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1 Decomposing the Input1 Decomposing the Input
and running Dynamic Algorithmsand running Dynamic Algorithms

• A typical idea for a dynamic algorithm on a recursive decomposition:

– Capture all relevant inform. about the problem on a substructure.
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1 Decomposing the Input1 Decomposing the Input
and running Dynamic Algorithmsand running Dynamic Algorithms

• A typical idea for a dynamic algorithm on a recursive decomposition:

– Capture all relevant inform. about the problem on a substructure.

– Process this information bottom-up in the decomposition.



'

&

$

%

'

&

$
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1 Decomposing the Input1 Decomposing the Input
and running Dynamic Algorithmsand running Dynamic Algorithms

• A typical idea for a dynamic algorithm on a recursive decomposition:

– Capture all relevant inform. about the problem on a substructure.

– Process this information bottom-up in the decomposition.

– Importantly, this information has size depending only on k (ideally,
not on the structure size), or at most polynomial size (cf. XP). . .
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%Petr Hliněný, Marseille, Oct 2010 2 On problems param. by “width”. . .

1 Decomposing the Input1 Decomposing the Input
and running Dynamic Algorithmsand running Dynamic Algorithms

• A typical idea for a dynamic algorithm on a recursive decomposition:

– Capture all relevant inform. about the problem on a substructure.

– Process this information bottom-up in the decomposition.

– Importantly, this information has size depending only on k (ideally,
not on the structure size), or at most polynomial size (cf. XP). . .

• How to understand words “all relevant information about the problem”?
Use “tables”?
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1 Decomposing the Input1 Decomposing the Input
and running Dynamic Algorithmsand running Dynamic Algorithms

• A typical idea for a dynamic algorithm on a recursive decomposition:

– Capture all relevant inform. about the problem on a substructure.

– Process this information bottom-up in the decomposition.

– Importantly, this information has size depending only on k (ideally,
not on the structure size), or at most polynomial size (cf. XP). . .

• How to understand words “all relevant information about the problem”?
Use “tables”? Or. . .

Look for inspiration in traditional finite automata theory!

Theorem. [Myhill–Nerode, folklore]
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1 Decomposing the Input1 Decomposing the Input
and running Dynamic Algorithmsand running Dynamic Algorithms

• A typical idea for a dynamic algorithm on a recursive decomposition:

– Capture all relevant inform. about the problem on a substructure.

– Process this information bottom-up in the decomposition.

– Importantly, this information has size depending only on k (ideally,
not on the structure size), or at most polynomial size (cf. XP). . .

• How to understand words “all relevant information about the problem”?
Use “tables”? Or. . .

Look for inspiration in traditional finite automata theory!

Theorem. [Myhill–Nerode, folklore]
Finite automaton states (this is our information) ⇐⇒

right congruence classes on the words (of a regular language).
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1 Decomposing the Input1 Decomposing the Input
and running Dynamic Algorithmsand running Dynamic Algorithms

• A typical idea for a dynamic algorithm on a recursive decomposition:

– Capture all relevant inform. about the problem on a substructure.

– Process this information bottom-up in the decomposition.

– Importantly, this information has size depending only on k (ideally,
not on the structure size), or at most polynomial size (cf. XP). . .

• How to understand words “all relevant information about the problem”?
Use “tables”? Or. . .

Look for inspiration in traditional finite automata theory!

Theorem. [Myhill–Nerode, folklore]
Finite automaton states (this is our information) ⇐⇒

right congruence classes on the words (of a regular language).

• Explicit comb. extensions of this concept appeared e.g. in the works
[Abrahamson and Fellows, 93], [PH, 03], or [Ganian and PH, 08].
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2 The Concept of a Canonical Equivalence2 The Concept of a Canonical Equivalence

How does the right congruence extend
from formal words with the concatention operation

to, say, graphs with a kind of a “join” operation?
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2 The Concept of a Canonical Equivalence2 The Concept of a Canonical Equivalence

How does the right congruence extend
from formal words with the concatention operation

to, say, graphs with a kind of a “join” operation?

• Consider the universe of structures Uk implicitly associated with

– some (small) distinguished “boundary of size k” of each graph, and

– a join operation G⊗H acting on the boundaries of disjoint G, H.

• Let P be a (decision) property we study.
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2 The Concept of a Canonical Equivalence2 The Concept of a Canonical Equivalence

How does the right congruence extend
from formal words with the concatention operation

to, say, graphs with a kind of a “join” operation?

• Consider the universe of structures Uk implicitly associated with

– some (small) distinguished “boundary of size k” of each graph, and

– a join operation G⊗H acting on the boundaries of disjoint G, H.

• Let P be a (decision) property we study.

Definition. The canonical equivalence of P on Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊗H ∈ P ⇐⇒ G2 ⊗H ∈ P .
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2 The Concept of a Canonical Equivalence2 The Concept of a Canonical Equivalence

How does the right congruence extend
from formal words with the concatention operation

to, say, graphs with a kind of a “join” operation?

• Consider the universe of structures Uk implicitly associated with

– some (small) distinguished “boundary of size k” of each graph, and

– a join operation G⊗H acting on the boundaries of disjoint G, H.

• Let P be a (decision) property we study.

Definition. The canonical equivalence of P on Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊗H ∈ P ⇐⇒ G2 ⊗H ∈ P .

• Informally, the classes of ≈P,k capture all information about the property
P that can “cross” our boundary of size k

(regardless of the actual meaning of “boundary” and “join”).
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Decision properties, or more?Decision properties, or more?

Definition. The canonical equivalence of P on the universe Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊗H ∈ P ⇐⇒ G2 ⊗H ∈ P
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Decision properties, or more?Decision properties, or more?

Definition. The canonical equivalence of P on the universe Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊗H ∈ P ⇐⇒ G2 ⊗H ∈ P .

• Not only deciding the exist. of a solution, but want to find it / optimize!



'

&

$

%

'

&

$
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Decision properties, or more?Decision properties, or more?

Definition. The canonical equivalence of P on the universe Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊗H ∈ P ⇐⇒ G2 ⊗H ∈ P .

• Not only deciding the exist. of a solution, but want to find it / optimize!

• So, let G1, G2 and H be assoc. with a “solution fragment”, say ϕ.
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Decision properties, or more?Decision properties, or more?

Definition. The canonical equivalence of P on the universe Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊗H ∈ P ⇐⇒ G2 ⊗H ∈ P .

• Not only deciding the exist. of a solution, but want to find it / optimize!

• So, let G1, G2 and H be assoc. with a “solution fragment”, say ϕ.

Definition, II. The canonical equivalence of P on the extended universe Uk
(of structures equipped with possible solution fragments) is defined:

(G1, ϕ1) ≈P,k (G2, ϕ2) for (Gi, ϕi) ∈ Uk if and only if, for all (H,ϕ) ∈ Uk,

(G1, ϕ1)⊗ (H,ϕ) |= P ⇐⇒ (G2, ϕ2)⊗ (H,ϕ) |= P
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Decision properties, or more?Decision properties, or more?

Definition. The canonical equivalence of P on the universe Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊗H ∈ P ⇐⇒ G2 ⊗H ∈ P .

• Not only deciding the exist. of a solution, but want to find it / optimize!

• So, let G1, G2 and H be assoc. with a “solution fragment”, say ϕ.

Definition, II. The canonical equivalence of P on the extended universe Uk
(of structures equipped with possible solution fragments) is defined:

(G1, ϕ1) ≈P,k (G2, ϕ2) for (Gi, ϕi) ∈ Uk if and only if, for all (H,ϕ) ∈ Uk,

(G1, ϕ1)⊗ (H,ϕ) |= P ⇐⇒ (G2, ϕ2)⊗ (H,ϕ) |= P .

• For simplicity, solution fragments ϕ can be “embedded” in Uk and ⊗.
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Decision properties, or more?Decision properties, or more?

Definition. The canonical equivalence of P on the universe Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊗H ∈ P ⇐⇒ G2 ⊗H ∈ P .

• Not only deciding the exist. of a solution, but want to find it / optimize!

• So, let G1, G2 and H be assoc. with a “solution fragment”, say ϕ.

Definition, II. The canonical equivalence of P on the extended universe Uk
(of structures equipped with possible solution fragments) is defined:

(G1, ϕ1) ≈P,k (G2, ϕ2) for (Gi, ϕi) ∈ Uk if and only if, for all (H,ϕ) ∈ Uk,

(G1, ϕ1)⊗ (H,ϕ) |= P ⇐⇒ (G2, ϕ2)⊗ (H,ϕ) |= P .

• For simplicity, solution fragments ϕ can be “embedded” in Uk and ⊗.

• Can, e.g., count the solutions in each class of ≈P,k, or keep an opt. one.
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3 From a Canonical equivalence to an Algorithm3 From a Canonical equivalence to an Algorithm

To give an algorith. usable meaning to the terms “boundary, join, and universe,”
we set them in the context of tree-shaped decompositions as follows. . .
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3 From a Canonical equivalence to an Algorithm3 From a Canonical equivalence to an Algorithm

To give an algorith. usable meaning to the terms “boundary, join, and universe,”
we set them in the context of tree-shaped decompositions as follows. . .

Parse trees of decompositions

• Considering a rooted ??-decomposition of a graph G,
we build on the following correspondence:

boundary size k ↔ restricted bag-size / width / etc in decomposition

join operator ⊗ ↔ the way pieces of G “stick together” in decomp.
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3 From a Canonical equivalence to an Algorithm3 From a Canonical equivalence to an Algorithm

To give an algorith. usable meaning to the terms “boundary, join, and universe,”
we set them in the context of tree-shaped decompositions as follows. . .

Parse trees of decompositions

• Considering a rooted ??-decomposition of a graph G,
we build on the following correspondence:

boundary size k ↔ restricted bag-size / width / etc in decomposition

join operator ⊗ ↔ the way pieces of G “stick together” in decomp.

• This can be (visually) seen as. . .

...

...
...

...
...

...
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The Myhill–Nerode theorem, and beyondThe Myhill–Nerode theorem, and beyond

“Turn” a canonical equivalence into an algorithm. usable thing. . . The case of

? a finite canonical index, i.e. O(f(k)) classes in the equivalence.
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The Myhill–Nerode theorem, and beyondThe Myhill–Nerode theorem, and beyond

“Turn” a canonical equivalence into an algorithm. usable thing. . . The case of

? a finite canonical index, i.e. O(f(k)) classes in the equivalence.

Then immediately:

Theorem. Canonical equivalence classes ⇐⇒
the states of a finite tree automaton A for the property P.
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The Myhill–Nerode theorem, and beyondThe Myhill–Nerode theorem, and beyond

“Turn” a canonical equivalence into an algorithm. usable thing. . . The case of

? a finite canonical index, i.e. O(f(k)) classes in the equivalence.

Then immediately:

Theorem. Canonical equivalence classes ⇐⇒
the states of a finite tree automaton A for the property P.

• This automaton can be easily simulated in linear time.
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The Myhill–Nerode theorem, and beyondThe Myhill–Nerode theorem, and beyond

“Turn” a canonical equivalence into an algorithm. usable thing. . . The case of

? a finite canonical index, i.e. O(f(k)) classes in the equivalence.

Then immediately:

Theorem. Canonical equivalence classes ⇐⇒
the states of a finite tree automaton A for the property P.

• This automaton can be easily simulated in linear time.

• A little more work can find a satisfying valuation of the free variables
in P, or to enumerate all possible solutions.
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%Petr Hliněný, Marseille, Oct 2010 6 On problems param. by “width”. . .

The Myhill–Nerode theorem, and beyondThe Myhill–Nerode theorem, and beyond

“Turn” a canonical equivalence into an algorithm. usable thing. . . The case of

? a finite canonical index, i.e. O(f(k)) classes in the equivalence.

Then immediately:

Theorem. Canonical equivalence classes ⇐⇒
the states of a finite tree automaton A for the property P.

• This automaton can be easily simulated in linear time.

• A little more work can find a satisfying valuation of the free variables
in P, or to enumerate all possible solutions.

• And most importantly,
the transition function of A can be hard-coded into the algorithm!
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The Myhill–Nerode theorem, and beyondThe Myhill–Nerode theorem, and beyond

“Turn” a canonical equivalence into an algorithm. usable thing. . . The case of

? a finite canonical index, i.e. O(f(k)) classes in the equivalence.

Then immediately:

Theorem. Canonical equivalence classes ⇐⇒
the states of a finite tree automaton A for the property P.

• This automaton can be easily simulated in linear time.

• A little more work can find a satisfying valuation of the free variables
in P, or to enumerate all possible solutions.

• And most importantly,
the transition function of A can be hard-coded into the algorithm!

→ We do not need to know the equivalence classes exactly and con-
structively, just enough to have some (weak) estimate on them. . .



'

&

$

%

'

&

$
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. . . and beyond Myhill–Nerode. . . and beyond Myhill–Nerode

A canonical equivalence into an algorithm. usable thing. The second case of

? a polynomial canonical index, i.e. O(nf(k)) classes in the equivalence:
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. . . and beyond Myhill–Nerode. . . and beyond Myhill–Nerode

A canonical equivalence into an algorithm. usable thing. The second case of

? a polynomial canonical index, i.e. O(nf(k)) classes in the equivalence:

Unfortunately, no finite automaton, no hard-coded transition function. . .

hence no immediate conclusion this time.
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. . . and beyond Myhill–Nerode. . . and beyond Myhill–Nerode

A canonical equivalence into an algorithm. usable thing. The second case of

? a polynomial canonical index, i.e. O(nf(k)) classes in the equivalence:

Unfortunately, no finite automaton, no hard-coded transition function. . .

hence no immediate conclusion this time.

• Need to precisely describe the classes of (mostly; some refinement of) the
canonical equivalence of P.
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. . . and beyond Myhill–Nerode. . . and beyond Myhill–Nerode

A canonical equivalence into an algorithm. usable thing. The second case of

? a polynomial canonical index, i.e. O(nf(k)) classes in the equivalence:

Unfortunately, no finite automaton, no hard-coded transition function. . .

hence no immediate conclusion this time.

• Need to precisely describe the classes of (mostly; some refinement of) the
canonical equivalence of P.

• Can this description be parsed along the tree in XP time?
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. . . and beyond Myhill–Nerode. . . and beyond Myhill–Nerode

A canonical equivalence into an algorithm. usable thing. The second case of

? a polynomial canonical index, i.e. O(nf(k)) classes in the equivalence:

Unfortunately, no finite automaton, no hard-coded transition function. . .

hence no immediate conclusion this time.

• Need to precisely describe the classes of (mostly; some refinement of) the
canonical equivalence of P.

• Can this description be parsed along the tree in XP time? Not clear. . .

In other words, can we compute the assoc. “transition funct.” efficiently?
If so, then everything else again works smoothly as above.
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. . . and beyond Myhill–Nerode. . . and beyond Myhill–Nerode

A canonical equivalence into an algorithm. usable thing. The second case of

? a polynomial canonical index, i.e. O(nf(k)) classes in the equivalence:

Unfortunately, no finite automaton, no hard-coded transition function. . .

hence no immediate conclusion this time.

• Need to precisely describe the classes of (mostly; some refinement of) the
canonical equivalence of P.

• Can this description be parsed along the tree in XP time? Not clear. . .

In other words, can we compute the assoc. “transition funct.” efficiently?
If so, then everything else again works smoothly as above.

• Both positive and negative examples will be given further.
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%Petr Hliněný, Marseille, Oct 2010 8 On problems param. by “width”. . .

4 Clique-width and Rank-width4 Clique-width and Rank-width

How “tree-like” a graph is in some well-defined sense (the width)?

• A topic occuring both in pure theory (e.g. Graph Minors),
and in algorithms (Fixed parameter tractability).
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4 Clique-width and Rank-width4 Clique-width and Rank-width

How “tree-like” a graph is in some well-defined sense (the width)?

• A topic occuring both in pure theory (e.g. Graph Minors),
and in algorithms (Fixed parameter tractability).

• Many definitions known,
e.g. tree-width, path-width, branch-width, DAG-width . . .
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4 Clique-width and Rank-width4 Clique-width and Rank-width

How “tree-like” a graph is in some well-defined sense (the width)?

• A topic occuring both in pure theory (e.g. Graph Minors),
and in algorithms (Fixed parameter tractability).

• Many definitions known,
e.g. tree-width, path-width, branch-width, DAG-width . . .

Clique-width – another graph complexity measure [Courcelle and Olariu, 00],
defined by the operations on vertex–labeled (1, 2, . . . , k) graphs:

– create a new vertex with label i,
– take the disjoint union of two labeled graphs,
– add all edges between vertices of label i and label j,
– and relabel all vertices with label i to have label j.
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4 Clique-width and Rank-width4 Clique-width and Rank-width

How “tree-like” a graph is in some well-defined sense (the width)?

• A topic occuring both in pure theory (e.g. Graph Minors),
and in algorithms (Fixed parameter tractability).

• Many definitions known,
e.g. tree-width, path-width, branch-width, DAG-width . . .

Clique-width – another graph complexity measure [Courcelle and Olariu, 00],
defined by the operations on vertex–labeled (1, 2, . . . , k) graphs:

– create a new vertex with label i,
– take the disjoint union of two labeled graphs,
– add all edges between vertices of label i and label j,
– and relabel all vertices with label i to have label j.

−→ giving the expression tree (parse tree) for clique-width.
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4 Clique-width and Rank-width4 Clique-width and Rank-width

How “tree-like” a graph is in some well-defined sense (the width)?

• A topic occuring both in pure theory (e.g. Graph Minors),
and in algorithms (Fixed parameter tractability).

• Many definitions known,
e.g. tree-width, path-width, branch-width, DAG-width . . .

Clique-width – another graph complexity measure [Courcelle and Olariu, 00],
defined by the operations on vertex–labeled (1, 2, . . . , k) graphs:

– create a new vertex with label i,
– take the disjoint union of two labeled graphs,
– add all edges between vertices of label i and label j,
– and relabel all vertices with label i to have label j.

−→ giving the expression tree (parse tree) for clique-width.

−→ A problem – no known way how to construct an expression tree!
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Rank-decompositionRank-decomposition

• [Oum and Seymour, 03] Bringing the branch-decomposition approach to
measure “complexity” of vertex subsets X ⊆ V (G) via cut-rank:

%G(X) = rank of

V (G)−X

X

0 1 0 0 1
1 0 1 0 0
1 0 0 1 1

 modulo 2
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%Petr Hliněný, Marseille, Oct 2010 9 On problems param. by “width”. . .

Rank-decompositionRank-decomposition

• [Oum and Seymour, 03] Bringing the branch-decomposition approach to
measure “complexity” of vertex subsets X ⊆ V (G) via cut-rank:

%G(X) = rank of

V (G)−X

X

0 1 0 0 1
1 0 1 0 0
1 0 0 1 1

 modulo 2

Definition. Decompose V (G) one-to-one into the leaves of a subcubic tree.
Then

fX V (G) −X

width(e) = %G(X) where X is displayed by f in the tree.
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Rank-decompositionRank-decomposition

• [Oum and Seymour, 03] Bringing the branch-decomposition approach to
measure “complexity” of vertex subsets X ⊆ V (G) via cut-rank:

%G(X) = rank of

V (G)−X

X

0 1 0 0 1
1 0 1 0 0
1 0 0 1 1

 modulo 2

Definition. Decompose V (G) one-to-one into the leaves of a subcubic tree.
Then

fX V (G) −X

width(e) = %G(X) where X is displayed by f in the tree.

• Rank-width = minrank-decs. of G max
{

width(f) : f tree edge
}
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Comparing rank-width to clique-width

• Rank-width is related to clique-width as rw ≤ cw ≤ 2rw+1 − 1.
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Comparing rank-width to clique-width

• Rank-width is related to clique-width as rw ≤ cw ≤ 2rw+1 − 1.

• Clique-width can really be up to exponentially higher than rank-width.
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Comparing rank-width to clique-width

• Rank-width is related to clique-width as rw ≤ cw ≤ 2rw+1 − 1.

• Clique-width can really be up to exponentially higher than rank-width.

• [Oum and PH, 08] There is an FPT algorithm for computing an optimal
width-t rank-decomposition of a graph in time O(f(t) · n3).
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Comparing rank-width to clique-width

• Rank-width is related to clique-width as rw ≤ cw ≤ 2rw+1 − 1.

• Clique-width can really be up to exponentially higher than rank-width.

• [Oum and PH, 08] There is an FPT algorithm for computing an optimal
width-t rank-decomposition of a graph in time O(f(t) · n3).

An example. Cycle C5 and its rank-decomposition of width 2:

s s
s

s
s

a b

c

d

e

a b

cd

e

„

0 0 1
1 0 0

«

0

@

1 0
0 1
0 0

1

A

`

1 0 0 1
´

`

1 1 0 0
´

`

0 1 1 0
´`

0 0 1 1
´

`

1 0 0 1
´
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Parse trees for rank-decompositionsParse trees for rank-decompositions

Unlike for tree- or clique- decompositions with obvious parse trees, what is the
“boundary” and “join operation” for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix.
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Parse trees for rank-decompositionsParse trees for rank-decompositions

Unlike for tree- or clique- decompositions with obvious parse trees, what is the
“boundary” and “join operation” for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix.

• Bilinear product approach of [Courcelle and Kanté, 07]:

– boundary ∼ labeling lab : V (G)→ 2{1,2,...,t} (multi-colouring),
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Parse trees for rank-decompositionsParse trees for rank-decompositions

Unlike for tree- or clique- decompositions with obvious parse trees, what is the
“boundary” and “join operation” for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix.

• Bilinear product approach of [Courcelle and Kanté, 07]:

– boundary ∼ labeling lab : V (G)→ 2{1,2,...,t} (multi-colouring),

– join ∼ edge uv ↔ lab(u) · lab(v) = 1 over GF (2)t,

i.e. “odd intersection” of vertex labelings.
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%Petr Hliněný, Marseille, Oct 2010 11 On problems param. by “width”. . .

Parse trees for rank-decompositionsParse trees for rank-decompositions

Unlike for tree- or clique- decompositions with obvious parse trees, what is the
“boundary” and “join operation” for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix.

• Bilinear product approach of [Courcelle and Kanté, 07]:

– boundary ∼ labeling lab : V (G)→ 2{1,2,...,t} (multi-colouring),

– join ∼ edge uv ↔ lab(u) · lab(v) = 1 over GF (2)t,

i.e. “odd intersection” of vertex labelings.

• Join → a composition operator with relabelings f1, f2, g;

(G1, lab
1) ⊗[g | f1, f2] (G2, lab

2) = (H, lab)

=⇒ the rank-width parse tree [Ganian and PH, 08]:
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Parse trees for rank-decompositionsParse trees for rank-decompositions

Unlike for tree- or clique- decompositions with obvious parse trees, what is the
“boundary” and “join operation” for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix.

• Bilinear product approach of [Courcelle and Kanté, 07]:

– boundary ∼ labeling lab : V (G)→ 2{1,2,...,t} (multi-colouring),

– join ∼ edge uv ↔ lab(u) · lab(v) = 1 over GF (2)t,

i.e. “odd intersection” of vertex labelings.

• Join → a composition operator with relabelings f1, f2, g;

(G1, lab
1) ⊗[g | f1, f2] (G2, lab

2) = (H, lab)

=⇒ the rank-width parse tree [Ganian and PH, 08]:

t-labeling parse tree for G ⇐⇒ rank-width of G ≤ t.
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Parse trees for rank-decompositionsParse trees for rank-decompositions

Unlike for tree- or clique- decompositions with obvious parse trees, what is the
“boundary” and “join operation” for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix.

• Bilinear product approach of [Courcelle and Kanté, 07]:

– boundary ∼ labeling lab : V (G)→ 2{1,2,...,t} (multi-colouring),

– join ∼ edge uv ↔ lab(u) · lab(v) = 1 over GF (2)t,

i.e. “odd intersection” of vertex labelings.

• Join → a composition operator with relabelings f1, f2, g;

(G1, lab
1) ⊗[g | f1, f2] (G2, lab

2) = (H, lab)

=⇒ the rank-width parse tree [Ganian and PH, 08]:

t-labeling parse tree for G ⇐⇒ rank-width of G ≤ t.

• Independently considered related notion of Rt-join decompositions by
[Bui-Xuan, Telle, and Vatshelle, 08].
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A parse tree. An example generating the cycle C5 (of rank-width 2):

⊙ a

⊙ b ⊙ c ⊙ d ⊙ e

⊗[id | · , · ]

⊗[id | id, 1→2]

⊗[id | id, 1→∅] ⊗[id |1→2, id]

s sss
b {1}

c {1}

d {1}

e {1}
→ s s sss

a {1} b {1}

c {2}

d {2}

e {1}
→ s s

sss
a {1} b ∅

c {2}

d {2}

e {1}
→

→ s s
sss

a b

c

d

e
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5 The nice examples: Two XP-time Algorithms5 The nice examples: Two XP-time Algorithms

? HAM = the Hamiltonian Path problem in a graph
of bounded rank-width / clique-width:
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5 The nice examples: Two XP-time Algorithms5 The nice examples: Two XP-time Algorithms

? HAM = the Hamiltonian Path problem in a graph
of bounded rank-width / clique-width:

– a solution fragment ∼ linear forest F spanning a subraph;

– a canonical equivalence class of F ∼ the multiset of
label-pairs identifying the ends of paths in F .
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5 The nice examples: Two XP-time Algorithms5 The nice examples: Two XP-time Algorithms

? HAM = the Hamiltonian Path problem in a graph
of bounded rank-width / clique-width:

– a solution fragment ∼ linear forest F spanning a subraph;

– a canonical equivalence class of F ∼ the multiset of
label-pairs identifying the ends of paths in F .s ss ss ss s

s s ss s s ss s
s ss ss s ss ss s s s1

1

1

1

2

2

2

2

2

2

2

2

2 3 1

So, the number of classes is ≤ O
(
n4rw

)
∼ O

(
ncw2)

, but is this
enough to say?
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5 The nice examples: Two XP-time Algorithms5 The nice examples: Two XP-time Algorithms

? HAM = the Hamiltonian Path problem in a graph
of bounded rank-width / clique-width:

– a solution fragment ∼ linear forest F spanning a subraph;

– a canonical equivalence class of F ∼ the multiset of
label-pairs identifying the ends of paths in F .s ss ss ss s

s s ss s s ss s
s ss ss s ss ss s s s1

1

1

1

2

2

2

2

2

2

2

2

2 3 1

So, the number of classes is ≤ O
(
n4rw

)
∼ O

(
ncw2)

, but is this
enough to say?

• No, we must give also an algorithm how to “combine / process” our in-
formation on parse trees – not hard-coded this time!

• In this particular case the processing algorithm runs very smoothly. . .
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The second example for rank-widthThe second example for rank-width

? COL = Chromatic Number of a graph (i.e. to output the number):
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The second example for rank-widthThe second example for rank-width

? COL = Chromatic Number of a graph (i.e. to output the number):

– a solution fragment ∼ a valid colour partition of a subgraph;

– a canonical equivalence class ∼ the multiset of
vector subspaces of GF (2)rw spanned by these colour parts.
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The second example for rank-widthThe second example for rank-width

? COL = Chromatic Number of a graph (i.e. to output the number):

– a solution fragment ∼ a valid colour partition of a subgraph;

– a canonical equivalence class ∼ the multiset of
vector subspaces of GF (2)rw spanned by these colour parts.

Note; for rank-width it is enough to know the subspace of a label
set instead of the set itself – speed-up compared to clique-width.

• Again, the number of classes is O
(
n2 rw2)

≺ O
(
n2cw

)
,
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%Petr Hliněný, Marseille, Oct 2010 14 On problems param. by “width”. . .

The second example for rank-widthThe second example for rank-width

? COL = Chromatic Number of a graph (i.e. to output the number):

– a solution fragment ∼ a valid colour partition of a subgraph;

– a canonical equivalence class ∼ the multiset of
vector subspaces of GF (2)rw spanned by these colour parts.

Note; for rank-width it is enough to know the subspace of a label
set instead of the set itself – speed-up compared to clique-width.

• Again, the number of classes is O
(
n2 rw2)

≺ O
(
n2cw

)
,

• and there is a reasonably straightforward algorithm to “combine / pro-
cess” this information on parse trees.
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6 And the naughty ex.: the MinLOB Problem6 And the naughty ex.: the MinLOB Problem

? MinLOB = Minimum Leaf Outbanching in a digraph:

– Given G and `;
is there an out-directed spanning tree of G with ≤ ` leaves?
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6 And the naughty ex.: the MinLOB Problem6 And the naughty ex.: the MinLOB Problem

? MinLOB = Minimum Leaf Outbanching in a digraph:

– Given G and `;
is there an out-directed spanning tree of G with ≤ ` leaves?

– For constant ` this problem simply generalizes Hamiltonian Path,
but what for ` on the input? Quite a difference. . .
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6 And the naughty ex.: the MinLOB Problem6 And the naughty ex.: the MinLOB Problem

? MinLOB = Minimum Leaf Outbanching in a digraph:

– Given G and `;
is there an out-directed spanning tree of G with ≤ ` leaves?

– For constant ` this problem simply generalizes Hamiltonian Path,
but what for ` on the input? Quite a difference. . .

• Trying the same approach as previously

– a solution fragment ∼ an out-forest in a subdigraph;

– a canonical equivalence class ∼ ???
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6 And the naughty ex.: the MinLOB Problem6 And the naughty ex.: the MinLOB Problem

? MinLOB = Minimum Leaf Outbanching in a digraph:

– Given G and `;
is there an out-directed spanning tree of G with ≤ ` leaves?

– For constant ` this problem simply generalizes Hamiltonian Path,
but what for ` on the input? Quite a difference. . .

• Trying the same approach as previously

– a solution fragment ∼ an out-forest in a subdigraph;

– a canonical equivalence class ∼ ???

For each tree of our out-forest, the root label and the multiset of
“non-leaf” labels are significant (to connect with other fragments).
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6 And the naughty ex.: the MinLOB Problem6 And the naughty ex.: the MinLOB Problem

? MinLOB = Minimum Leaf Outbanching in a digraph:

– Given G and `;
is there an out-directed spanning tree of G with ≤ ` leaves?

– For constant ` this problem simply generalizes Hamiltonian Path,
but what for ` on the input? Quite a difference. . .

• Trying the same approach as previously

– a solution fragment ∼ an out-forest in a subdigraph;

– a canonical equivalence class ∼ ???

For each tree of our out-forest, the root label and the multiset of
“non-leaf” labels are significant (to connect with other fragments).

No, this simple adaptation would give a bound exponential in n.
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%Petr Hliněný, Marseille, Oct 2010 15 On problems param. by “width”. . .

6 And the naughty ex.: the MinLOB Problem6 And the naughty ex.: the MinLOB Problem

? MinLOB = Minimum Leaf Outbanching in a digraph:

– Given G and `;
is there an out-directed spanning tree of G with ≤ ` leaves?

– For constant ` this problem simply generalizes Hamiltonian Path,
but what for ` on the input? Quite a difference. . .

• Trying the same approach as previously

– a solution fragment ∼ an out-forest in a subdigraph;

– a canonical equivalence class ∼ ???

For each tree of our out-forest, the root label and the multiset of
“non-leaf” labels are significant (to connect with other fragments).

No, this simple adaptation would give a bound exponential in n.

Actually, it looks like we face here a new situation not observed before among
the known XP algorithms on bounded clique-width / rank-width graphs!
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Bounding the canonical index of MinLOBBounding the canonical index of MinLOB

Recall: Outbranching → a solution fragment ∼ out-forest → out-trees.



'

&

$

%

'

&

$
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Bounding the canonical index of MinLOBBounding the canonical index of MinLOB

Recall: Outbranching → a solution fragment ∼ out-forest → out-trees.

Shape of an out-tree T = the pair (a,B) where

– a is the root label of T , and
– B the label set of the active (i.e., non-leaf in the result) vertices.
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Bounding the canonical index of MinLOBBounding the canonical index of MinLOB

Recall: Outbranching → a solution fragment ∼ out-forest → out-trees.

Shape of an out-tree T = the pair (a,B) where

– a is the root label of T , and
– B the label set of the active (i.e., non-leaf in the result) vertices.

Signature of an out-forest F = the triple of

– the number of vertices of F to become the out-branching leaves,
– the label multiset of the active vertices of F , and
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Bounding the canonical index of MinLOBBounding the canonical index of MinLOB

Recall: Outbranching → a solution fragment ∼ out-forest → out-trees.

Shape of an out-tree T = the pair (a,B) where

– a is the root label of T , and
– B the label set of the active (i.e., non-leaf in the result) vertices.

Signature of an out-forest F = the triple of

– the number of vertices of F to become the out-branching leaves,
– the label multiset of the active vertices of F , and
– the numbers of out-trees in F of every possible shape (finitely many).
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Bounding the canonical index of MinLOBBounding the canonical index of MinLOB

Recall: Outbranching → a solution fragment ∼ out-forest → out-trees.

Shape of an out-tree T = the pair (a,B) where

– a is the root label of T , and
– B the label set of the active (i.e., non-leaf in the result) vertices.

Signature of an out-forest F = the triple of

– the number of vertices of F to become the out-branching leaves,
– the label multiset of the active vertices of F , and
– the numbers of out-trees in F of every possible shape (finitely many).

Theorem. If two out-forests have the same signature,
then they are canonically equivalent for MinLOB.



'

&

$

%

'

&

$
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Bounding the canonical index of MinLOBBounding the canonical index of MinLOB

Recall: Outbranching → a solution fragment ∼ out-forest → out-trees.

Shape of an out-tree T = the pair (a,B) where

– a is the root label of T , and
– B the label set of the active (i.e., non-leaf in the result) vertices.

Signature of an out-forest F = the triple of

– the number of vertices of F to become the out-branching leaves,
– the label multiset of the active vertices of F , and
– the numbers of out-trees in F of every possible shape (finitely many).

Theorem. If two out-forests have the same signature,
then they are canonically equivalent for MinLOB.

=⇒ The number of equivalence classes of MinLOB is in XP.

What about an algorithm, though?
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An XP Algorithm for MinLOB on Rank-widthAn XP Algorithm for MinLOB on Rank-width

Fact. Inform. on possible out-forest signs. cannot be processed on a parse tree.

So, what can we do better?
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An XP Algorithm for MinLOB on Rank-widthAn XP Algorithm for MinLOB on Rank-width

Fact. Inform. on possible out-forest signs. cannot be processed on a parse tree.

So, what can we do better?

• Active vertices → potentially active vertices:

– a notion bound to a particular parse tree;
– roughly saying that a vertex has been active somewhen before, and

some other stays active with the same label.
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An XP Algorithm for MinLOB on Rank-widthAn XP Algorithm for MinLOB on Rank-width

Fact. Inform. on possible out-forest signs. cannot be processed on a parse tree.

So, what can we do better?

• Active vertices → potentially active vertices:

– a notion bound to a particular parse tree;
– roughly saying that a vertex has been active somewhen before, and

some other stays active with the same label.

• Signature → weak signature tracing potentialy active shapes:

– a notion suited right for dynamic processing on a parse tree.
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An XP Algorithm for MinLOB on Rank-widthAn XP Algorithm for MinLOB on Rank-width

Fact. Inform. on possible out-forest signs. cannot be processed on a parse tree.

So, what can we do better?

• Active vertices → potentially active vertices:

– a notion bound to a particular parse tree;
– roughly saying that a vertex has been active somewhen before, and

some other stays active with the same label.

• Signature → weak signature tracing potentialy active shapes:

– a notion suited right for dynamic processing on a parse tree.

Theorem. If a “singleton” weak signature is found on a parse tree
then the parsed graph contains an out-branching

of the same number of leaves (constructively).
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An XP Algorithm for MinLOB on Rank-widthAn XP Algorithm for MinLOB on Rank-width

Fact. Inform. on possible out-forest signs. cannot be processed on a parse tree.

So, what can we do better?

• Active vertices → potentially active vertices:

– a notion bound to a particular parse tree;
– roughly saying that a vertex has been active somewhen before, and

some other stays active with the same label.

• Signature → weak signature tracing potentialy active shapes:

– a notion suited right for dynamic processing on a parse tree.

Theorem. If a “singleton” weak signature is found on a parse tree
then the parsed graph contains an out-branching

of the same number of leaves (constructively).

=⇒ There is an XP algorithm for MinLOB on digraphs of bounded rank-
width / clique-width, . . .
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An XP Algorithm for MinLOB on Rank-widthAn XP Algorithm for MinLOB on Rank-width

Fact. Inform. on possible out-forest signs. cannot be processed on a parse tree.

So, what can we do better?

• Active vertices → potentially active vertices:

– a notion bound to a particular parse tree;
– roughly saying that a vertex has been active somewhen before, and

some other stays active with the same label.

• Signature → weak signature tracing potentialy active shapes:

– a notion suited right for dynamic processing on a parse tree.

Theorem. If a “singleton” weak signature is found on a parse tree
then the parsed graph contains an out-branching

of the same number of leaves (constructively).

=⇒ There is an XP algorithm for MinLOB on digraphs of bounded rank-
width / clique-width, . . .
but it does not fit into the Myhill–Nerode-like scheme!
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7 Final remarks7 Final remarks

The “naughty example” of the MinLOB problem and its XP algorithm on di-
graphs of bounded rank-width / clique-width raises some intrusive questions. . .

Namely:

• Is there a better refinement of the canonical equivalence of MinLOB, i.e.
one that can be directly processed along a parse tree in XP time?
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7 Final remarks7 Final remarks

The “naughty example” of the MinLOB problem and its XP algorithm on di-
graphs of bounded rank-width / clique-width raises some intrusive questions. . .

Namely:

• Is there a better refinement of the canonical equivalence of MinLOB, i.e.
one that can be directly processed along a parse tree in XP time?

• Actually, are there more similar “naughty examples”?
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7 Final remarks7 Final remarks

The “naughty example” of the MinLOB problem and its XP algorithm on di-
graphs of bounded rank-width / clique-width raises some intrusive questions. . .

Namely:

• Is there a better refinement of the canonical equivalence of MinLOB, i.e.
one that can be directly processed along a parse tree in XP time?

• Actually, are there more similar “naughty examples”?

• And more generally; is there an example of a property P such that the
canonical equivalence of P has O(nf(k)) classes, and yet deciding P is
not in XP wrt. the width k?
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7 Final remarks7 Final remarks

The “naughty example” of the MinLOB problem and its XP algorithm on di-
graphs of bounded rank-width / clique-width raises some intrusive questions. . .

Namely:

• Is there a better refinement of the canonical equivalence of MinLOB, i.e.
one that can be directly processed along a parse tree in XP time?

• Actually, are there more similar “naughty examples”?

• And more generally; is there an example of a property P such that the
canonical equivalence of P has O(nf(k)) classes, and yet deciding P is
not in XP wrt. the width k?

THANK YOU FOR YOUR ATTENTION
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