Where Myhill-Nerode Theorem Meets Parameterized Algorithmics

Petr Hliněný

Faculty of Informatics, Masaryk University Botanická 68a, 60200 Brno, Czech Republic

```
e-mail: hlineny@fi.muni.cz http://www.fi.muni.cz/~hlineny
```


Contents

1 Decomposing the Input 3
And running dynamic algorithms: a try to give a useful unifying view...

2 The Concept of a Canonical Equivalence
Capturing the formal essence of dynamic algorithms on "recursive" decompositions: parse trees and Myhill-Nerode type congruences.

3 Measuring Graphs: Clique-width and Rank-width
Measuring tree-likeness of a graph: the ${ }^{*}$-widths.
4 \#SAT - our Sample Application 14
Giving an FPT algorithm which is single-exponential in the rank-width.
5 Final remarks19

1 Decomposing the Input and running Dynamic Algorithms

- A typical idea for a dynamic algorithm on a recursive decomposition:
- Capture all relevant inform. about the problem on a substructure.

1 Decomposing the Input and running Dynamic Algorithms

- A typical idea for a dynamic algorithm on a recursive decomposition:
- Capture all relevant inform. about the problem on a substructure.
- Process this information bottom-up in the decomposition.

1 Decomposing the Input
 and running Dynamic Algorithms

- A typical idea for a dynamic algorithm on a recursive decomposition:
- Capture all relevant inform. about the problem on a substructure.
- Process this information bottom-up in the decomposition.
- Importantly, this information has size depending only on k (ideally, not on the structure size), or at most polynomial size...

1 Decomposing the Input
 and running Dynamic Algorithms

- A typical idea for a dynamic algorithm on a recursive decomposition:
- Capture all relevant inform. about the problem on a substructure.
- Process this information bottom-up in the decomposition.
- Importantly, this information has size depending only on k (ideally, not on the structure size), or at most polynomial size...
- How to understand words "all relevant information about the problem"? Use "tables"?

1 Decomposing the Input
 and running Dynamic Algorithms

- A typical idea for a dynamic algorithm on a recursive decomposition:
- Capture all relevant inform. about the problem on a substructure.
- Process this information bottom-up in the decomposition.
- Importantly, this information has size depending only on k (ideally, not on the structure size), or at most polynomial size...
- How to understand words "all relevant information about the problem"? Use "tables"? Or...

Look for inspiration in traditional finite automata theory!
Theorem. [Myhill-Nerode, folklore]

1 Decomposing the Input
 and running Dynamic Algorithms

- A typical idea for a dynamic algorithm on a recursive decomposition:
- Capture all relevant inform. about the problem on a substructure.
- Process this information bottom-up in the decomposition.
- Importantly, this information has size depending only on k (ideally, not on the structure size), or at most polynomial size...
- How to understand words "all relevant information about the problem"? Use "tables"? Or...

Look for inspiration in traditional finite automata theory!
Theorem. [Myhill-Nerode, folklore]
Finite automaton states (this is our information) \leftrightarrow right congruence classes on the words (of a regular language).

1 Decomposing the Input

and running Dynamic Algorithms

- A typical idea for a dynamic algorithm on a recursive decomposition:
- Capture all relevant inform. about the problem on a substructure.
- Process this information bottom-up in the decomposition.
- Importantly, this information has size depending only on k (ideally, not on the structure size), or at most polynomial size...
- How to understand words "all relevant information about the problem"? Use "tables"? Or...

Look for inspiration in traditional finite automata theory!
Theorem. [Myhill-Nerode, folklore]
Finite automaton states (this is our information) \leftrightarrow right congruence classes on the words (of a regular language).

- Explicit comb. extensions of this concept appeared e.g. in the works [Abrahamson and Fellows, 93], [PH, 03], or [Ganian and PH, 08].

2 The Concept of a Canonical Equivalence

How does the right congruence extend
from formal words with the concatention operation to, say, graphs with a kind of a "join" operation?

2 The Concept of a Canonical Equivalence

How does the right congruence extend
from formal words with the concatention operation to, say, graphs with a kind of a "join" operation?

- Consider the universe of structures \mathcal{U}_{k} implicitly associated with
- some (small) distinguished "boundary of size k " of each graph, and
- a join operation $G \otimes H$ acting on the boundaries of disjoint G, H.
- Let \mathcal{P} be a (decision) property we study.

2 The Concept of a Canonical Equivalence

How does the right congruence extend
from formal words with the concatention operation to, say, graphs with a kind of a "join" operation?

- Consider the universe of structures \mathcal{U}_{k} implicitly associated with
- some (small) distinguished "boundary of size k " of each graph, and
- a join operation $G \otimes H$ acting on the boundaries of disjoint G, H.
- Let \mathcal{P} be a (decision) property we study.

Definition. The canonical equivalence of \mathcal{P} on \mathcal{U}_{k} is defined:
$G_{1} \approx{ }_{\mathcal{P}, k} G_{2}$ for any $G_{1}, G_{2} \in \mathcal{U}_{k}$ if and only if, for all $H \in \mathcal{U}_{k}$,

$$
G_{1} \otimes H \in \mathcal{P} \quad \Longleftrightarrow \quad G_{2} \otimes H \in \mathcal{P} .
$$

2 The Concept of a Canonical Equivalence

How does the right congruence extend
from formal words with the concatention operation to, say, graphs with a kind of a "join" operation?

- Consider the universe of structures \mathcal{U}_{k} implicitly associated with
- some (small) distinguished "boundary of size k " of each graph, and
- a join operation $G \otimes H$ acting on the boundaries of disjoint G, H.
- Let \mathcal{P} be a (decision) property we study.

Definition. The canonical equivalence of \mathcal{P} on \mathcal{U}_{k} is defined:
$G_{1} \approx_{\mathcal{P}, k} G_{2}$ for any $G_{1}, G_{2} \in \mathcal{U}_{k}$ if and only if, for all $H \in \mathcal{U}_{k}$,

$$
G_{1} \otimes H \in \mathcal{P} \quad \Longleftrightarrow \quad G_{2} \otimes H \in \mathcal{P} .
$$

- Informally, the classes of $\approx_{\mathcal{P}, k}$ capture all information about the property \mathcal{P} that can "cross" our boundary of size k (regardless of actual meaning of "boundary" and "join").

Decision properties, or more?

Definition. The canonical equivalence of \mathcal{P} on the universe \mathcal{U}_{k} is defined:
$G_{1} \approx_{\mathcal{P}, k} G_{2}$ for any $G_{1}, G_{2} \in \mathcal{U}_{k}$ if and only if, for all $H \in \mathcal{U}_{k}$, $G_{1} \otimes H \in \mathcal{P} \Longleftrightarrow G_{2} \otimes H \in \mathcal{P}$

Decision properties, or more?

Definition. The canonical equivalence of \mathcal{P} on the universe \mathcal{U}_{k} is defined:
$G_{1} \approx_{\mathcal{P}, k} G_{2}$ for any $G_{1}, G_{2} \in \mathcal{U}_{k}$ if and only if, for all $H \in \mathcal{U}_{k}$, $G_{1} \otimes H \in \mathcal{P} \Longleftrightarrow G_{2} \otimes H \in \mathcal{P}$.

- Not only deciding the exist. of a solution, but want to find it / optimize!

Decision properties, or more?

Definition. The canonical equivalence of \mathcal{P} on the universe \mathcal{U}_{k} is defined:
$G_{1} \approx_{\mathcal{P}, k} G_{2}$ for any $G_{1}, G_{2} \in \mathcal{U}_{k}$ if and only if, for all $H \in \mathcal{U}_{k}$, $G_{1} \otimes H \in \mathcal{P} \Longleftrightarrow G_{2} \otimes H \in \mathcal{P}$.

- Not only deciding the exist. of a solution, but want to find it / optimize!
- So, let G_{1}, G_{2} and H be assoc. with a solution fragment, say φ.

Decision properties, or more?

Definition. The canonical equivalence of \mathcal{P} on the universe \mathcal{U}_{k} is defined:

$$
G_{1} \approx_{\mathcal{P}, k} G_{2} \text { for any } G_{1}, G_{2} \in \mathcal{U}_{k} \text { if and only if, for all } H \in \mathcal{U}_{k},
$$

$$
G_{1} \otimes H \in \mathcal{P} \Longleftrightarrow G_{2} \otimes H \in \mathcal{P}
$$

- Not only deciding the exist. of a solution, but want to find it / optimize!
- So, let G_{1}, G_{2} and H be assoc. with a solution fragment, say φ.

Definition, II. The canonical equivalence of \mathcal{P} on the extended universe \mathcal{U}_{k} (of structures equipped with solution fragments) is defined:
$\left(G_{1}, \varphi_{1}\right) \approx_{\mathcal{P}, k}\left(G_{2}, \varphi_{2}\right)$ for $\left(G_{i}, \varphi_{i}\right) \in \mathcal{U}_{k}$ if and only if, for all $(H, \varphi) \in \mathcal{U}_{k}$,

$$
\left(G_{1}, \varphi_{1}\right) \otimes(H, \varphi) \models \mathcal{P} \quad \Longleftrightarrow \quad\left(G_{2}, \varphi_{2}\right) \otimes(H, \varphi) \models \mathcal{P}
$$

Decision properties, or more?

Definition. The canonical equivalence of \mathcal{P} on the universe \mathcal{U}_{k} is defined:

$$
G_{1} \approx_{\mathcal{P}, k} G_{2} \text { for any } G_{1}, G_{2} \in \mathcal{U}_{k} \text { if and only if, for all } H \in \mathcal{U}_{k},
$$

$$
G_{1} \otimes H \in \mathcal{P} \Longleftrightarrow G_{2} \otimes H \in \mathcal{P}
$$

- Not only deciding the exist. of a solution, but want to find it / optimize!
- So, let G_{1}, G_{2} and H be assoc. with a solution fragment, say φ.

Definition, II. The canonical equivalence of \mathcal{P} on the extended universe \mathcal{U}_{k} (of structures equipped with solution fragments) is defined:
$\left(G_{1}, \varphi_{1}\right) \approx_{\mathcal{P}, k}\left(G_{2}, \varphi_{2}\right)$ for $\left(G_{i}, \varphi_{i}\right) \in \mathcal{U}_{k}$ if and only if, for all $(H, \varphi) \in \mathcal{U}_{k}$,

$$
\left(G_{1}, \varphi_{1}\right) \otimes(H, \varphi) \models \mathcal{P} \quad \Longleftrightarrow \quad\left(G_{2}, \varphi_{2}\right) \otimes(H, \varphi) \models \mathcal{P} .
$$

- For simplicity, solution fragments φ can be "embedded" in \mathcal{U}_{k} and \otimes.

Decision properties, or more?

Definition. The canonical equivalence of \mathcal{P} on the universe \mathcal{U}_{k} is defined: $G_{1} \approx_{\mathcal{P}, k} G_{2}$ for any $G_{1}, G_{2} \in \mathcal{U}_{k}$ if and only if, for all $H \in \mathcal{U}_{k}$, $G_{1} \otimes H \in \mathcal{P} \Longleftrightarrow G_{2} \otimes H \in \mathcal{P}$.

- Not only deciding the exist. of a solution, but want to find it / optimize!
- So, let G_{1}, G_{2} and H be assoc. with a solution fragment, say φ.

Definition, II. The canonical equivalence of \mathcal{P} on the extended universe \mathcal{U}_{k} (of structures equipped with solution fragments) is defined:
$\left(G_{1}, \varphi_{1}\right) \approx_{\mathcal{P}, k}\left(G_{2}, \varphi_{2}\right)$ for $\left(G_{i}, \varphi_{i}\right) \in \mathcal{U}_{k}$ if and only if, for all $(H, \varphi) \in \mathcal{U}_{k}$,

$$
\left(G_{1}, \varphi_{1}\right) \otimes(H, \varphi) \models \mathcal{P} \quad \Longleftrightarrow \quad\left(G_{2}, \varphi_{2}\right) \otimes(H, \varphi) \models \mathcal{P} .
$$

- For simplicity, solution fragments φ can be "embedded" in \mathcal{U}_{k} and \otimes.
- Can, e.g., count the solutions in each class of $\approx_{\mathcal{P}, k}$, or keep an opt. one.

Some particular issues, beyond Myhill-Nerode

Definition. The canonical equivalence of \mathcal{P} on the universe \mathcal{U}_{k} is defined:
$G_{1} \approx_{\mathcal{P}, k} G_{2}$ for any $G_{1}, G_{2} \in \mathcal{U}_{k}$ if and only if, for all $H \in \mathcal{U}_{k}$, $G_{1} \otimes H \models \mathcal{P} \Longleftrightarrow G_{2} \otimes H \models \mathcal{P}$.

- Are the elements of \mathcal{U}_{k} required recursively decomposable?

Some particular issues, beyond Myhill-Nerode

Definition. The canonical equivalence of \mathcal{P} on the universe \mathcal{U}_{k} is defined:
$G_{1} \approx_{\mathcal{P}, k} G_{2}$ for any $G_{1}, G_{2} \in \mathcal{U}_{k}$ if and only if, for all $H \in \mathcal{U}_{k}$, $G_{1} \otimes H \models \mathcal{P} \Longleftrightarrow G_{2} \otimes H \models \mathcal{P}$.

- Are the elements of \mathcal{U}_{k} required recursively decomposable?
- somehow surprisingly, does not seem to play role. . .

Some particular issues, beyond Myhill-Nerode

Definition. The canonical equivalence of \mathcal{P} on the universe \mathcal{U}_{k} is defined:
$G_{1} \approx_{\mathcal{P}, k} G_{2}$ for any $G_{1}, G_{2} \in \mathcal{U}_{k}$ if and only if, for all $H \in \mathcal{U}_{k}$, $G_{1} \otimes H \models \mathcal{P} \Longleftrightarrow G_{2} \otimes H \models \mathcal{P}$.

- Are the elements of \mathcal{U}_{k} required recursively decomposable?
- somehow surprisingly, does not seem to play role...
- Can we have a different "right-hand-side universe" $H \in \mathcal{U}_{k}^{\prime}$?
- yes, useful e.g. for bi-rank-width of digraphs.

Some particular issues, beyond Myhill-Nerode

Definition. The canonical equivalence of \mathcal{P} on the universe \mathcal{U}_{k} is defined:

$$
G_{1} \approx_{\mathcal{P}, k} G_{2} \text { for any } G_{1}, G_{2} \in \mathcal{U}_{k} \text { if and only if, for all } H \in \mathcal{U}_{k},
$$

$$
G_{1} \otimes H \models \mathcal{P} \quad \Longleftrightarrow \quad G_{2} \otimes H \models \mathcal{P} .
$$

- Are the elements of \mathcal{U}_{k} required recursively decomposable?
- somehow surprisingly, does not seem to play role...
- Can we have a different "right-hand-side universe" $H \in \mathcal{U}_{k}^{\prime}$?
- yes, useful e.g. for bi-rank-width of digraphs.
- Can we use more different join operators \otimes ? Why?
- related to "prepartitioning" (expectation) of right-hand universe.

Some particular issues, beyond Myhill-Nerode

Definition. The canonical equivalence of \mathcal{P} on the universe \mathcal{U}_{k} is defined:

$$
G_{1} \approx_{\mathcal{P}, k} G_{2} \text { for any } G_{1}, G_{2} \in \mathcal{U}_{k} \text { if and only if, for all } H \in \mathcal{U}_{k},
$$

$$
G_{1} \otimes H \models \mathcal{P} \quad \Longleftrightarrow \quad G_{2} \otimes H \models \mathcal{P} .
$$

- Are the elements of \mathcal{U}_{k} required recursively decomposable?
- somehow surprisingly, does not seem to play role...
- Can we have a different "right-hand-side universe" $H \in \mathcal{U}_{k}^{\prime}$?
- yes, useful e.g. for bi-rank-width of digraphs.
- Can we use more different join operators \otimes ? Why?
- related to "prepartitioning" (expectation) of right-hand universe.
- XP algorithms, i.e. getting away from finite automata?

Some particular issues, beyond Myhill-Nerode

Definition. The canonical equivalence of \mathcal{P} on the universe \mathcal{U}_{k} is defined:
$G_{1} \approx_{\mathcal{P}, k} G_{2}$ for any $G_{1}, G_{2} \in \mathcal{U}_{k}$ if and only if, for all $H \in \mathcal{U}_{k}$,

$$
G_{1} \otimes H \models \mathcal{P} \quad \Longleftrightarrow \quad G_{2} \otimes H \models \mathcal{P} .
$$

- Are the elements of \mathcal{U}_{k} required recursively decomposable?
- somehow surprisingly, does not seem to play role...
- Can we have a different "right-hand-side universe" $H \in \mathcal{U}_{k}^{\prime}$?
- yes, useful e.g. for bi-rank-width of digraphs.
- Can we use more different join operators \otimes ? Why?
- related to "prepartitioning" (expectation) of right-hand universe.
- XP algorithms, i.e. getting away from finite automata?
- yes, still works quite nicely, cf. [Ganian, PH, Obdržálek, 09].
- brings new application issues such as "quantification inside \otimes " (cf. sol. fragments), or a "second-level" congruence on top of $\approx_{\mathcal{P}, k}$.

Parse trees of decompositions

To give an algor. usable meaning to the terms "boundary, join, and universe" we set them in the context of tree-shaped decompositions as follows...

Parse trees of decompositions

To give an algor. usable meaning to the terms "boundary, join, and universe" we set them in the context of tree-shaped decompositions as follows...

- Considering a rooted ${ }^{*}$-decomposition of a graph G,
we build on the following correspondence:
boundary size $k \leftrightarrow$ restricted bag-size / width / etc in decomposition join operator $\otimes \leftrightarrow \quad$ the way pieces of G "stick together" in decomp.

Parse trees of decompositions

To give an algor. usable meaning to the terms "boundary, join, and universe" we set them in the context of tree-shaped decompositions as follows...

- Considering a rooted *-decomposition of a graph G, we build on the following correspondence:
boundary size $k \leftrightarrow$ restricted bag-size / width / etc in decomposition join operator $\otimes \leftrightarrow \quad$ the way pieces of G "stick together" in decomp.
- This can be (visually) seen as...

3 Measuring Graphs: Clique-width and Rank-width

Motivation: Trees are easy to understand and to handle, so how "tree-like" our graph is in some well-defined sense (the width)?

- A topic occuring both in pure theory (e.g. Graph Minors), and in algorithms (Fixed parameter tractability).

3 Measuring Graphs: Clique-width and Rank-width

Motivation: Trees are easy to understand and to handle, so how "tree-like" our graph is in some well-defined sense (the width)?

- A topic occuring both in pure theory (e.g. Graph Minors), and in algorithms (Fixed parameter tractability).
- Many definitions known, e.g. tree-width, path-width, branch-width, DAG-width ...

3 Measuring Graphs: Clique-width and Rank-width

Motivation: Trees are easy to understand and to handle, so how "tree-like" our graph is in some well-defined sense (the width)?

- A topic occuring both in pure theory (e.g. Graph Minors), and in algorithms (Fixed parameter tractability).
- Many definitions known, e.g. tree-width, path-width, branch-width, DAG-width ...
- Clique-width - another graph complexity measure [Courcelle and Olariu], defined by operations on vertex-labeled graphs:
- create a new vertex with label i,
- take the disjoint union of two labeled graphs,
- add all edges between vertices of label i and label j,
- and relabel all vertices with label i to have label j.

3 Measuring Graphs: Clique-width and Rank-width

Motivation: Trees are easy to understand and to handle, so how "tree-like" our graph is in some well-defined sense (the width)?

- A topic occuring both in pure theory (e.g. Graph Minors), and in algorithms (Fixed parameter tractability).
- Many definitions known, e.g. tree-width, path-width, branch-width, DAG-width ...
- Clique-width - another graph complexity measure [Courcelle and Olariu], defined by operations on vertex-labeled graphs:
- create a new vertex with label i,
- take the disjoint union of two labeled graphs,
- add all edges between vertices of label i and label j,
- and relabel all vertices with label i to have label j.
\longrightarrow giving the expression tree (parse tree) for clique-width.

Rank-decomposition

- [Oum and Seymour, 03] Bringing the branch-decomposition approach to measure "complexity" of vertex subsets $X \subseteq V(G)$ via cut-rank:

$$
\left.\varrho_{G}(X)=\text { rank of } X(G)-X, \begin{array}{ccccc}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1
\end{array}\right) \text { modulo 2 }
$$

Rank-decomposition

- [Oum and Seymour, 03] Bringing the branch-decomposition approach to measure "complexity" of vertex subsets $X \subseteq V(G)$ via cut-rank:

$$
\varrho_{G}(X)=\text { rank of } X\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1
\end{array}\right) \text { modulo } 2
$$

Definition. Decompose $V(G)$ one-to-one into the leaves of a subcubic tree. Then

$$
\text { width }(e)=\varrho_{G}(X) \text { where } X \text { is displayed by } f \text { in the tree. }
$$

Rank-decomposition

- [Oum and Seymour, 03] Bringing the branch-decomposition approach to measure "complexity" of vertex subsets $X \subseteq V(G)$ via cut-rank:

$$
\varrho_{G}(X)=\text { rank of } X\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1
\end{array}\right) \text { modulo } 2
$$

Definition. Decompose $V(G)$ one-to-one into the leaves of a subcubic tree. Then

$$
\text { width }(e)=\varrho_{G}(X) \text { where } X \text { is displayed by } f \text { in the tree. }
$$

- Rank-width $=\min _{\text {rank-decs. of } G} \max \{$ width $(f): f$ tree edge $\}$

An example. Cycle C_{5} and its rank-decomposition of width 2 :

Comparing these two

- Rank-width t is related to clique-width k as $t \leq k \leq \mathbf{2}^{t+1}-1$.
- Both these measures are $N P$-hard in general.

Comparing these two

- Rank-width t is related to clique-width k as $t \leq k \leq 2^{t+1}-1$.
- Both these measures are $N P$-hard in general.
- Clique-width expressions seem to be much more "explicit" than rankdecompositions, and more suited for design of actual algorithms.

On the other hand, however...

Comparing these two

- Rank-width t is related to clique-width k as $t \leq k \leq 2^{t+1}-1$.
- Both these measures are $N P$-hard in general.
- Clique-width expressions seem to be much more "explicit" than rankdecompositions, and more suited for design of actual algorithms.

On the other hand, however...

- [Corneil and Rotics, 05] Clique-width can really be up to exponentially higher than rank-width.

Comparing these two

- Rank-width t is related to clique-width k as $t \leq k \leq 2^{t+1}-1$.
- Both these measures are $N P$-hard in general.
- Clique-width expressions seem to be much more "explicit" than rankdecompositions, and more suited for design of actual algorithms.

On the other hand, however. . .

- [Corneil and Rotics, 05] Clique-width can really be up to exponentially higher than rank-width.
- [Oum and PH, 07] There is an FPT algorithm for computing an optimal width- t rank-decomposition of a graph in time $O\left(f(t) \cdot n^{3}\right)$.

Comparing these two

- Rank-width t is related to clique-width k as $t \leq k \leq 2^{t+1}-1$.
- Both these measures are $N P$-hard in general.
- Clique-width expressions seem to be much more "explicit" than rankdecompositions, and more suited for design of actual algorithms.

On the other hand, however. . .

- [Corneil and Rotics, 05] Clique-width can really be up to exponentially higher than rank-width.
- [Oum and PH, 07] There is an FPT algorithm for computing an optimal width- t rank-decomposition of a graph in time $O\left(f(t) \cdot n^{3}\right)$.
- And new results show that certain algorithms designed on rankdecompositions run faster than their analogues designed on clique-width expressions... (subst. poly (t) in place of $c w$, instead of 2^{t})

Parse trees for rank-decompositions

Unlike for tree- or clique- decompositions with obvious parse trees, what is the "boundary" and "join" operation for rank-width?

Our "boundary" includes all vertices, and "join" is just an implicit matrix rank.

Parse trees for rank-decompositions

Unlike for tree- or clique- decompositions with obvious parse trees, what is the "boundary" and "join" operation for rank-width?

Our "boundary" includes all vertices, and "join" is just an implicit matrix rank.

- Bilinear product approach of [Courcelle and Kanté, 07]:
- boundary \sim labeling lab : $V(G) \rightarrow 2^{\{1,2, \ldots, t\}}$ (multi-colouring),

Parse trees for rank-decompositions

Unlike for tree- or clique- decompositions with obvious parse trees, what is the "boundary" and "join" operation for rank-width?
Our "boundary" includes all vertices, and "join" is just an implicit matrix rank.

- Bilinear product approach of [Courcelle and Kanté, 07]:
- boundary ~ labeling lab:V(G) $\rightarrow 2^{\{1,2, \ldots, t\}}$ (multi-colouring),
- join ~ bilinear form \boldsymbol{g} over $G F(2)^{t}$ (i.e. "odd intersection") s.t.

$$
\text { edge } u v \leftrightarrow \operatorname{lab}(u) \cdot g \cdot \operatorname{lab}(v)=1 .
$$

Parse trees for rank-decompositions

Unlike for tree- or clique- decompositions with obvious parse trees, what is the "boundary" and "join" operation for rank-width?

Our "boundary" includes all vertices, and "join" is just an implicit matrix rank.

- Bilinear product approach of [Courcelle and Kanté, 07]:
- boundary ~ labeling lab:V(G) $\rightarrow 2^{\{1,2, \ldots, t\}}$ (multi-colouring),
- join ~ bilinear form \boldsymbol{g} over $G F(2)^{t}$ (i.e. "odd intersection") s.t.

$$
\text { edge } u v \leftrightarrow \operatorname{lab}(u) \cdot \boldsymbol{g} \cdot \operatorname{lab}(v)=1 .
$$

- Join \rightarrow a composition operator with relabelings f_{1}, f_{2};

$$
\left(G_{1}, l a b^{1}\right) \otimes\left[\boldsymbol{g} \mid f_{1}, f_{2}\right]\left(G_{2}, l a b^{2}\right)=(H, l a b)
$$

\Longrightarrow the rank-width parse tree [Ganian and PH, 08]:

Parse trees for rank-decompositions

Unlike for tree- or clique- decompositions with obvious parse trees, what is the "boundary" and "join" operation for rank-width?
Our "boundary" includes all vertices, and "join" is just an implicit matrix rank.

- Bilinear product approach of [Courcelle and Kanté, 07]:
- boundary ~ labeling lab:V(G) $\rightarrow 2^{\{1,2, \ldots, t\}}$ (multi-colouring),
- join \sim bilinear form g over $G F(2)^{t}$ (i.e. "odd intersection") s.t.

$$
\text { edge } u v \leftrightarrow \operatorname{lab}(u) \cdot \boldsymbol{g} \cdot \operatorname{lab}(v)=1 .
$$

- Join \rightarrow a composition operator with relabelings f_{1}, f_{2};

$$
\left(G_{1}, l a b^{1}\right) \otimes\left[\boldsymbol{g} \mid f_{1}, f_{2}\right]\left(G_{2}, l a b^{2}\right)=(H, l a b)
$$

\Longrightarrow the rank-width parse tree [Ganian and $\mathrm{PH}, 08$]: t-labeling parse tree for $G \Longleftrightarrow$ rank-width of $G \leq t$.

Parse trees for rank-decompositions

Unlike for tree- or clique- decompositions with obvious parse trees, what is the "boundary" and "join" operation for rank-width?
Our "boundary" includes all vertices, and "join" is just an implicit matrix rank.

- Bilinear product approach of [Courcelle and Kanté, 07]:
- boundary ~ labeling lab:V(G) $\rightarrow 2^{\{1,2, \ldots, t\}}$ (multi-colouring),
- join \sim bilinear form g over $G F(2)^{t}$ (i.e. "odd intersection") s.t.

$$
\text { edge } u v \leftrightarrow \operatorname{lab}(u) \cdot \boldsymbol{g} \cdot \operatorname{lab}(v)=1 .
$$

- Join \rightarrow a composition operator with relabelings f_{1}, f_{2};

$$
\left(G_{1}, l a b^{1}\right) \otimes\left[\boldsymbol{g} \mid f_{1}, f_{2}\right]\left(G_{2}, l a b^{2}\right)=(H, l a b)
$$

\Longrightarrow the rank-width parse tree [Ganian and PH, 08]:
t-labeling parse tree for $G \Longleftrightarrow$ rank-width of $G \leq t$.

- Independently considered related notion of R_{t}-join decompositions by [Bui-Xuan, Telle, and Vatshelle, 08].

A parse tree. An example generating the cycle C_{5} (of rank-width 2):

4 \#SAT - our Sample Application

- \#SAT - counting satisfying assignments of a CNF formula, a well-known \#P-hard problem.

4 \#SAT - our Sample Application

- \#SAT - counting satisfying assignments of a CNF formula, a well-known \#P-hard problem.
- FPT solutions on formulas of bounded *-width:
[Fisher, Makowsky, and Ravve, 08] - tree-width and clique-width, [Samer and Szeider, 10] - tree-width improved.

4 \#SAT - our Sample Application

- \#SAT - counting satisfying assignments of a CNF formula, a well-known \#P-hard problem.
- FPT solutions on formulas of bounded *-width:
[Fisher, Makowsky, and Ravve, 08] - tree-width and clique-width, [Samer and Szeider, 10] - tree-width improved.
- On the other hand. . .

Quote. [Samer and Szeider, 10] - regarding \#SAT and clique-width:
... A single-exponential algorithm (for \#SAT) is due to Fisher, Makowsky, and Ravve. However, both algorithms rely on clique-width approximation algorithms. The known polynomial-time algorithms for that purpose admit an exponential approximation error and are of limited practical value.

4 \#SAT - our Sample Application

- \#SAT - counting satisfying assignments of a CNF formula, a well-known \#P-hard problem.
- FPT solutions on formulas of bounded *-width:
[Fisher, Makowsky, and Ravve, 08] - tree-width and clique-width, [Samer and Szeider, 10] - tree-width improved.
- On the other hand. . .

Quote. [Samer and Szeider, 10] - regarding \#SAT and clique-width:
... A single-exponential algorithm (for \#SAT) is due to Fisher, Makowsky, and Ravve. However, both algorithms rely on clique-width approximation algorithms. The known polynomial-time algorithms for that purpose admit an exponential approximation error and are of limited practical value.

Where is the problem?
A resulting double-exponential worst-case dependency on a width estimate!

The problem, again
Quote. [Samer and Szeider, 10] - regarding \#SAT and clique-width:
A single-exponential algorithm (for \#SAT) is due to Fisher, Makowsky, and Ravve. However, both algorithms rely on clique-width approximation algorithms. The known polynomial-time algorithms for that purpose admit an exponential approximation error and are of limited practical value.

Our answer - considering rank-width:

The problem, again
Quote. [Samer and Szeider, 10] - regarding \#SAT and clique-width:
A single-exponential algorithm (for \#SAT) is due to Fisher, Makowsky, and Ravve. However, both algorithms rely on clique-width approximation algorithms. The known polynomial-time algorithms for that purpose admit an exponential approximation error and are of limited practical value.

Our answer - considering rank-width:

- No loss in the promissed width, and yet single-exponential in it.

The problem, again
Quote. [Samer and Szeider, 10] - regarding \#SAT and clique-width:
A single-exponential algorithm (for \#SAT) is due to Fisher, Makowsky, and Ravve. However, both algorithms rely on clique-width approximation algorithms. The known polynomial-time algorithms for that purpose admit an exponential approximation error and are of limited practical value.

Our answer - considering rank-width:

- No loss in the promissed width, and yet single-exponential in it.
- A clear and rigorous algorithm employing many of the above tricks.

Theorem. [Ganian, PH, Obdržálek, 10] \#SAT solved in FPT time

$$
\mathcal{O}\left(t^{3} \cdot 2^{3 t(t+1) / 2} \cdot|\phi|\right)
$$

where t is the signed rank-width of the input instance (CNF formula) ϕ.

Signed graphs of CNF formulas

- The common way to measure structure / width of a formula: vertices := $V \cup C$ variables and clauses of ϕ.

Signed graphs of CNF formulas

- The common way to measure structure / width of a formula:

$$
\begin{aligned}
& \text { vertices }:=V \cup C \quad \text { variables and clauses of } \phi . \\
& \text { edges }:= E^{+} \cup E^{-} \text {where } \\
& x_{i} c_{j} \in E^{+} \text {if } c_{j}=\left(\cdots \vee x_{i} \ldots\right) \in C, \text { and } \\
& x_{i} c_{j} \in E^{-} \quad \text { if } c_{j}=\left(\cdots \vee \neg x_{i} \ldots\right) \in C .
\end{aligned}
$$

Signed graphs of CNF formulas

- The common way to measure structure / width of a formula:

$$
\begin{aligned}
& \text { vertices }:=V \cup C \quad \text { variables and clauses of } \phi . \\
& \text { edges }:= E^{+} \cup E^{-} \text {where } \\
& x_{i} c_{j} \in E^{+} \quad \text { if } c_{j}=\left(\cdots \vee x_{i} \ldots\right) \in C, \text { and } \\
& x_{i} c_{j} \in E^{-} \quad \text { if } c_{j}=\left(\cdots \vee \neg x_{i} \ldots\right) \in C .
\end{aligned}
$$

- Signed clique-width - using distinct operations for E^{+}and E^{-} (ordinary clique-width is not enough!).

Signed graphs of CNF formulas

- The common way to measure structure / width of a formula:

$$
\begin{aligned}
& \text { vertices }:=V \cup C \quad \text { variables and clauses of } \phi . \\
& \text { edges }:= E^{+} \cup E^{-} \text {where } \\
& x_{i} c_{j} \in E^{+} \text {if } c_{j}=\left(\cdots \vee x_{i} \ldots\right) \in C, \text { and } \\
& x_{i} c_{j} \in E^{-} \quad \text { if } c_{j}=\left(\cdots \vee \neg x_{i} \ldots\right) \in C .
\end{aligned}
$$

- Signed clique-width - using distinct operations for E^{+}and E^{-} (ordinary clique-width is not enough!).
- Signed rank-width - using separate joins for E^{+}and E^{-}, formally $G=G^{+} \cup G^{-}$on the same vertex set (sim. bi-rank-width).

Signed graphs of CNF formulas

- The common way to measure structure / width of a formula:

$$
\begin{aligned}
& \text { vertices }:=V \cup C \quad \text { variables and clauses of } \phi . \\
& \text { edges }:= E^{+} \cup E^{-} \text {where } \\
& x_{i} c_{j} \in E^{+} \text {if } c_{j}=\left(\cdots \vee x_{i} \ldots\right) \in C, \text { and } \\
& x_{i} c_{j} \in E^{-} \quad \text { if } c_{j}=\left(\cdots \vee \neg x_{i} \ldots\right) \in C .
\end{aligned}
$$

- Signed clique-width - using distinct operations for E^{+}and E^{-} (ordinary clique-width is not enough!).
- Signed rank-width - using separate joins for E^{+}and E^{-}, formally

$$
G=G^{+} \cup G^{-} \text {on the same vertex set (sim. bi-rank-width). }
$$

Then

$$
G_{1} \oplus G_{2}=\left(G_{1}^{+} \oplus G_{2}^{+}\right) \cup\left(G_{1}^{-} \oplus G_{2}^{-}\right)
$$

and the same decomposition is used.

The canonical equivalence for SAT

- Corresp. $G=G[\phi]$ signed graph $\longleftrightarrow \phi=\phi[G]$ CNF formula.

The canonical equivalence for SAT

- Corresp. $G=G[\phi]$ signed graph $\longleftrightarrow \phi=\phi[G]$ CNF formula.
- Valuation $\nu_{G}: V \rightarrow\{0,1\}$.

The canonical equivalence for SAT

- Corresp. $G=G[\phi]$ signed graph $\longleftrightarrow \phi=\phi[G]$ CNF formula.
- Valuation $\quad \nu_{G}: V \rightarrow\{0,1\}$.
- The canonical equivalence: $\left(G_{1}, \nu_{1}\right) \approx_{S A T, t}\left(G_{2}, \nu_{2}\right)$ iff, for all $\left(H, \nu_{H}\right)$,

$$
\nu_{1} \cup \nu_{H} \models \phi\left[G_{1} \otimes H\right] \quad \Longleftrightarrow \quad \nu_{2} \cup \nu_{H} \models \phi\left[G_{2} \otimes H\right] .
$$

The canonical equivalence for SAT

- Corresp. $G=G[\phi]$ signed graph $\longleftrightarrow \phi=\phi[G]$ CNF formula.
- Valuation $\quad \nu_{G}: V \rightarrow\{0,1\}$.
- The canonical equivalence: $\left(G_{1}, \nu_{1}\right) \approx_{S A T, t}\left(G_{2}, \nu_{2}\right)$ iff, for all $\left(H, \nu_{H}\right)$,

$$
\nu_{1} \cup \nu_{H} \models \phi\left[G_{1} \otimes H\right] \quad \Longleftrightarrow \quad \nu_{2} \cup \nu_{H} \models \phi\left[G_{2} \otimes H\right] .
$$

Proposition. $\left(G_{1}, \nu_{1}\right) \approx_{S A T, t}\left(G_{2}, \nu_{2}\right)$ if the foll. equal for $\left(G_{i}, \nu_{i}\right), i=1,2$:

- the set of G_{i}^{+}-labels occuring at true (under ν_{i}) variables,

The canonical equivalence for SAT

- Corresp. $G=G[\phi]$ signed graph $\longleftrightarrow \phi=\phi[G]$ CNF formula.
- Valuation $\quad \nu_{G}: V \rightarrow\{0,1\}$.
- The canonical equivalence: $\left(G_{1}, \nu_{1}\right) \approx_{S A T, t}\left(G_{2}, \nu_{2}\right)$ iff, for all $\left(H, \nu_{H}\right)$,

$$
\nu_{1} \cup \nu_{H} \models \phi\left[G_{1} \otimes H\right] \quad \Longleftrightarrow \quad \nu_{2} \cup \nu_{H} \models \phi\left[G_{2} \otimes H\right] .
$$

Proposition. $\left(G_{1}, \nu_{1}\right) \approx_{S A T, t}\left(G_{2}, \nu_{2}\right)$ if the foll. equal for $\left(G_{i}, \nu_{i}\right), i=1,2$:

- the set of G_{i}^{+}-labels occuring at true (under ν_{i}) variables,
- analog., the set of G_{i}^{-}-labels of false (under ν_{i}) variables, and

The canonical equivalence for SAT

- Corresp. $G=G[\phi]$ signed graph $\longleftrightarrow \phi=\phi[G]$ CNF formula.
- Valuation $\quad \nu_{G}: V \rightarrow\{0,1\}$.
- The canonical equivalence: $\left(G_{1}, \nu_{1}\right) \approx_{S A T, t}\left(G_{2}, \nu_{2}\right)$ iff, for all $\left(H, \nu_{H}\right)$,

$$
\nu_{1} \cup \nu_{H} \models \phi\left[G_{1} \otimes H\right] \quad \Longleftrightarrow \quad \nu_{2} \cup \nu_{H} \models \phi\left[G_{2} \otimes H\right] .
$$

Proposition. $\left(G_{1}, \nu_{1}\right) \approx_{S A T, t}\left(G_{2}, \nu_{2}\right)$ if the foll. equal for $\left(G_{i}, \nu_{i}\right), i=1,2$:

- the set of G_{i}^{+}-labels occuring at true (under ν_{i}) variables,
- analog., the set of G_{i}^{-}-labels of false (under ν_{i}) variables, and
- the set of pair labels of all unsatisfied (under ν_{i}) clauses of $\phi\left[G_{i}\right]$.

The canonical equivalence for SAT

- Corresp. $G=G[\phi]$ signed graph $\longleftrightarrow \phi=\phi[G]$ CNF formula.
- Valuation $\quad \nu_{G}: V \rightarrow\{0,1\}$.
- The canonical equivalence: $\left(G_{1}, \nu_{1}\right) \approx_{S A T, t}\left(G_{2}, \nu_{2}\right)$ iff, for all $\left(H, \nu_{H}\right)$,

$$
\nu_{1} \cup \nu_{H} \models \phi\left[G_{1} \otimes H\right] \quad \Longleftrightarrow \quad \nu_{2} \cup \nu_{H} \models \phi\left[G_{2} \otimes H\right] .
$$

Proposition. $\left(G_{1}, \nu_{1}\right) \approx_{S A T, t}\left(G_{2}, \nu_{2}\right)$ if the foll. equal for $\left(G_{i}, \nu_{i}\right), i=1,2$:

- the set of G_{i}^{+}-labels occuring at true (under ν_{i}) variables,
- analog., the set of G_{i}^{-}-labels of false (under ν_{i}) variables, and
- the set of pair labels of all unsatisfied (under ν_{i}) clauses of $\phi\left[G_{i}\right]$.

Easy to prove..., but does it help?
Subsets of labels from $2^{\{1,2, \ldots, t\}} \longrightarrow \Omega\left(2^{2^{t}}\right)$ classes!

Getting coarser equivalences for SAT

We improve the runtime with the following two main tricks:

Getting coarser equivalences for SAT

We improve the runtime with the following two main tricks:

- Linear algebra:

Subset of labels \longrightarrow the spanning subspace in $G F(2)^{t}$.

Getting coarser equivalences for SAT

We improve the runtime with the following two main tricks:

- Linear algebra:

Subset of labels \longrightarrow the spanning subspace in $G F(2)^{t}$.
Theorem. [Goldman and Rota, 69] The number of subspaces of $G F(2)^{t}$ is

$$
S(t) \leq 2^{t(t+1) / 4} \text { for all } t \geq 12 .
$$

Getting coarser equivalences for SAT

We improve the runtime with the following two main tricks:

- Linear algebra:

Subset of labels \longrightarrow the spanning subspace in $G F(2)^{t}$.
Theorem. [Goldman and Rota, 69] The number of subspaces of $G F(2)^{t}$ is

$$
S(t) \leq 2^{t(t+1) / 4} \text { for all } t \geq 12 .
$$

- Expectation:

Labels of unsat. clauses \longrightarrow expected labels of variables in H, and the subspace trick once again.

Getting coarser equivalences for SAT

We improve the runtime with the following two main tricks:

- Linear algebra:

Subset of labels \longrightarrow the spanning subspace in $G F(2)^{t}$.
Theorem. [Goldman and Rota, 69] The number of subspaces of $G F(2)^{t}$ is

$$
S(t) \leq 2^{t(t+1) / 4} \text { for all } t \geq 12 .
$$

- Expectation:

Labels of unsat. clauses \longrightarrow expected labels of variables in H, and the subspace trick once again.

In other words, $\approx_{S A T, t}$ "suitably restricted" to $\left(H, \nu_{H}\right)$'s of the expected label subspaces of its false and true variables...

Getting coarser equivalences for SAT

We improve the runtime with the following two main tricks:

- Linear algebra:

Subset of labels \longrightarrow the spanning subspace in $G F(2)^{t}$.
Theorem. [Goldman and Rota, 69] The number of subspaces of $G F(2)^{t}$ is

$$
S(t) \leq 2^{t(t+1) / 4} \text { for all } t \geq 12 .
$$

- Expectation:

Labels of unsat. clauses \longrightarrow expected labels of variables in H, and the subspace trick once again.

In other words, $\approx_{S A T, t}$ "suitably restricted" to $\left(H, \nu_{H}\right)$'s of the expected label subspaces of its false and true variables...

Conclusion. Breaking the satisfying assignments of ϕ into $S(t)^{4}$ classes, and processing a node of the parse tree in $O^{*}\left(S(t)^{6}\right)$.

5 Final remarks

Our talk suggests (tries to, at least) the following research directions... as ordered from the very general one to the very concrete example:

5 Final remarks

Our talk suggests (tries to, at least) the following research directions. . . as ordered from the very general one to the very concrete example:

- The use of Myhill-Nerode type congruences in dynamic progr. alg. design
- can give very rigorous proofs for algorithms (almost for free), and

5 Final remarks

Our talk suggests (tries to, at least) the following research directions. . . as ordered from the very general one to the very concrete example:

- The use of Myhill-Nerode type congruences in dynamic progr. alg. design
- can give very rigorous proofs for algorithms (almost for free), and
- immediately provides a rather simple test of "what is possible".

5 Final remarks

Our talk suggests (tries to, at least) the following research directions... as ordered from the very general one to the very concrete example:

- The use of Myhill-Nerode type congruences in dynamic progr. alg. design
- can give very rigorous proofs for algorithms (almost for free), and
- immediately provides a rather simple test of "what is possible".
- Rank-width to be used in place of clique-width in param. algorithms.

5 Final remarks

Our talk suggests (tries to, at least) the following research directions... as ordered from the very general one to the very concrete example:

- The use of Myhill-Nerode type congruences in dynamic progr. alg. design
- can give very rigorous proofs for algorithms (almost for free), and
- immediately provides a rather simple test of "what is possible".
- Rank-width to be used in place of clique-width in param. algorithms.
- Rank-width is useful for variants of SAT via the signed graph.

5 Final remarks

Our talk suggests (tries to, at least) the following research directions... as ordered from the very general one to the very concrete example:

- The use of Myhill-Nerode type congruences in dynamic progr. alg. design
- can give very rigorous proofs for algorithms (almost for free), and
- immediately provides a rather simple test of "what is possible".
- Rank-width to be used in place of clique-width in param. algorithms.
- Rank-width is useful for variants of SAT via the signed graph.

THANK YOU FOR YOUR ATTENTION

