

Unified Approach to Polynomial Algorithms on Graphs of Bounded (bi-)Rank-width

Petr Hliněný,* Robert Ganian and Jan Obdržálek

Faculty of Informatics, Masaryk University Botanická 68a, 60200 Brno, Czech Republic

e-mail: hlineny@fi.muni.cz ganian@mail.muni.cz http://www.fi.muni.cz/~hlineny
obdrzalek@fi.muni.cz

P. Hliněný et al., CSASC 201

XP algorithms for bounded (bi-)rank-width

0 Introduction

In this presentation, we will mix some very general (and abstract) ideas about graph *"width" decompositions* and dynamic programming algorithms on those, with specific applications to efficient algorithms for hard problems running on *rank-decompositions* of graphs.

0 Introduction

In this presentation, we will mix some very general (and abstract) ideas about graph *"width" decompositions* and dynamic programming algorithms on those, with specific applications to efficient algorithms for hard problems running on *rank-decompositions* of graphs.

Talk Outline

1	Measuring Graph "Width"	3
2	Dynamic Algorithms and Parse Trees	7
3	Parse Trees for Rank-Decompositions	10
4	Canonical Equivalence and Algorithms	12
5	Unified Design Style of XP Algorithms	14
6	Conclusions	17

1 Measuring Graph "Width"

Motivation: Trees are easy to understand and to handle, so how "tree-like" our graphs are ..., in some well-defined sense?

 A topic occuring both in pure theory (e.g. Graph Minors), and in algorithms (Fixed parameter tractability).

1 Measuring Graph "Width"

Motivation: Trees are easy to understand and to handle, so how "tree-like" our graphs are ..., in some well-defined sense?

- A topic occuring both in pure theory (e.g. Graph Minors), and in algorithms (Fixed parameter tractability).
- Many definitions have been studied so far,
 e.g. tree-width, path-width, branch-width, DAG-width ...

1 Measuring Graph "Width"

Motivation: Trees are easy to understand and to handle, so how "tree-like" our graphs are ..., in some well-defined sense?

- A topic occuring both in pure theory (e.g. Graph Minors), and in algorithms (Fixed parameter tractability).
- Many definitions have been studied so far,
 e.g. tree-width, path-width, branch-width, DAG-width ...
- **Clique-width** another graph complexity measure [Courcelle and Olariu], defined by operations on vertex–labeled graphs:
 - create a new vertex with label i,
 - take the disjoint union of two labeled graphs,
 - add all edges between vertices of label i and label j,
 - and relabel all vertices with label i to have label j.

Rank-Decompositions (a "better view" of clique-width)

 [Oum and Seymour, 03] Bringing the branch-decomposition approach to measure "complexity" of vertex subsets X ⊆ V(G) via cut-rank:

$$\mathcal{Q}_{G}(X) = \text{rank of} \quad X \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix} \text{ modulo } 2$$

Rank-Decompositions (a "better view" of clique-width)

 [Oum and Seymour, 03] Bringing the branch-decomposition approach to measure "complexity" of vertex subsets X ⊆ V(G) via cut-rank:

$$\varrho_{G}(X) = \operatorname{rank} \operatorname{of} X \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix} \operatorname{modulo} 2$$

Definition. Decompose V(G) one-to-one into the leaves of a subcubic tree. Then

width $(e) = \rho_G(X)$ where X is displayed by f in the tree.

Rank-Decompositions (a "better view" of clique-width)

 [Oum and Seymour, 03] Bringing the branch-decomposition approach to measure "complexity" of vertex subsets X ⊆ V(G) via cut-rank:

$$\varrho_G(X) = \operatorname{rank} \operatorname{of} X \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix} \operatorname{modulo} 2$$

Definition. Decompose V(G) one-to-one into the leaves of a subcubic tree. Then

width $(e) = \rho_G(X)$ where X is displayed by f in the tree.

 $\mathsf{Rank-width} = \min_{\mathsf{rank-decs. of } G} \max \left\{ \mathsf{width}(f) : f \text{ tree edge} \right\}$

P. Hliněný et al., CSASC 201

XP algorithms for bounded (bi-)rank-width

- Rank-width t is related to clique-width k as $t \leq k \leq 2^{t+1} 1$.
- Both these measures are *NP*-hard in general.

- Rank-width t is related to clique-width k as $t \leq k \leq 2^{t+1} 1$.
- Both these measures are *NP*-hard in general.
- Clique-width *expressions* seem to be much more "explicit" than *rank- decompositions*, and more suited for design of actual algorithms.

On the other hand, however...

- Rank-width t is related to clique-width k as $t \leq k \leq 2^{t+1} 1$.
- Both these measures are *NP*-hard in general.
- Clique-width *expressions* seem to be much more "explicit" than *rank-decompositions*, and more suited for design of actual algorithms.

On the other hand, however...

• [Corneil and Rotics, 05] Clique-width can really be up to exponentially higher than rank-width.

- Rank-width t is related to clique-width k as $t \le k \le 2^{t+1} 1$.
- Both these measures are *NP*-hard in general.
- Clique-width *expressions* seem to be much more "explicit" than *rankdecompositions*, and more suited for design of actual algorithms.

On the other hand, however...

- [Corneil and Rotics, 05] Clique-width can really be up to exponentially higher than rank-width.
- [Oum and PH, 07] There is an *FPT algorithm* for computing an optimal rank-decomposition of a graph in time $O(f(t) \cdot n^3)$.

- Rank-width t is related to clique-width k as $t \leq k \leq 2^{t+1} 1$.
- Both these measures are *NP*-hard in general.
- Clique-width *expressions* seem to be much more "explicit" than *rankdecompositions*, and more suited for design of actual algorithms.

On the other hand, however...

- [Corneil and Rotics, 05] Clique-width can really be up to exponentially higher than rank-width.
- [Oum and PH, 07] There is an *FPT algorithm* for computing an optimal rank-decomposition of a graph in time $O(f(t) \cdot n^3)$.
- And some new results suggest that algorithms designed on rank-decompositions run faster than those designed on clique-width expressions...

- A typical idea for a *dynamic algorithm* on a "tree-like" decomposition:
 - Capture all relevant information about the problem on a subtree.
 - Process this information bottom-up in the decomposition.
 - Importantly, this information has limited polynomial size, ideally even constant independent of the input size.

- A typical idea for a *dynamic algorithm* on a "tree-like" decomposition:
 - Capture all relevant information about the problem on a subtree.
 - Process this information bottom-up in the decomposition.
 - Importantly, this information has limited polynomial size, ideally even constant independent of the input size.
- How to understand words "all relevant information about the problem"? Look for inspiration in traditional finite automata theory!

- A typical idea for a *dynamic algorithm* on a "tree-like" decomposition:
 - Capture all relevant information about the problem on a subtree.
 - Process this information bottom-up in the decomposition.
 - Importantly, this information has limited polynomial size, ideally even constant independent of the input size.
- How to understand words "all relevant information about the problem"? Look for inspiration in traditional finite automata theory!

Theorem. [Myhill–Nerode, folklore]
Finite automaton states (this is our information) ↔ *right congruence* classes on the words (of a regular language).

- A typical idea for a *dynamic algorithm* on a "tree-like" decomposition:
 - Capture all relevant information about the problem on a subtree.
 - Process this information bottom-up in the decomposition.
 - Importantly, this information has limited polynomial size, ideally even constant independent of the input size.
- How to understand words "all relevant information about the problem"? Look for inspiration in traditional finite automata theory!

Theorem. [Myhill–Nerode, folklore]
Finite automaton states (this is our information) ↔ *right congruence* classes on the words (of a regular language).

• Combinatorial extensions of this concept appeared e.g. in the works [Abrahamson and Fellows, 93], [PH, 03], or [Ganian and PH, 08].

How does the right congruence extend from formal words with the concatention operation to, say, graphs with a kind of a "join" operation?

How does the right congruence extend from formal words with the concatention operation to, say, graphs with a kind of a "join" operation?

- Consider the universe of graphs \mathcal{U}_k implicitly associated with
 - some (small) distinguished "boundary of size k" of each graph, and
 - a join operation $G \oplus H$ acting on the boundaries of disjoint G, H.
- Let ${\mathcal P}$ be a graph property we study.

How does the right congruence extend from formal words with the concatention operation to, say, graphs with a kind of a "join" operation?

- Consider the universe of graphs U_k implicitly associated with
 - some (small) distinguished "boundary of size k" of each graph, and - a join operation $G \oplus H$ acting on the boundaries of disjoint G, H.
- Let \mathcal{P} be a graph property we study.

Definition. The canonical equivalence of \mathcal{P} on \mathcal{U}_k is defined: $G_1 \approx_{\mathcal{P}, k} G_2$ for any $G_1, G_2 \in \mathcal{U}_k$ if and only if, for all $H \in \mathcal{U}_k$, $G_1 \oplus H \in \mathcal{P} \iff G_2 \oplus H \in \mathcal{P}$.

How does the right congruence extend from formal words with the concatention operation to, say, graphs with a kind of a "join" operation?

- Consider the universe of graphs \mathcal{U}_k implicitly associated with
 - some (small) distinguished "boundary of size k" of each graph, and
 - a join operation $G \oplus H$ acting on the boundaries of disjoint G, H.
- Let ${\mathcal P}$ be a graph property we study.

Definition. The *canonical equivalence* of \mathcal{P} on \mathcal{U}_k is defined:

 $G_1 \approx_{\mathcal{P},k} G_2$ for any $G_1, G_2 \in \mathcal{U}_k$ if and only if, for all $H \in \mathcal{U}_k$,

 $G_1 \oplus H \in \mathcal{P} \iff G_2 \oplus H \in \mathcal{P}.$

• Informally, the classes of $\approx_{\mathcal{P},k}$ capture all information about the property \mathcal{P} that can "cross" our graph boundary of size k (regardless of actual meaning of "boundary" and "join").

P. Hliněný et al., CSASC 2010

XP algorithms for bounded (bi-)rank-width

Parse trees of decompositions

To give a real usable meaning to the above terms "boundary, join, and universe" we set them in the context of tree-shaped decompositions as follows...

Parse trees of decompositions

To give a real usable meaning to the above terms "boundary, join, and universe" we set them in the context of tree-shaped decompositions as follows...

- Considering a rooted ???-decomposition of a graph *G*, we build on the following correspondence:
 - *boundary size* $k \leftrightarrow$ restricted bag-size / width / etc in decomposition
 - *join operator* $\oplus \leftrightarrow$ the way pieces of G "stick together" in decomp.

Parse trees of decompositions

To give a real usable meaning to the above terms "boundary, join, and universe" we set them in the context of tree-shaped decompositions as follows...

• Considering a rooted ???-decomposition of a graph G, we build on the following correspondence:

boundary size $k \leftrightarrow$ restricted bag-size / width / etc in decomposition join operator $\oplus \leftrightarrow$ the way pieces of G "stick together" in decomp.

• This can be (visually) seen as. . .

XP algorithms for bounded (bi-)rank-width

Unlike for branch- or tree-decompositions with obvious parse trees, what is the "boundary" and "join" operation for rank-width?

Our "boundary" includes all vertices, and "join" is just an implicit matrix rank!

Unlike for branch- or tree-decompositions with obvious parse trees, what is the "boundary" and "join" operation for rank-width?

Our "boundary" includes all vertices, and "join" is just an implicit matrix rank!

• Bilinear product approach of [Courcelle and Kanté, 07]:

- boundary ~ labeling $lab: V(G) \rightarrow 2^{\{1,2,\dots,t\}}$ (multi-colouring),

Unlike for branch- or tree-decompositions with obvious parse trees, what is the "boundary" and "join" operation for rank-width?

Our "boundary" includes all vertices, and "join" is just an implicit matrix rank!

- Bilinear product approach of [Courcelle and Kanté, 07]:
 - boundary ~ labeling $lab: V(G) \rightarrow 2^{\{1,2,\dots,t\}}$ (multi-colouring),
 - join ~ bilinear form g over $GF(2)^t$ (i.e. "odd intersection") s.t.

 $\mathsf{edge} \ uv \ \leftrightarrow \ lab(u) \cdot \mathbf{g} \cdot lab(v) = 1.$

Unlike for branch- or tree-decompositions with obvious parse trees, what is the "boundary" and "join" operation for rank-width?

Our "boundary" includes all vertices, and "join" is just an implicit matrix rank!

- Bilinear product approach of [Courcelle and Kanté, 07]:
 - boundary ~ labeling $lab: V(G) \rightarrow 2^{\{1,2,\dots,t\}}$ (multi-colouring),
 - join ~ bilinear form g over $GF(2)^t$ (i.e. "odd intersection") s.t. edge $uv \leftrightarrow lab(u) \cdot g \cdot lab(v) = 1$.
- Join \rightarrow a composition operator with relabelings f_1, f_2 ; $(G_1, lab^1) \otimes [\mathbf{g} \mid f_1, f_2] (G_2, lab^2) = (H, lab)$

 \implies the rank-width **parse tree** [Ganian and PH, 08]:

Unlike for branch- or tree-decompositions with obvious parse trees, what is the "boundary" and "join" operation for rank-width?

Our "boundary" includes all vertices, and "join" is just an implicit matrix rank!

- Bilinear product approach of [Courcelle and Kanté, 07]:
 - boundary ~ labeling $lab: V(G) \rightarrow 2^{\{1,2,\dots,t\}}$ (multi-colouring),
 - join ~ bilinear form g over $GF(2)^t$ (i.e. "odd intersection") s.t. edge $uv \leftrightarrow lab(u) \cdot g \cdot lab(v) = 1$.
- Join \rightarrow a composition operator with relabelings f_1, f_2 ; $(G_1, lab^1) \otimes [\mathbf{g} \mid f_1, f_2] (G_2, lab^2) = (H, lab)$
 - \implies the rank-width **parse tree** [Ganian and PH, 08]:

t-labeling parse tree for $G \iff$ rank-width of $G \le t$.

Unlike for branch- or tree-decompositions with obvious parse trees, what is the "boundary" and "join" operation for rank-width?

Our "boundary" includes all vertices, and "join" is just an implicit matrix rank!

- Bilinear product approach of [Courcelle and Kanté, 07]:
 - boundary ~ labeling $lab: V(G) \rightarrow 2^{\{1,2,\dots,t\}}$ (multi-colouring),
 - join ~ bilinear form \mathbf{g} over $GF(2)^t$ (i.e. "odd intersection") s.t. edge $uv \leftrightarrow lab(u) \cdot \mathbf{g} \cdot lab(v) = 1$.
- Join \rightarrow a composition operator with relabelings f_1, f_2 ; $(G_1, lab^1) \otimes [\mathbf{g} \mid f_1, f_2] (G_2, lab^2) = (H, lab)$
 - \implies the rank-width **parse tree** [Ganian and PH, 08]:

t-labeling parse tree for $G \iff$ rank-width of $G \leq t$.

• Independently considered related notion of R_t -join decompositions by [Bui-Xuan, Telle, and Vatshelle, 08].

) XP algorithms for bounded (bi-)rank-width

So, how can one use a canonical equivalence when designing actual algorithms?

So, how can one use a canonical equivalence when designing actual algorithms?

• Let us recall...

 Theorem.
 [Myhill–Nerode, folklore]

 A finite automaton accepts a given language
 ↔

 the number of *right congruence* classes on the words is finite.

So, how can one use a canonical equivalence when designing actual algorithms?

• Let us recall...

 Theorem.
 [Myhill–Nerode, folklore]

 A finite automaton accepts a given language
 ↔

 the number of *right congruence* classes on the words is finite.

• This automaton is constructible and can be emulated in linear time.

So, how can one use a canonical equivalence when designing actual algorithms?

• Let us recall...

Theorem. [Myhill–Nerode, folklore]
A finite automaton accepts a given language ↔
the number of *right congruence* classes on the words is finite.

- This automaton is constructible and can be emulated in linear time.
- For parse trees, a straightforward generalization reads:

Theorem. (Analogy of [Myhill–Nerode])

 ${\mathcal P}$ is accepted by a finite tree automaton on parse trees of boundary size $\leq k$

 \Rightarrow the canonical equivalence $\approx_{\mathcal{P},k}$ has finitely many classes on \mathcal{U}_k .

(Actually, this is a "metatheorem" which requires several more unspoken technical conditions on the parse trees to hold true...)

P. Hliněný et al., CSASC 2010

2 XP algorithms for bounded (bi-)rank-width

Extended canonical equivalence

 $G_1 \approx_{\mathcal{P}, k} G_2$ for any $G_1, G_2 \in \mathcal{U}_k$ if and only if, for all $H \in \mathcal{U}_k$, $G_1 \oplus H \models \mathcal{P} \iff G_2 \oplus H \models \mathcal{P}$.

• To apply this concept to predicates $\mathcal{P}(X_1,...)$ with free variables, we extend the universe \mathcal{U}_k to partially-equipped graphs of boundary $\leq k$.

Extended canonical equivalence

 $G_1 \approx_{\mathcal{P}, k} G_2$ for any $G_1, G_2 \in \mathcal{U}_k$ if and only if, for all $H \in \mathcal{U}_k$, $G_1 \oplus H \models \mathcal{P} \iff G_2 \oplus H \models \mathcal{P}$.

• To apply this concept to predicates $\mathcal{P}(X_1,...)$ with free variables, we extend the universe \mathcal{U}_k to partially-equipped graphs of boundary $\leq k$.

Theorem. [Ganian and PH, 08]

Suppose ϕ is a formula in the language MS₁. Then the canonical equivalence $\approx_{\phi,t}$ has finite index in the universe of *t*-labeled partially-equipped graphs.

Extended canonical equivalence

 $G_1 \approx_{\mathcal{P},k} G_2$ for any $G_1, G_2 \in \mathcal{U}_k$ if and only if, for all $H \in \mathcal{U}_k$, $G_1 \oplus H \models \mathcal{P} \iff G_2 \oplus H \models \mathcal{P}$.

• To apply this concept to predicates $\mathcal{P}(X_1,...)$ with free variables, we extend the universe \mathcal{U}_k to partially-equipped graphs of boundary $\leq k$.

Theorem. [Ganian and PH, 08]

Suppose ϕ is a formula in the language MS₁. Then the canonical equivalence $\approx_{\phi,t}$ has finite index in the universe of *t*-labeled partially-equipped graphs.

• From that one easily concludes an older result:

Theorem. [Courcelle, Makowsky, and Rotics 00] All *LinEMSO graph optimization* problems (in MS₁ language – only vertices!) on the graphs of bounded rank-width t can be solved in FPT time $O(f(t) \cdot n)$.

Core idea: In dynamic processing of the given parse tree, record optimal representatives of each class of the extended canonical equivalence $\approx_{\phi,t} \dots$

ý et al., CSASC 2010 13 XP algorithms for bounded (bi-)rank-width

(XP: running in time $O(n^{f(k)})$, not FPT)

Starting point: For many problems \mathcal{P} , the number of classes of $\approx_{\mathcal{P},k}$ depends on the input size n (\rightarrow likely no FPT algorithm exists).

(XP: running in time $O(n^{f(k)})$, not FPT)

Starting point: For many problems \mathcal{P} , the number of classes of $\approx_{\mathcal{P},k}$ depends on the input size n (\rightarrow likely no FPT algorithm exists).

Yet there are known algorithms for them dynamically processing "information" of polynomial size $O(n^{f(k)})$... How do they work?

We try to give a unified formal description...

(XP: running in time $O(n^{f(k)})$, not FPT)

Starting point: For many problems \mathcal{P} , the number of classes of $\approx_{\mathcal{P},k}$ depends on the input size n (\rightarrow likely no FPT algorithm exists).

Yet there are known algorithms for them dynamically processing "information" of polynomial size $O(n^{f(k)})$... How do they work?

We try to give a unified formal description...

In our parse-tree (width k) formalism, we

• assoc. the equiv. classes of $\approx_{\mathcal{P},k}$ with an enum. of suitable "fragments",

(XP: running in time $O(n^{f(k)})$, not FPT)

Starting point: For many problems \mathcal{P} , the number of classes of $\approx_{\mathcal{P},k}$ depends on the input size n (\rightarrow likely no FPT algorithm exists).

Yet there are known algorithms for them dynamically processing "information" of polynomial size $O(n^{f(k)})$... How do they work?

We try to give a unified formal description...

In our parse-tree (width k) formalism, we

- assoc. the equiv. classes of $\approx_{\mathcal{P},k}$ with an enum. of suitable "fragments",
- where the number of distinct "fragments" depends only on k,

(XP: running in time $O(n^{f(k)})$, not FPT)

Starting point: For many problems \mathcal{P} , the number of classes of $\approx_{\mathcal{P},k}$ depends on the input size n (\rightarrow likely no FPT algorithm exists).

Yet there are known algorithms for them dynamically processing "information" of polynomial size $O(n^{f(k)})$... How do they work?

We try to give a unified formal description...

In our parse-tree (width k) formalism, we

- assoc. the equiv. classes of $\approx_{\mathcal{P},k}$ with an enum. of suitable "fragments",
- where the number of distinct "fragments" depends only on k,
- and we can recombine the fragment enumerations efficiently.

XP algorithm wrt. clique-width given by [Espelage, Gurski, and Wanke, 2001].

Theorem. Decide whether a graph G of rank-width t has a Hamiltonian path in time

$$O\left(|V(G)|^{\ell(t)}\right)$$
 where $\ell(t) = 4^{t+1} + O(1)$

XP algorithm wrt. clique-width given by [Espelage, Gurski, and Wanke, 2001].

Theorem. Decide whether a graph G of rank-width t has a Hamiltonian path in time

$$O\left(|V(G)|^{\ell(t)}
ight)$$
 where $\ell(t) = 4^{t+1} + O(1)$.

Proof:

• Considering a Hamiltonian path P in the join $G \oplus H$,

XP algorithm wrt. clique-width given by [Espelage, Gurski, and Wanke, 2001].

Theorem. Decide whether a graph G of rank-width t has a Hamiltonian path in time

$$O\left(|V(G)|^{\ell(t)}\right) \text{ where } \ell(t) = 4^{t+1} + O(1) \,.$$

- Considering a Hamiltonian path P in the join $G \oplus H$,
- the "fragments" are the subpaths $P_i \subseteq P$ on the *G*-side

XP algorithm wrt. clique-width given by [Espelage, Gurski, and Wanke, 2001].

Theorem. Decide whether a graph G of rank-width t has a Hamiltonian path in time

$$O\left(|V(G)|^{\ell(t)}\right)$$
 where $\ell(t) = 4^{t+1} + O(1)$.

- Considering a Hamiltonian path P in the join $G \oplus H$,
- the "fragments" are the subpaths $P_i \subseteq P$ on the *G*-side
 - identified by labeling pairs of their ends (only 4^t distinct!),
 - and enumerated at every parse tree node as one multiset.

XP algorithm wrt. clique-width given by [Espelage, Gurski, and Wanke, 2001].

Theorem. Decide whether a graph G of rank-width t has a Hamiltonian path in time

$$O\left(|V(G)|^{\ell(t)}\right)$$
 where $\ell(t) = 4^{t+1} + O(1)$.

- Considering a Hamiltonian path P in the join $G \oplus H$,
- the "fragments" are the subpaths $P_i \subseteq P$ on the *G*-side
 - identified by labeling pairs of their ends (only 4^t distinct!),
 - and enumerated at every parse tree node as one multiset.
- Straightforward dynamic alg. processing then gives the result.

Defective (ℓ, q) -colouring – partition the vertices into ℓ parts such that – each part induces a subgr. of max. degree $\leq q$.

Defective (ℓ, q) -colouring – partition the vertices into ℓ parts such that – each part induces a subgr. of max. degree $\leq q$.

Considered recently by [Kolman, Lidický, and Sereni, 2009] wrt. tree-width.

Defective (ℓ, q) -colouring – partition the vertices into ℓ parts such that – each part induces a subgr. of max. degree $\leq q$.

Considered recently by [Kolman, Lidický, and Sereni, 2009] wrt. tree-width.

Fact. For fixed q, this is an MSOL partitioning problem.

Defective (ℓ, q) -colouring – partition the vertices into ℓ parts such that – each part induces a subgr. of max. degree $\leq q$.

Considered recently by [Kolman, Lidický, and Sereni, 2009] wrt. tree-width.

Fact. For fixed q, this is an MSOL partitioning problem.

Theorem. The defective (ℓ, q) -colouring problem with fixed ℓ parts (i.e. minimizing q) can be solved on a graph G of rank-width t in time

 $O\left(|V(G)|^{k(t,\ell)}\right)$ where $k(t,\ell)=4\ell\cdot 2^t+O(1)$

Defective (ℓ, q) -colouring – partition the vertices into ℓ parts such that – each part induces a subgr. of max. degree $\leq q$.

Considered recently by [Kolman, Lidický, and Sereni, 2009] wrt. tree-width.

Fact. For fixed q, this is an MSOL partitioning problem.

Theorem. The defective (ℓ, q) -colouring problem with fixed ℓ parts (i.e. minimizing q) can be solved on a graph G of rank-width t in time

$$O\left(|V(G)|^{k(t,\ell)}
ight)$$
 where $k(t,\ell) = 4\ell \cdot 2^t + O(1)$.

Proof:

• Consider separately each one colour class X.

Defective (ℓ, q) -colouring – partition the vertices into ℓ parts such that – each part induces a subgr. of max. degree $\leq q$.

Considered recently by [Kolman, Lidický, and Sereni, 2009] wrt. tree-width.

Fact. For fixed q, this is an MSOL partitioning problem.

Theorem. The defective (ℓ, q) -colouring problem with fixed ℓ parts (i.e. minimizing q) can be solved on a graph G of rank-width t in time

$$O\left(|V(G)|^{k(t,\ell)}
ight)$$
 where $k(t,\ell) = 4\ell \cdot 2^t + O(1)$.

- Consider separately each one colour class X.
- A "fragment" one vertex labeling in X, but one needs also to record its max. degree in X!

Defective (ℓ, q) -colouring – partition the vertices into ℓ parts such that – each part induces a subgr. of max. degree $\leq q$.

Considered recently by [Kolman, Lidický, and Sereni, 2009] wrt. tree-width.

Fact. For fixed q, this is an MSOL partitioning problem.

Theorem. The defective (ℓ, q) -colouring problem with fixed ℓ parts (i.e. minimizing q) can be solved on a graph G of rank-width t in time

$$O\left(|V(G)|^{k(t,\ell)}
ight)$$
 where $k(t,\ell) = 4\ell \cdot 2^t + O(1)$.

Proof:

- Consider separately each one colour class X.
- A "fragment" one vertex labeling in X, but one needs also to record its max. degree in X !
- Slightly out of our formalism, and so deserves a closer look...

16 XP algorithms for bounded (bi-)rank-width

• The power of the *Myhill–Nerode–type* formalism extends beyond the finite-state (i.e. related to finite automata) properties. Nice, isn't it?

- The power of the *Myhill–Nerode–type* formalism extends beyond the finite-state (i.e. related to finite automata) properties. Nice, isn't it?
- Still, one would like to see an explicit (perhaps logic-based) *framework for XP algorithms*, analogously to the MSOL framework with FPT algorithms, cf. [Courcelle] et al.

- The power of the *Myhill–Nerode–type* formalism extends beyond the finite-state (i.e. related to finite automata) properties. Nice, isn't it?
- Still, one would like to see an explicit (perhaps logic-based) *framework for XP algorithms*, analogously to the MSOL framework with FPT algorithms, cf. [Courcelle] et al.
 - Our presented unified approach shows this should be possible...

- The power of the *Myhill–Nerode–type* formalism extends beyond the finite-state (i.e. related to finite automata) properties. Nice, isn't it?
- Still, one would like to see an explicit (perhaps logic-based) *framework for XP algorithms*, analogously to the MSOL framework with FPT algorithms, cf. [Courcelle] et al.
 - Our presented unified approach shows this should be possible...
 - And very recently, [Král', Obdržálek, and PH, 2010] have succeded in finding such a framework.

- The power of the *Myhill–Nerode–type* formalism extends beyond the finite-state (i.e. related to finite automata) properties. Nice, isn't it?
- Still, one would like to see an explicit (perhaps logic-based) *framework for XP algorithms*, analogously to the MSOL framework with FPT algorithms, cf. [Courcelle] et al.
 - Our presented unified approach shows this should be possible...
 - And very recently, [Král', Obdržálek, and PH, 2010] have succeded in finding such a framework.
- **BTW** (totally unrelated...)

Have you already heard that the *crossing number of almost planar graphs* is NP-complete? [Cabello and Mohar, 2010]

- The power of the *Myhill–Nerode–type* formalism extends beyond the finite-state (i.e. related to finite automata) properties. Nice, isn't it?
- Still, one would like to see an explicit (perhaps logic-based) *framework for XP algorithms*, analogously to the MSOL framework with FPT algorithms, cf. [Courcelle] et al.
 - Our presented unified approach shows this should be possible...
 - And very recently, [Král', Obdržálek, and PH, 2010] have succeded in finding such a framework.
- **BTW** (totally unrelated...)

Have you already heard that the *crossing number of almost planar graphs* is NP-complete? [Cabello and Mohar, 2010]

THANK YOU FOR YOUR ATTENTION

P. Hliněný et al., CSASC 2010

XP algorithms for bounded (bi-)rank-width