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and running Dynamic Algorithms

e A typical idea for a dynamic algorithm on a recursive decomposition:

— Capture all relevant inform. about the problem on a substructure.

— Process this information bottom-up in the decomposition.
— Importantly, this information has size depending only on & (ideally,
not on the structure size), or at most polynomial size (cf. XP)...

e How to understand words “all relevant information about the problem”?
Use “tables”? Or. ..

Look for inspiration in traditional finite automata theory!
Theorem. [Myhill-Nerode, folklore]

Finite automaton states (this is our information) <=
right congruence classes on the words (of a regular language).

e Explicit comb. extensions of this concept appeared e.g. in the works
[Abrahamson and Fellows, 93], [PH, 03], or [Ganian and PH, 08].
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/2 The Concept of a Canonical Equivalence

How does the right congruence extend
from formal words with the concatention operation
to, say, graphs with a kind of a ‘join” operation?

e Consider the universe of structures Uy implicitly associated with

— some (small) distinguished “boundary of size k" of each graph, and
— a join operation G ® H acting on the boundaries of disjoint G, H.

e Let P be a (decision) property we study.
Definition. The canonical equivalence of P on U, is defined:
G1 ~p,, G2 forany G1,G2 € Uy, if and only if, for all H € Uy,
GiOHEP < G2@HcP.
e Informally, the classes of ~p ;. capture all information about the property

‘P that can “cross” our boundary of size k
(regardless of the actual meaning of "boundary” and “join").
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Definition. The canonical equivalence of ‘P on the universe U}, is defined:
G1 =~p, G2 forany G1,G2 € Uy, if and only if, for all H € Uy,
GiRHeP <— Go®HEcTP.

e Not only deciding the exist. of a solution, but want to find it / optimize!

e So, let G1,G2 and H be assoc. with a “solution fragment’, say .

Definition, Il. The canonical equivalence of P on the extended universe Uy,
(of structures equipped with possible solution fragments) is defined:

(G1,¢1) =pk (G2, p2) for (Gi, p;) € Uy, if and only if, forall (H,¢) € Uy,
(GL,p1) @ (H,p) EP <= (G2,902) ® (H,0) =P.
e For simplicity, solution fragments ¢ can be “embedded” in U/ and ®.

e Can, e.g., count the solutions in each class of ~p ;, or keep an opt. one.
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To give an algorith. usable meaning to the terms “boundary, join, and universe,”
we set them in the context of tree-shaped decompositions as follows. . .

Parse trees of decompositions

e Considering a rooted ?7-decomposition of a graph G,
we build on the following correspondence:

boundary size k<>  restricted bag-size / width / etc in decomposition

Join operator & <+ the way pieces of G “stick together' in decomp.
e This can be (visually) seen as. ..
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The Myhill-Nerode theorem, and beyond

“Turn” a canonical equivalence into an algorithm. usable thing... The case of
% a finite canonical index, i.e. O(f(k)) classes in the equivalence.

Then immediately:

Theorem. Canonical equivalence classes <~
the states of a finite tree automaton A for the property P.

e This automaton can be easily simulated in linear time.

e A little more work can find a satisfying valuation of the free variables
in P, or to enumerate all possible solutions.

e And most importantly,
the transition function of A can be hard-coded into the algorithm!

— We do not need to know the equivalence classes exactly and con-
structively, just enough to have some (weak) estimate on them. ..
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A canonical equivalence into an algorithm. usable thing. The second case of
* a polynomial canonical index, i.e. O(n/®)) classes in the equivalence:

Unfortunately, no finite automaton, no hard-coded transition function. ..

hence no immediate conclusion this time.

e Need to precisely describe the classes of (mostly; some refinement of) the
canonical equivalence of P.

e Can this description be parsed along the tree in XP time? Not clear. ..

In other words, can we compute the assoc. “transition funct.” efficiently?
If so, then everything else again works smoothly as above.

e Both positive and negative examples will be given further.
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How “tree-like” a graph is in some well-defined sense (the width)?

e A topic occuring both in pure theory (e.g. Graph Minors),
and in algorithms (Fixed parameter tractability).

e Many definitions known,
e.g. tree-width, path-width, branch-width, DAG-width . ..

Clique-width — another graph complexity measure [Courcelle and Olariu, 00],
defined by the operations on vertex—labeled (1,2, ..., k) graphs:

create a new vertex with label ¢,

take the disjoint union of two labeled graphs,

add all edges between vertices of label ¢ and label j,
and relabel all vertices with label 7 to have label j.

— giving the expression tree (parse tree) for clique-width.

— A problem — no known way how to construct an expression tree!
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Rank-decomposition

e [Oum and Seymour, 03] Bringing the branch-decomposition approach to
measure “complexity” of vertex subsets X C V(G) via cut-rank:

V(G)-X
01001

oc(X)=rankof X |1 0 1 0 0| modulo2
1 0011

Definition. Decompose V() one-to-one into the leaves of a subcubic tree.
Then

width(e) = pg(X) where X is displayed by f in the tree.

e Rank-width = minn decs. of ¢ mMax {width(f) : f tree edge}




e

Comparing rank-width to clique-width

e Rank-width is related to clique-width as rw < cw < 2"w+1 — 1.

I




4

Comparing rank-width to clique-width

e Rank-width is related to clique-width as rw < cw < 2"w+1 — 1.

e Clique-width can really be up to exponentially higher than rank-width.

I




Ve

Comparing rank-width to clique-width

e Rank-width is related to clique-width as rw < cw < 2"%+! — 1.
e Clique-width can really be up to exponentially higher than rank-width.

e [Oum and PH, 08] There is an FPT algorithm for computing an optimal
width-¢ rank-decomposition of a graph in time O(f(t) - n?).




Ve

Comparing rank-width to clique-width

e Rank-width is related to clique-width as rw < cw < 2"%+! — 1.
e Clique-width can really be up to exponentially higher than rank-width.

e [Oum and PH, 08] There is an FPT algorithm for computing an optimal
width-¢ rank-decomposition of a graph in time O(f(t) - n?).

An example. Cycle Cs and its rank-decomposition of width 2:

d d @
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Parse trees for rank-decompositions

Unlike for tree- or clique- decompositions with obvious parse trees, what is the
“boundary” and “join operation” for rank-width?

Our "boundary” includes all vertices, and “join” is just an implicit matrix.
e Bilinear product approach of [Courcelle and Kanté, 07]:

— boundary ~ labeling lab : V(G) — 2{1:2--t} (multi-colouring),
— join ~ edge uv < lab(u) - lab(v) = 1 over GF(2),

i.e. “odd intersection” of vertex labelings.

e Join — a composition operator with relabelings f1, fa, g;
(G1,1lab") ®[g| fi, £] (Go,lab*) = (H,lab)
= the rank-width parse tree [Ganian and PH, 08]:

t-labeling parse tree for G <= rank-width of G < ¢.

e Independently considered related notion of R;-join decompositions by
[Bui-Xuan, Telle, and Vatshelle, 08].
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A parse tree. An example generating the cycle C5 (of rank-width 2):
®lid|-,-]

®I[id| id, 10 ®[id|1—2, id)|
®lid| id,1-2] ’

®©a
©b Gc ©d ®e
d{1} d{2} d{2}
cWeo M wey e S aem elbe” e
A — 2 —
b{1} a{l} b{1} a{l} b0
d

e

a b
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* HAM = the Hamiltonian Path problem in a graph
of bounded rank-width / clique-width:

— a solution fragment ~ linear forest F' spanning a subraph;

— a canonical equivalence class of ' ~ the multiset of
label-pairs identifying the ends of paths in F'.

1o e e e 02
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So, the number of classes is < O(n4rw) ~ O(ncw2), but is this
enough to say?
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* HAM = the Hamiltonian Path problem in a graph
of bounded rank-width / clique-width:

— a solution fragment ~ linear forest F' spanning a subraph;

— a canonical equivalence class of ' ~ the multiset of
label-pairs identifying the ends of paths in F'.

1o e e e 02
1o e e e e 02 2 2

2 0—e——02 30 e e o011
20

1o e e 02
l1oo0?2

So, the number of classes is < O(n4rw) ~ O(ncw2), but is this
enough to say?

e No, we must give also an algorithm how to “combine / process” our in-
formation on parse trees — not hard-coded this time!

K e In this particular case the processing algorithm runs very smoothly. .. J




e

The second example for rank-width

% COL = Chromatic Number of a graph (i.e. to output the number):

I




4 )

The second example for rank-width

% COL = Chromatic Number of a graph (i.e. to output the number):

— a solution fragment ~ a valid colour partition of a subgraph;

— a canonical equivalence class ~ the multiset of
vector subspaces of GF(2)™ spanned by these colour parts.




4 )

The second example for rank-width
% COL = Chromatic Number of a graph (i.e. to output the number):

— a solution fragment ~ a valid colour partition of a subgraph;

— a canonical equivalence class ~ the multiset of
vector subspaces of GF(2)™ spanned by these colour parts.

Note; for rank-width it is enough to know the subspace of a label
set instead of the set itself — speed-up compared to clique-width.

2
e Again, the number of classes is O(nzm ) < 0(n*™),




4 )

The second example for rank-width
% COL = Chromatic Number of a graph (i.e. to output the number):

— a solution fragment ~ a valid colour partition of a subgraph;

— a canonical equivalence class ~ the multiset of
vector subspaces of GF(2)™ spanned by these colour parts.

Note; for rank-width it is enough to know the subspace of a label
set instead of the set itself — speed-up compared to clique-width.

2
e Again, the number of classes is O<n2m ) < 0(n*™),

e and there is a reasonably straightforward algorithm to “combine/ pro-
cess” this information on parse trees.
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/6 And the naughty ex.: the MinLOB Problem

% MinLOB = Minimum Leaf Outbanching in a digraph:

— Given G and ¢;
is there an out-directed spanning tree of G with < / leaves?
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N

For each tree of our out-forest, the root label and the multiset of

“non-leaf” labels are significant (to connect with other fragments).
No, this simple adaptation would give a bound exponential in n.

Actually, it looks like we face here a new situation not observed before among
the known XP algorithms on bounded clique-width / rank-width graphs!

Y,
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Bounding the canonical index of MinLOB

Recall: Outbranching — a solution fragment ~ out-forest — out-trees.

Shape of an out-tree T' = the pair (a, B) where

— a is the root label of T', and
— B the label set of the active (i.e., non-leaf in the result) vertices.

Signature of an out-forest ¥ = the triple of

— the number of vertices of F' to become the out-branching leaves,
— the label multiset of the active vertices of F', and
— the numbers of out-trees in F of every possible shape (finitely many).

Theorem. If two out-forests have the same signature,
then they are canonically equivalent for MinLOB.

= The number of equivalence classes of MinLOB is in XP.

What about an algorithm, though?
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Fact. Inform. on possible out-forest signs. cannot be processed on a parse tree.

So, what can we do better?

o Active vertices — potentially active vertices:

— a notion bound to a particular parse tree;
— roughly saying that a vertex has been active somewhen before, and
some other stays active with the same label.

e Signature — weak signature tracing potentialy active shapes:

— a notion suited right for dynamic processing on a parse tree.

Theorem. If a “singleton” weak signature is found on a parse tree

= There is an XP algorithm for MinLOB on digraphs of bounded rank-
width / clique-width, ...
K but it does not fit into the Myhill-Nerode-like scheme!

then the parsed graph contains an out-branching
of the same number of leaves (constructively).
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THANK YOU FOR YOUR ATTENTION
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