on the graphs of bounded rank-width t can be solved in FPT time O(f(t) ·n).

Core idea: In dynamic processing of the given parse tree, record optimal repre-
sentatives of each class of the extended canonical equivalence ≈φ,t . . .
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5 Unified Design Style of XP Algorithms5 Unified Design Style of XP Algorithms

(XP: running in time O(nf(k)), not FPT)

Starting point: For many problems P, the number of classes of ≈P,k
depends on the input size n ( → likely no FPT algorithm exists).
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5 Unified Design Style of XP Algorithms5 Unified Design Style of XP Algorithms

(XP: running in time O(nf(k)), not FPT)

Starting point: For many problems P, the number of classes of ≈P,k
depends on the input size n ( → likely no FPT algorithm exists).

Yet there are known algorithms for them dynamically processing “informa-
tion” of polynomial size O(nf(k)). . . How do they work?

We try to give a unified formal description. . .
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5 Unified Design Style of XP Algorithms5 Unified Design Style of XP Algorithms

(XP: running in time O(nf(k)), not FPT)

Starting point: For many problems P, the number of classes of ≈P,k
depends on the input size n ( → likely no FPT algorithm exists).

Yet there are known algorithms for them dynamically processing “informa-
tion” of polynomial size O(nf(k)). . . How do they work?

We try to give a unified formal description. . .

In our parse-tree (width k) formalism, we

• assoc. the equiv. classes of ≈P,k with an enum. of suitable “fragments”,

• where the number of distinct “fragments” depends only on k,

• and we can recombine the fragment enumerations efficiently.
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Example 1: Hamiltonian pathExample 1: Hamiltonian path

XP algorithm wrt. clique-width given by [Espelage, Gurski, and Wanke, 2001].

Theorem. Decide whether a graph G of rank-width t has a Hamiltonian path
in time

O
(
|V (G)|`(t)

)
where `(t) = 4t+1 +O(1)
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in time
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(
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)
where `(t) = 4t+1 +O(1) .
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• Considering a Hamiltonian path P in the join G⊕H,



'

&

$

%

'

&

$
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(
|V (G)|`(t)
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where `(t) = 4t+1 +O(1) .

Proof:

• Considering a Hamiltonian path P in the join G⊕H,

• the “fragments” are the subpaths Pi ⊆ P on the G-side
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Example 1: Hamiltonian pathExample 1: Hamiltonian path

XP algorithm wrt. clique-width given by [Espelage, Gurski, and Wanke, 2001].

Theorem. Decide whether a graph G of rank-width t has a Hamiltonian path
in time

O
(
|V (G)|`(t)

)
where `(t) = 4t+1 +O(1) .

Proof:

• Considering a Hamiltonian path P in the join G⊕H,

• the “fragments” are the subpaths Pi ⊆ P on the G-side

– identified by labeling pairs of their ends (only 4t distinct!),

– and enumerated at every parse tree node as one multiset.
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Example 1: Hamiltonian pathExample 1: Hamiltonian path

XP algorithm wrt. clique-width given by [Espelage, Gurski, and Wanke, 2001].

Theorem. Decide whether a graph G of rank-width t has a Hamiltonian path
in time

O
(
|V (G)|`(t)

)
where `(t) = 4t+1 +O(1) .

Proof:

• Considering a Hamiltonian path P in the join G⊕H,

• the “fragments” are the subpaths Pi ⊆ P on the G-side

– identified by labeling pairs of their ends (only 4t distinct!),

– and enumerated at every parse tree node as one multiset.

• Straightforward dynamic alg. processing then gives the result.
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Example 2: Defective colouringExample 2: Defective colouring

Defective (`, q)-colouring – partition the vertices into ` parts such that
– each part induces a subgr. of max. degree ≤ q.
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Example 2: Defective colouringExample 2: Defective colouring

Defective (`, q)-colouring – partition the vertices into ` parts such that
– each part induces a subgr. of max. degree ≤ q.

Considered recently by [Kolman, Lidický, and Sereni, 2009] wrt. tree-width.
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Example 2: Defective colouringExample 2: Defective colouring

Defective (`, q)-colouring – partition the vertices into ` parts such that
– each part induces a subgr. of max. degree ≤ q.

Considered recently by [Kolman, Lidický, and Sereni, 2009] wrt. tree-width.

Fact. For fixed q, this is an MSOL partitioning problem.
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Example 2: Defective colouringExample 2: Defective colouring

Defective (`, q)-colouring – partition the vertices into ` parts such that
– each part induces a subgr. of max. degree ≤ q.

Considered recently by [Kolman, Lidický, and Sereni, 2009] wrt. tree-width.

Fact. For fixed q, this is an MSOL partitioning problem.

Theorem. The defective (`, q)-colouring problem with fixed ` parts (i.e. min-
imizing q) can be solved on a graph G of rank-width t in time

O
(
|V (G)|k(t,`)

)
where k(t, `) = 4` · 2t +O(1)
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Example 2: Defective colouringExample 2: Defective colouring

Defective (`, q)-colouring – partition the vertices into ` parts such that
– each part induces a subgr. of max. degree ≤ q.

Considered recently by [Kolman, Lidický, and Sereni, 2009] wrt. tree-width.

Fact. For fixed q, this is an MSOL partitioning problem.

Theorem. The defective (`, q)-colouring problem with fixed ` parts (i.e. min-
imizing q) can be solved on a graph G of rank-width t in time

O
(
|V (G)|k(t,`)

)
where k(t, `) = 4` · 2t +O(1) .

Proof:

• Consider separately each one colour class X.
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Example 2: Defective colouringExample 2: Defective colouring

Defective (`, q)-colouring – partition the vertices into ` parts such that
– each part induces a subgr. of max. degree ≤ q.

Considered recently by [Kolman, Lidický, and Sereni, 2009] wrt. tree-width.

Fact. For fixed q, this is an MSOL partitioning problem.

Theorem. The defective (`, q)-colouring problem with fixed ` parts (i.e. min-
imizing q) can be solved on a graph G of rank-width t in time

O
(
|V (G)|k(t,`)

)
where k(t, `) = 4` · 2t +O(1) .

Proof:

• Consider separately each one colour class X.

• A “fragment” – one vertex labeling in X,
but one needs also to record its max. degree in X !
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Example 2: Defective colouringExample 2: Defective colouring

Defective (`, q)-colouring – partition the vertices into ` parts such that
– each part induces a subgr. of max. degree ≤ q.

Considered recently by [Kolman, Lidický, and Sereni, 2009] wrt. tree-width.

Fact. For fixed q, this is an MSOL partitioning problem.

Theorem. The defective (`, q)-colouring problem with fixed ` parts (i.e. min-
imizing q) can be solved on a graph G of rank-width t in time

O
(
|V (G)|k(t,`)

)
where k(t, `) = 4` · 2t +O(1) .

Proof:

• Consider separately each one colour class X.

• A “fragment” – one vertex labeling in X,
but one needs also to record its max. degree in X !

• Slightly out of our formalism, and so deserves a closer look. . .
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6 Conclusions6 Conclusions

• The power of the Myhill–Nerode–type formalism extends beyond the
finite-state (i.e. related to finite automata) properties. Nice, isn’t it?
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• Still, one would like to see an explicit (perhaps logic-based) framework
for XP algorithms, analogously to the MSOL framework with FPT algo-
rithms, cf. [Courcelle] et al.
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rithms, cf. [Courcelle] et al.

– Our presented unified approach shows this should be possible. . .
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• Still, one would like to see an explicit (perhaps logic-based) framework
for XP algorithms, analogously to the MSOL framework with FPT algo-
rithms, cf. [Courcelle] et al.

– Our presented unified approach shows this should be possible. . .

– And very recently, [Král’, Obdržálek, and PH, 2010] have succeded
in finding such a framework.
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• Still, one would like to see an explicit (perhaps logic-based) framework
for XP algorithms, analogously to the MSOL framework with FPT algo-
rithms, cf. [Courcelle] et al.

– Our presented unified approach shows this should be possible. . .

– And very recently, [Král’, Obdržálek, and PH, 2010] have succeded
in finding such a framework.

• BTW (totally unrelated. . . )

Have you already heard that the crossing number of almost planar graphs
is NP-complete? [Cabello and Mohar, 2010]
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finite-state (i.e. related to finite automata) properties. Nice, isn’t it?

• Still, one would like to see an explicit (perhaps logic-based) framework
for XP algorithms, analogously to the MSOL framework with FPT algo-
rithms, cf. [Courcelle] et al.

– Our presented unified approach shows this should be possible. . .

– And very recently, [Král’, Obdržálek, and PH, 2010] have succeded
in finding such a framework.

• BTW (totally unrelated. . . )

Have you already heard that the crossing number of almost planar graphs
is NP-complete? [Cabello and Mohar, 2010]

THANK YOU FOR YOUR ATTENTION
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