
'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 1 Myhill–Nerode Meets Parameterized. . .

Where Myhill–Nerode Theorem MeetsWhere Myhill–Nerode Theorem Meets

Parameterized AlgorithmicsParameterized Algorithmics

Petr HliněnýPetr Hliněný

Faculty of Informatics, Masaryk University

Botanická 68a, 602 00 Brno, Czech Republic

e-mail: hlineny@fi.muni.cz http://www.fi.muni.cz/~hlineny

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 2 Myhill–Nerode Meets Parameterized. . .

Contents

1 Decomposing the Input 3

And running dynamic algorithms: a try to give a useful unifying view. . .

2 The Concept of a Canonical Equivalence 4

Capturing the formal essence of dynamic algorithms on “recursive” decom-
positions: parse trees and Myhill-Nerode type congruences.

3 Measuring Graphs: Clique-width and Rank-width 8

Measuring tree-likeness of a graph: the *-widths.

4 #SAT – our Sample Application 14

Giving an FPT algorithm which is single-exponential in the rank-width.

5 Final remarks 19

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 3 Myhill–Nerode Meets Parameterized. . .

1 Decomposing the Input1 Decomposing the Input

and running Dynamic Algorithmsand running Dynamic Algorithms

• A typical idea for a dynamic algorithm on a recursive decomposition:

– Capture all relevant inform. about the problem on a substructure.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 3 Myhill–Nerode Meets Parameterized. . .

1 Decomposing the Input1 Decomposing the Input

and running Dynamic Algorithmsand running Dynamic Algorithms

• A typical idea for a dynamic algorithm on a recursive decomposition:

– Capture all relevant inform. about the problem on a substructure.

– Process this information bottom-up in the decomposition.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 3 Myhill–Nerode Meets Parameterized. . .

1 Decomposing the Input1 Decomposing the Input

and running Dynamic Algorithmsand running Dynamic Algorithms

• A typical idea for a dynamic algorithm on a recursive decomposition:

– Capture all relevant inform. about the problem on a substructure.

– Process this information bottom-up in the decomposition.

– Importantly, this information has size depending only on k (ideally,
not on the structure size), or at most polynomial size. . .

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 3 Myhill–Nerode Meets Parameterized. . .

1 Decomposing the Input1 Decomposing the Input

and running Dynamic Algorithmsand running Dynamic Algorithms

• A typical idea for a dynamic algorithm on a recursive decomposition:

– Capture all relevant inform. about the problem on a substructure.

– Process this information bottom-up in the decomposition.

– Importantly, this information has size depending only on k (ideally,
not on the structure size), or at most polynomial size. . .

• How to understand words “all relevant information about the problem”?
Use “tables”?

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 3 Myhill–Nerode Meets Parameterized. . .

1 Decomposing the Input1 Decomposing the Input

and running Dynamic Algorithmsand running Dynamic Algorithms

• A typical idea for a dynamic algorithm on a recursive decomposition:

– Capture all relevant inform. about the problem on a substructure.

– Process this information bottom-up in the decomposition.

– Importantly, this information has size depending only on k (ideally,
not on the structure size), or at most polynomial size. . .

• How to understand words “all relevant information about the problem”?
Use “tables”? Or. . .

Look for inspiration in traditional finite automata theory!

Theorem. [Myhill–Nerode, folklore]

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 3 Myhill–Nerode Meets Parameterized. . .

1 Decomposing the Input1 Decomposing the Input

and running Dynamic Algorithmsand running Dynamic Algorithms

• A typical idea for a dynamic algorithm on a recursive decomposition:

– Capture all relevant inform. about the problem on a substructure.

– Process this information bottom-up in the decomposition.

– Importantly, this information has size depending only on k (ideally,
not on the structure size), or at most polynomial size. . .

• How to understand words “all relevant information about the problem”?
Use “tables”? Or. . .

Look for inspiration in traditional finite automata theory!

Theorem. [Myhill–Nerode, folklore]
Finite automaton states (this is our information) ↔

right congruence classes on the words (of a regular language).

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 3 Myhill–Nerode Meets Parameterized. . .

1 Decomposing the Input1 Decomposing the Input

and running Dynamic Algorithmsand running Dynamic Algorithms

• A typical idea for a dynamic algorithm on a recursive decomposition:

– Capture all relevant inform. about the problem on a substructure.

– Process this information bottom-up in the decomposition.

– Importantly, this information has size depending only on k (ideally,
not on the structure size), or at most polynomial size. . .

• How to understand words “all relevant information about the problem”?
Use “tables”? Or. . .

Look for inspiration in traditional finite automata theory!

Theorem. [Myhill–Nerode, folklore]
Finite automaton states (this is our information) ↔

right congruence classes on the words (of a regular language).

• Explicit comb. extensions of this concept appeared e.g. in the works
[Abrahamson and Fellows, 93], [PH, 03], or [Ganian and PH, 08].

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 4 Myhill–Nerode Meets Parameterized. . .

2 The Concept of a Canonical Equivalence2 The Concept of a Canonical Equivalence

How does the right congruence extend
from formal words with the concatention operation

to, say, graphs with a kind of a “join” operation?

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 4 Myhill–Nerode Meets Parameterized. . .

2 The Concept of a Canonical Equivalence2 The Concept of a Canonical Equivalence

How does the right congruence extend
from formal words with the concatention operation

to, say, graphs with a kind of a “join” operation?

• Consider the universe of structures Uk implicitly associated with

– some (small) distinguished “boundary of size k” of each graph, and

– a join operation G⊗H acting on the boundaries of disjoint G, H.

• Let P be a (decision) property we study.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 4 Myhill–Nerode Meets Parameterized. . .

2 The Concept of a Canonical Equivalence2 The Concept of a Canonical Equivalence

How does the right congruence extend
from formal words with the concatention operation

to, say, graphs with a kind of a “join” operation?

• Consider the universe of structures Uk implicitly associated with

– some (small) distinguished “boundary of size k” of each graph, and

– a join operation G⊗H acting on the boundaries of disjoint G, H.

• Let P be a (decision) property we study.

Definition. The canonical equivalence of P on Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊗H ∈ P ⇐⇒ G2 ⊗H ∈ P .

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 4 Myhill–Nerode Meets Parameterized. . .

2 The Concept of a Canonical Equivalence2 The Concept of a Canonical Equivalence

How does the right congruence extend
from formal words with the concatention operation

to, say, graphs with a kind of a “join” operation?

• Consider the universe of structures Uk implicitly associated with

– some (small) distinguished “boundary of size k” of each graph, and

– a join operation G⊗H acting on the boundaries of disjoint G, H.

• Let P be a (decision) property we study.

Definition. The canonical equivalence of P on Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊗H ∈ P ⇐⇒ G2 ⊗H ∈ P .

• Informally, the classes of ≈P,k capture all information about the property
P that can “cross” our boundary of size k

(regardless of actual meaning of “boundary” and “join”).

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 5 Myhill–Nerode Meets Parameterized. . .

Decision properties, or more?Decision properties, or more?

Definition. The canonical equivalence of P on the universe Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊗H ∈ P ⇐⇒ G2 ⊗H ∈ P

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 5 Myhill–Nerode Meets Parameterized. . .

Decision properties, or more?Decision properties, or more?

Definition. The canonical equivalence of P on the universe Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊗H ∈ P ⇐⇒ G2 ⊗H ∈ P .

• Not only deciding the exist. of a solution, but want to find it / optimize!

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 5 Myhill–Nerode Meets Parameterized. . .

Decision properties, or more?Decision properties, or more?

Definition. The canonical equivalence of P on the universe Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊗H ∈ P ⇐⇒ G2 ⊗H ∈ P .

• Not only deciding the exist. of a solution, but want to find it / optimize!

• So, let G1, G2 and H be assoc. with a solution fragment, say ϕ.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 5 Myhill–Nerode Meets Parameterized. . .

Decision properties, or more?Decision properties, or more?

Definition. The canonical equivalence of P on the universe Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊗H ∈ P ⇐⇒ G2 ⊗H ∈ P .

• Not only deciding the exist. of a solution, but want to find it / optimize!

• So, let G1, G2 and H be assoc. with a solution fragment, say ϕ.

Definition, II. The canonical equivalence of P on the extended universe Uk

(of structures equipped with solution fragments) is defined:

(G1, ϕ1) ≈P,k (G2, ϕ2) for (Gi, ϕi) ∈ Uk if and only if, for all (H,ϕ) ∈ Uk,

(G1, ϕ1)⊗ (H,ϕ) |= P ⇐⇒ (G2, ϕ2)⊗ (H,ϕ) |= P

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 5 Myhill–Nerode Meets Parameterized. . .

Decision properties, or more?Decision properties, or more?

Definition. The canonical equivalence of P on the universe Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊗H ∈ P ⇐⇒ G2 ⊗H ∈ P .

• Not only deciding the exist. of a solution, but want to find it / optimize!

• So, let G1, G2 and H be assoc. with a solution fragment, say ϕ.

Definition, II. The canonical equivalence of P on the extended universe Uk

(of structures equipped with solution fragments) is defined:

(G1, ϕ1) ≈P,k (G2, ϕ2) for (Gi, ϕi) ∈ Uk if and only if, for all (H,ϕ) ∈ Uk,

(G1, ϕ1)⊗ (H,ϕ) |= P ⇐⇒ (G2, ϕ2)⊗ (H,ϕ) |= P .

• For simplicity, solution fragments ϕ can be “embedded” in Uk and ⊗.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 5 Myhill–Nerode Meets Parameterized. . .

Decision properties, or more?Decision properties, or more?

Definition. The canonical equivalence of P on the universe Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊗H ∈ P ⇐⇒ G2 ⊗H ∈ P .

• Not only deciding the exist. of a solution, but want to find it / optimize!

• So, let G1, G2 and H be assoc. with a solution fragment, say ϕ.

Definition, II. The canonical equivalence of P on the extended universe Uk

(of structures equipped with solution fragments) is defined:

(G1, ϕ1) ≈P,k (G2, ϕ2) for (Gi, ϕi) ∈ Uk if and only if, for all (H,ϕ) ∈ Uk,

(G1, ϕ1)⊗ (H,ϕ) |= P ⇐⇒ (G2, ϕ2)⊗ (H,ϕ) |= P .

• For simplicity, solution fragments ϕ can be “embedded” in Uk and ⊗.

• Can, e.g., count the solutions in each class of ≈P,k, or keep an opt. one.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 6 Myhill–Nerode Meets Parameterized. . .

Some particular issues, beyond Myhill-NerodeSome particular issues, beyond Myhill-Nerode

Definition. The canonical equivalence of P on the universe Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊗H |= P ⇐⇒ G2 ⊗H |= P .

• Are the elements of Uk required recursively decomposable ?

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 6 Myhill–Nerode Meets Parameterized. . .

Some particular issues, beyond Myhill-NerodeSome particular issues, beyond Myhill-Nerode

Definition. The canonical equivalence of P on the universe Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊗H |= P ⇐⇒ G2 ⊗H |= P .

• Are the elements of Uk required recursively decomposable ?

– somehow surprisingly, does not seem to play role. . .

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 6 Myhill–Nerode Meets Parameterized. . .

Some particular issues, beyond Myhill-NerodeSome particular issues, beyond Myhill-Nerode

Definition. The canonical equivalence of P on the universe Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊗H |= P ⇐⇒ G2 ⊗H |= P .

• Are the elements of Uk required recursively decomposable ?

– somehow surprisingly, does not seem to play role. . .

• Can we have a different “right-hand-side universe” H ∈ U ′k ?

– yes, useful e.g. for bi-rank-width of digraphs.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 6 Myhill–Nerode Meets Parameterized. . .

Some particular issues, beyond Myhill-NerodeSome particular issues, beyond Myhill-Nerode

Definition. The canonical equivalence of P on the universe Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊗H |= P ⇐⇒ G2 ⊗H |= P .

• Are the elements of Uk required recursively decomposable ?

– somehow surprisingly, does not seem to play role. . .

• Can we have a different “right-hand-side universe” H ∈ U ′k ?

– yes, useful e.g. for bi-rank-width of digraphs.

• Can we use more different join operators ⊗ ? Why?

– related to “prepartitioning” (expectation) of right-hand universe.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 6 Myhill–Nerode Meets Parameterized. . .

Some particular issues, beyond Myhill-NerodeSome particular issues, beyond Myhill-Nerode

Definition. The canonical equivalence of P on the universe Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊗H |= P ⇐⇒ G2 ⊗H |= P .

• Are the elements of Uk required recursively decomposable ?

– somehow surprisingly, does not seem to play role. . .

• Can we have a different “right-hand-side universe” H ∈ U ′k ?

– yes, useful e.g. for bi-rank-width of digraphs.

• Can we use more different join operators ⊗ ? Why?

– related to “prepartitioning” (expectation) of right-hand universe.

• XP algorithms, i.e. getting away from finite automata?

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 6 Myhill–Nerode Meets Parameterized. . .

Some particular issues, beyond Myhill-NerodeSome particular issues, beyond Myhill-Nerode

Definition. The canonical equivalence of P on the universe Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊗H |= P ⇐⇒ G2 ⊗H |= P .

• Are the elements of Uk required recursively decomposable ?

– somehow surprisingly, does not seem to play role. . .

• Can we have a different “right-hand-side universe” H ∈ U ′k ?

– yes, useful e.g. for bi-rank-width of digraphs.

• Can we use more different join operators ⊗ ? Why?

– related to “prepartitioning” (expectation) of right-hand universe.

• XP algorithms, i.e. getting away from finite automata?

– yes, still works quite nicely, cf. [Ganian, PH, Obdržálek, 09].

– brings new application issues such as “quantification inside ⊗” (cf. sol.
fragments), or a “second-level” congruence on top of ≈P,k.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 7 Myhill–Nerode Meets Parameterized. . .

Parse trees of decompositionsParse trees of decompositions

To give an algor. usable meaning to the terms “boundary, join, and universe”
we set them in the context of tree-shaped decompositions as follows. . .

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 7 Myhill–Nerode Meets Parameterized. . .

Parse trees of decompositionsParse trees of decompositions

To give an algor. usable meaning to the terms “boundary, join, and universe”
we set them in the context of tree-shaped decompositions as follows. . .

• Considering a rooted *-decomposition of a graph G,
we build on the following correspondence:

boundary size k ↔ restricted bag-size / width / etc in decomposition

join operator ⊗ ↔ the way pieces of G “stick together” in decomp.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 7 Myhill–Nerode Meets Parameterized. . .

Parse trees of decompositionsParse trees of decompositions

To give an algor. usable meaning to the terms “boundary, join, and universe”
we set them in the context of tree-shaped decompositions as follows. . .

• Considering a rooted *-decomposition of a graph G,
we build on the following correspondence:

boundary size k ↔ restricted bag-size / width / etc in decomposition

join operator ⊗ ↔ the way pieces of G “stick together” in decomp.

• This can be (visually) seen as. . .

...

...
...

...
...

...

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 8 Myhill–Nerode Meets Parameterized. . .

3 Measuring Graphs: Clique-width and Rank-width3 Measuring Graphs: Clique-width and Rank-width

Motivation: Trees are easy to understand and to handle, so how “tree-like” our
graph is in some well-defined sense (the width)?

• A topic occuring both in pure theory (e.g. Graph Minors),
and in algorithms (Fixed parameter tractability).

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 8 Myhill–Nerode Meets Parameterized. . .

3 Measuring Graphs: Clique-width and Rank-width3 Measuring Graphs: Clique-width and Rank-width

Motivation: Trees are easy to understand and to handle, so how “tree-like” our
graph is in some well-defined sense (the width)?

• A topic occuring both in pure theory (e.g. Graph Minors),
and in algorithms (Fixed parameter tractability).

• Many definitions known,
e.g. tree-width, path-width, branch-width, DAG-width . . .

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 8 Myhill–Nerode Meets Parameterized. . .

3 Measuring Graphs: Clique-width and Rank-width3 Measuring Graphs: Clique-width and Rank-width

Motivation: Trees are easy to understand and to handle, so how “tree-like” our
graph is in some well-defined sense (the width)?

• A topic occuring both in pure theory (e.g. Graph Minors),
and in algorithms (Fixed parameter tractability).

• Many definitions known,
e.g. tree-width, path-width, branch-width, DAG-width . . .

• Clique-width – another graph complexity measure [Courcelle and Olariu],
defined by operations on vertex–labeled graphs:

– create a new vertex with label i,
– take the disjoint union of two labeled graphs,
– add all edges between vertices of label i and label j,
– and relabel all vertices with label i to have label j.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 8 Myhill–Nerode Meets Parameterized. . .

3 Measuring Graphs: Clique-width and Rank-width3 Measuring Graphs: Clique-width and Rank-width

Motivation: Trees are easy to understand and to handle, so how “tree-like” our
graph is in some well-defined sense (the width)?

• A topic occuring both in pure theory (e.g. Graph Minors),
and in algorithms (Fixed parameter tractability).

• Many definitions known,
e.g. tree-width, path-width, branch-width, DAG-width . . .

• Clique-width – another graph complexity measure [Courcelle and Olariu],
defined by operations on vertex–labeled graphs:

– create a new vertex with label i,
– take the disjoint union of two labeled graphs,
– add all edges between vertices of label i and label j,
– and relabel all vertices with label i to have label j.

−→ giving the expression tree (parse tree) for clique-width.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 9 Myhill–Nerode Meets Parameterized. . .

Rank-decompositionRank-decomposition

• [Oum and Seymour, 03] Bringing the branch-decomposition approach to
measure “complexity” of vertex subsets X ⊆ V (G) via cut-rank:

%G(X) = rank of

V (G)−X

X

0 1 0 0 1
1 0 1 0 0
1 0 0 1 1

 modulo 2

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 9 Myhill–Nerode Meets Parameterized. . .

Rank-decompositionRank-decomposition

• [Oum and Seymour, 03] Bringing the branch-decomposition approach to
measure “complexity” of vertex subsets X ⊆ V (G) via cut-rank:

%G(X) = rank of

V (G)−X

X

0 1 0 0 1
1 0 1 0 0
1 0 0 1 1

 modulo 2

Definition. Decompose V (G) one-to-one into the leaves of a subcubic tree.
Then

fX V (G) −X

width(e) = %G(X) where X is displayed by f in the tree.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 9 Myhill–Nerode Meets Parameterized. . .

Rank-decompositionRank-decomposition

• [Oum and Seymour, 03] Bringing the branch-decomposition approach to
measure “complexity” of vertex subsets X ⊆ V (G) via cut-rank:

%G(X) = rank of

V (G)−X

X

0 1 0 0 1
1 0 1 0 0
1 0 0 1 1

 modulo 2

Definition. Decompose V (G) one-to-one into the leaves of a subcubic tree.
Then

fX V (G) −X

width(e) = %G(X) where X is displayed by f in the tree.

• Rank-width = minrank-decs. of G max
{

width(f) : f tree edge
}

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 10 Myhill–Nerode Meets Parameterized. . .

An example. Cycle C5 and its rank-decomposition of width 2:

s s
s

s
s

a b

c

d

e

a b

cd

e

„
0 0 1
1 0 0

«
0
@

1 0
0 1
0 0

1
A

`
1 0 0 1

´
`
1 1 0 0

´

`
0 1 1 0

´`
0 0 1 1

´

`
1 0 0 1

´

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 11 Myhill–Nerode Meets Parameterized. . .

Comparing these twoComparing these two

• Rank-width t is related to clique-width k as t ≤ k ≤ 2t+1 − 1.

• Both these measures are NP -hard in general.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 11 Myhill–Nerode Meets Parameterized. . .

Comparing these twoComparing these two

• Rank-width t is related to clique-width k as t ≤ k ≤ 2t+1 − 1.

• Both these measures are NP -hard in general.

• Clique-width expressions seem to be much more “explicit” than rank-
decompositions, and more suited for design of actual algorithms.

On the other hand, however. . .

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 11 Myhill–Nerode Meets Parameterized. . .

Comparing these twoComparing these two

• Rank-width t is related to clique-width k as t ≤ k ≤ 2t+1 − 1.

• Both these measures are NP -hard in general.

• Clique-width expressions seem to be much more “explicit” than rank-
decompositions, and more suited for design of actual algorithms.

On the other hand, however. . .

• [Corneil and Rotics, 05] Clique-width can really be up to exponentially
higher than rank-width.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 11 Myhill–Nerode Meets Parameterized. . .

Comparing these twoComparing these two

• Rank-width t is related to clique-width k as t ≤ k ≤ 2t+1 − 1.

• Both these measures are NP -hard in general.

• Clique-width expressions seem to be much more “explicit” than rank-
decompositions, and more suited for design of actual algorithms.

On the other hand, however. . .

• [Corneil and Rotics, 05] Clique-width can really be up to exponentially
higher than rank-width.

• [Oum and PH, 07] There is an FPT algorithm for computing an optimal
width-t rank-decomposition of a graph in time O(f(t) · n3).

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 11 Myhill–Nerode Meets Parameterized. . .

Comparing these twoComparing these two

• Rank-width t is related to clique-width k as t ≤ k ≤ 2t+1 − 1.

• Both these measures are NP -hard in general.

• Clique-width expressions seem to be much more “explicit” than rank-
decompositions, and more suited for design of actual algorithms.

On the other hand, however. . .

• [Corneil and Rotics, 05] Clique-width can really be up to exponentially
higher than rank-width.

• [Oum and PH, 07] There is an FPT algorithm for computing an optimal
width-t rank-decomposition of a graph in time O(f(t) · n3).

• And new results show that certain algorithms designed on rank-
decompositions run faster than their analogues designed on clique-width
expressions. . . (subst. poly(t) in place of cw, instead of 2t)

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 12 Myhill–Nerode Meets Parameterized. . .

Parse trees for rank-decompositionsParse trees for rank-decompositions

Unlike for tree- or clique- decompositions with obvious parse trees, what is the
“boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 12 Myhill–Nerode Meets Parameterized. . .

Parse trees for rank-decompositionsParse trees for rank-decompositions

Unlike for tree- or clique- decompositions with obvious parse trees, what is the
“boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank.

• Bilinear product approach of [Courcelle and Kanté, 07]:

– boundary ∼ labeling lab : V (G)→ 2{1,2,...,t} (multi-colouring),

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 12 Myhill–Nerode Meets Parameterized. . .

Parse trees for rank-decompositionsParse trees for rank-decompositions

Unlike for tree- or clique- decompositions with obvious parse trees, what is the
“boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank.

• Bilinear product approach of [Courcelle and Kanté, 07]:

– boundary ∼ labeling lab : V (G)→ 2{1,2,...,t} (multi-colouring),

– join ∼ bilinear form g over GF (2)t (i.e. “odd intersection”) s.t.

edge uv ↔ lab(u) · g · lab(v) = 1.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 12 Myhill–Nerode Meets Parameterized. . .

Parse trees for rank-decompositionsParse trees for rank-decompositions

Unlike for tree- or clique- decompositions with obvious parse trees, what is the
“boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank.

• Bilinear product approach of [Courcelle and Kanté, 07]:

– boundary ∼ labeling lab : V (G)→ 2{1,2,...,t} (multi-colouring),

– join ∼ bilinear form g over GF (2)t (i.e. “odd intersection”) s.t.

edge uv ↔ lab(u) · g · lab(v) = 1.

• Join → a composition operator with relabelings f1, f2;

(G1, lab
1) ⊗[g | f1, f2] (G2, lab

2) = (H, lab)

=⇒ the rank-width parse tree [Ganian and PH, 08]:

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 12 Myhill–Nerode Meets Parameterized. . .

Parse trees for rank-decompositionsParse trees for rank-decompositions

Unlike for tree- or clique- decompositions with obvious parse trees, what is the
“boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank.

• Bilinear product approach of [Courcelle and Kanté, 07]:

– boundary ∼ labeling lab : V (G)→ 2{1,2,...,t} (multi-colouring),

– join ∼ bilinear form g over GF (2)t (i.e. “odd intersection”) s.t.

edge uv ↔ lab(u) · g · lab(v) = 1.

• Join → a composition operator with relabelings f1, f2;

(G1, lab
1) ⊗[g | f1, f2] (G2, lab

2) = (H, lab)

=⇒ the rank-width parse tree [Ganian and PH, 08]:

t-labeling parse tree for G ⇐⇒ rank-width of G ≤ t.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 12 Myhill–Nerode Meets Parameterized. . .

Parse trees for rank-decompositionsParse trees for rank-decompositions

Unlike for tree- or clique- decompositions with obvious parse trees, what is the
“boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank.

• Bilinear product approach of [Courcelle and Kanté, 07]:

– boundary ∼ labeling lab : V (G)→ 2{1,2,...,t} (multi-colouring),

– join ∼ bilinear form g over GF (2)t (i.e. “odd intersection”) s.t.

edge uv ↔ lab(u) · g · lab(v) = 1.

• Join → a composition operator with relabelings f1, f2;

(G1, lab
1) ⊗[g | f1, f2] (G2, lab

2) = (H, lab)

=⇒ the rank-width parse tree [Ganian and PH, 08]:

t-labeling parse tree for G ⇐⇒ rank-width of G ≤ t.

• Independently considered related notion of Rt-join decompositions by
[Bui-Xuan, Telle, and Vatshelle, 08].

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 13 Myhill–Nerode Meets Parameterized. . .

A parse tree. An example generating the cycle C5 (of rank-width 2):

⊙ a

⊙ b ⊙ c ⊙ d ⊙ e

⊗[id | · , ·]

⊗[id | id, 1→2]
⊗[id | id, 1→∅] ⊗[id |1→2, id]

s sss
b {1}

c {1}

d {1}

e {1}
→ s s sss

a {1} b {1}

c {2}

d {2}

e {1}
→ s s

sss
a {1} b ∅

c {2}

d {2}

e {1}
→

→ s s
sss

a b

c

d

e

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 14 Myhill–Nerode Meets Parameterized. . .

4 #SAT – our Sample Application4 #SAT – our Sample Application

• #SAT – counting satisfying assignments of a CNF formula,

a well-known #P-hard problem.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 14 Myhill–Nerode Meets Parameterized. . .

4 #SAT – our Sample Application4 #SAT – our Sample Application

• #SAT – counting satisfying assignments of a CNF formula,

a well-known #P-hard problem.

• FPT solutions on formulas of bounded *-width:

[Fisher, Makowsky, and Ravve, 08] – tree-width and clique-width,
[Samer and Szeider, 10] – tree-width improved.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 14 Myhill–Nerode Meets Parameterized. . .

4 #SAT – our Sample Application4 #SAT – our Sample Application

• #SAT – counting satisfying assignments of a CNF formula,

a well-known #P-hard problem.

• FPT solutions on formulas of bounded *-width:

[Fisher, Makowsky, and Ravve, 08] – tree-width and clique-width,
[Samer and Szeider, 10] – tree-width improved.

• On the other hand. . .

Quote. [Samer and Szeider, 10] – regarding #SAT and clique-width:

. . . A single-exponential algorithm (for #SAT) is due to Fisher, Makowsky,
and Ravve. However, both algorithms rely on clique-width approximation al-
gorithms. The known polynomial-time algorithms for that purpose admit an
exponential approximation error and are of limited practical value.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 14 Myhill–Nerode Meets Parameterized. . .

4 #SAT – our Sample Application4 #SAT – our Sample Application

• #SAT – counting satisfying assignments of a CNF formula,

a well-known #P-hard problem.

• FPT solutions on formulas of bounded *-width:

[Fisher, Makowsky, and Ravve, 08] – tree-width and clique-width,
[Samer and Szeider, 10] – tree-width improved.

• On the other hand. . .

Quote. [Samer and Szeider, 10] – regarding #SAT and clique-width:

. . . A single-exponential algorithm (for #SAT) is due to Fisher, Makowsky,
and Ravve. However, both algorithms rely on clique-width approximation al-
gorithms. The known polynomial-time algorithms for that purpose admit an
exponential approximation error and are of limited practical value.

Where is the problem?

A resulting double-exponential worst-case dependency on a width estimate!

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 15 Myhill–Nerode Meets Parameterized. . .

The problem, again

Quote. [Samer and Szeider, 10] – regarding #SAT and clique-width:

A single-exponential algorithm (for #SAT) is due to Fisher, Makowsky,

and Ravve. However, both algorithms rely on clique-width approximation

algorithms. The known polynomial-time algorithms for that purpose admit

an exponential approximation error and are of limited practical value.

Our answer – considering rank-width:

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 15 Myhill–Nerode Meets Parameterized. . .

The problem, again

Quote. [Samer and Szeider, 10] – regarding #SAT and clique-width:

A single-exponential algorithm (for #SAT) is due to Fisher, Makowsky,

and Ravve. However, both algorithms rely on clique-width approximation

algorithms. The known polynomial-time algorithms for that purpose admit

an exponential approximation error and are of limited practical value.

Our answer – considering rank-width:

• No loss in the promissed width, and yet single-exponential in it.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 15 Myhill–Nerode Meets Parameterized. . .

The problem, again

Quote. [Samer and Szeider, 10] – regarding #SAT and clique-width:

A single-exponential algorithm (for #SAT) is due to Fisher, Makowsky,

and Ravve. However, both algorithms rely on clique-width approximation

algorithms. The known polynomial-time algorithms for that purpose admit

an exponential approximation error and are of limited practical value.

Our answer – considering rank-width:

• No loss in the promissed width, and yet single-exponential in it.

• A clear and rigorous algorithm employing many of the above tricks.

Theorem. [Ganian, PH, Obdržálek, 10] #SAT solved in FPT time

O(t3 · 23t(t+1)/2 · |φ|)

where t is the signed rank-width of the input instance (CNF formula) φ.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 16 Myhill–Nerode Meets Parameterized. . .

Signed graphs of CNF formulasSigned graphs of CNF formulas

• The common way to measure structure / width of a formula:

vertices := V ∪ C variables and clauses of φ.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 16 Myhill–Nerode Meets Parameterized. . .

Signed graphs of CNF formulasSigned graphs of CNF formulas

• The common way to measure structure / width of a formula:

vertices := V ∪ C variables and clauses of φ.

edges := E+ ∪ E− where

xicj ∈ E+ if cj = (· · · ∨ xi . . .) ∈ C, and

xicj ∈ E− if cj = (· · · ∨ ¬xi . . .) ∈ C.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 16 Myhill–Nerode Meets Parameterized. . .

Signed graphs of CNF formulasSigned graphs of CNF formulas

• The common way to measure structure / width of a formula:

vertices := V ∪ C variables and clauses of φ.

edges := E+ ∪ E− where

xicj ∈ E+ if cj = (· · · ∨ xi . . .) ∈ C, and

xicj ∈ E− if cj = (· · · ∨ ¬xi . . .) ∈ C.

• Signed clique-width – using distinct operations for E+ and E−

(ordinary clique-width is not enough!).

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 16 Myhill–Nerode Meets Parameterized. . .

Signed graphs of CNF formulasSigned graphs of CNF formulas

• The common way to measure structure / width of a formula:

vertices := V ∪ C variables and clauses of φ.

edges := E+ ∪ E− where

xicj ∈ E+ if cj = (· · · ∨ xi . . .) ∈ C, and

xicj ∈ E− if cj = (· · · ∨ ¬xi . . .) ∈ C.

• Signed clique-width – using distinct operations for E+ and E−

(ordinary clique-width is not enough!).

• Signed rank-width – using separate joins for E+ and E−, formally

G = G+ ∪G− on the same vertex set (sim. bi-rank-width).

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 16 Myhill–Nerode Meets Parameterized. . .

Signed graphs of CNF formulasSigned graphs of CNF formulas

• The common way to measure structure / width of a formula:

vertices := V ∪ C variables and clauses of φ.

edges := E+ ∪ E− where

xicj ∈ E+ if cj = (· · · ∨ xi . . .) ∈ C, and

xicj ∈ E− if cj = (· · · ∨ ¬xi . . .) ∈ C.

• Signed clique-width – using distinct operations for E+ and E−

(ordinary clique-width is not enough!).

• Signed rank-width – using separate joins for E+ and E−, formally

G = G+ ∪G− on the same vertex set (sim. bi-rank-width).

Then
G1 ⊕G2 =

(
G+

1 ⊕G+
2

)
∪
(
G−1 ⊕G−2

)
and the same decomposition is used.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 17 Myhill–Nerode Meets Parameterized. . .

The canonical equivalence for SATThe canonical equivalence for SAT

• Corresp. G = G[φ] signed graph ←→ φ = φ[G] CNF formula.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 17 Myhill–Nerode Meets Parameterized. . .

The canonical equivalence for SATThe canonical equivalence for SAT

• Corresp. G = G[φ] signed graph ←→ φ = φ[G] CNF formula.

• Valuation νG : V → {0, 1}.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 17 Myhill–Nerode Meets Parameterized. . .

The canonical equivalence for SATThe canonical equivalence for SAT

• Corresp. G = G[φ] signed graph ←→ φ = φ[G] CNF formula.

• Valuation νG : V → {0, 1}.

• The canonical equivalence: (G1, ν1) ≈SAT,t (G2, ν2) iff, for all (H, νH),

ν1 ∪ νH |= φ[G1 ⊗H] ⇐⇒ ν2 ∪ νH |= φ[G2 ⊗H] .

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 17 Myhill–Nerode Meets Parameterized. . .

The canonical equivalence for SATThe canonical equivalence for SAT

• Corresp. G = G[φ] signed graph ←→ φ = φ[G] CNF formula.

• Valuation νG : V → {0, 1}.

• The canonical equivalence: (G1, ν1) ≈SAT,t (G2, ν2) iff, for all (H, νH),

ν1 ∪ νH |= φ[G1 ⊗H] ⇐⇒ ν2 ∪ νH |= φ[G2 ⊗H] .

Proposition. (G1, ν1) ≈SAT,t (G2, ν2) if the foll. equal for (Gi, νi), i = 1, 2:

– the set of G+
i -labels occuring at true (under νi) variables,

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 17 Myhill–Nerode Meets Parameterized. . .

The canonical equivalence for SATThe canonical equivalence for SAT

• Corresp. G = G[φ] signed graph ←→ φ = φ[G] CNF formula.

• Valuation νG : V → {0, 1}.

• The canonical equivalence: (G1, ν1) ≈SAT,t (G2, ν2) iff, for all (H, νH),

ν1 ∪ νH |= φ[G1 ⊗H] ⇐⇒ ν2 ∪ νH |= φ[G2 ⊗H] .

Proposition. (G1, ν1) ≈SAT,t (G2, ν2) if the foll. equal for (Gi, νi), i = 1, 2:

– the set of G+
i -labels occuring at true (under νi) variables,

– analog., the set of G−i -labels of false (under νi) variables, and

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 17 Myhill–Nerode Meets Parameterized. . .

The canonical equivalence for SATThe canonical equivalence for SAT

• Corresp. G = G[φ] signed graph ←→ φ = φ[G] CNF formula.

• Valuation νG : V → {0, 1}.

• The canonical equivalence: (G1, ν1) ≈SAT,t (G2, ν2) iff, for all (H, νH),

ν1 ∪ νH |= φ[G1 ⊗H] ⇐⇒ ν2 ∪ νH |= φ[G2 ⊗H] .

Proposition. (G1, ν1) ≈SAT,t (G2, ν2) if the foll. equal for (Gi, νi), i = 1, 2:

– the set of G+
i -labels occuring at true (under νi) variables,

– analog., the set of G−i -labels of false (under νi) variables, and

– the set of pair labels of all unsatisfied (under νi) clauses of φ[Gi].

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 17 Myhill–Nerode Meets Parameterized. . .

The canonical equivalence for SATThe canonical equivalence for SAT

• Corresp. G = G[φ] signed graph ←→ φ = φ[G] CNF formula.

• Valuation νG : V → {0, 1}.

• The canonical equivalence: (G1, ν1) ≈SAT,t (G2, ν2) iff, for all (H, νH),

ν1 ∪ νH |= φ[G1 ⊗H] ⇐⇒ ν2 ∪ νH |= φ[G2 ⊗H] .

Proposition. (G1, ν1) ≈SAT,t (G2, ν2) if the foll. equal for (Gi, νi), i = 1, 2:

– the set of G+
i -labels occuring at true (under νi) variables,

– analog., the set of G−i -labels of false (under νi) variables, and

– the set of pair labels of all unsatisfied (under νi) clauses of φ[Gi].

Easy to prove. . . , but does it help?

Subsets of labels from 2{1,2,...,t} −→ Ω
(
22t)

classes!

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 18 Myhill–Nerode Meets Parameterized. . .

Getting coarser equivalences for SATGetting coarser equivalences for SAT

We improve the runtime with the following two main tricks:

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 18 Myhill–Nerode Meets Parameterized. . .

Getting coarser equivalences for SATGetting coarser equivalences for SAT

We improve the runtime with the following two main tricks:

• Linear algebra:

Subset of labels −→ the spanning subspace in GF (2)t.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 18 Myhill–Nerode Meets Parameterized. . .

Getting coarser equivalences for SATGetting coarser equivalences for SAT

We improve the runtime with the following two main tricks:

• Linear algebra:

Subset of labels −→ the spanning subspace in GF (2)t.

Theorem. [Goldman and Rota, 69] The number of subspaces of GF (2)t is

S(t) ≤ 2t(t+1)/4 for all t ≥ 12.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 18 Myhill–Nerode Meets Parameterized. . .

Getting coarser equivalences for SATGetting coarser equivalences for SAT

We improve the runtime with the following two main tricks:

• Linear algebra:

Subset of labels −→ the spanning subspace in GF (2)t.

Theorem. [Goldman and Rota, 69] The number of subspaces of GF (2)t is

S(t) ≤ 2t(t+1)/4 for all t ≥ 12.

• Expectation:

Labels of unsat. clauses −→ expected labels of variables in H,
and the subspace trick once again.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 18 Myhill–Nerode Meets Parameterized. . .

Getting coarser equivalences for SATGetting coarser equivalences for SAT

We improve the runtime with the following two main tricks:

• Linear algebra:

Subset of labels −→ the spanning subspace in GF (2)t.

Theorem. [Goldman and Rota, 69] The number of subspaces of GF (2)t is

S(t) ≤ 2t(t+1)/4 for all t ≥ 12.

• Expectation:

Labels of unsat. clauses −→ expected labels of variables in H,
and the subspace trick once again.

In other words, ≈SAT,t “suitably restricted” to (H, νH)’s of the expected
label subspaces of its false and true variables. . .

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 18 Myhill–Nerode Meets Parameterized. . .

Getting coarser equivalences for SATGetting coarser equivalences for SAT

We improve the runtime with the following two main tricks:

• Linear algebra:

Subset of labels −→ the spanning subspace in GF (2)t.

Theorem. [Goldman and Rota, 69] The number of subspaces of GF (2)t is

S(t) ≤ 2t(t+1)/4 for all t ≥ 12.

• Expectation:

Labels of unsat. clauses −→ expected labels of variables in H,
and the subspace trick once again.

In other words, ≈SAT,t “suitably restricted” to (H, νH)’s of the expected
label subspaces of its false and true variables. . .

Conclusion. Breaking the satisfying assignments of φ into S(t)4 classes,

and processing a node of the parse tree in O∗
(
S(t)6

)
. 2

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 19 Myhill–Nerode Meets Parameterized. . .

5 Final remarks5 Final remarks

Our talk suggests (tries to, at least) the following research directions. . .
as ordered from the very general one to the very concrete example:

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 19 Myhill–Nerode Meets Parameterized. . .

5 Final remarks5 Final remarks

Our talk suggests (tries to, at least) the following research directions. . .
as ordered from the very general one to the very concrete example:

• The use of Myhill–Nerode type congruences in dynamic progr. alg. design

– can give very rigorous proofs for algorithms (almost for free), and

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 19 Myhill–Nerode Meets Parameterized. . .

5 Final remarks5 Final remarks

Our talk suggests (tries to, at least) the following research directions. . .
as ordered from the very general one to the very concrete example:

• The use of Myhill–Nerode type congruences in dynamic progr. alg. design

– can give very rigorous proofs for algorithms (almost for free), and

– immediately provides a rather simple test of “what is possible”.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 19 Myhill–Nerode Meets Parameterized. . .

5 Final remarks5 Final remarks

Our talk suggests (tries to, at least) the following research directions. . .
as ordered from the very general one to the very concrete example:

• The use of Myhill–Nerode type congruences in dynamic progr. alg. design

– can give very rigorous proofs for algorithms (almost for free), and

– immediately provides a rather simple test of “what is possible”.

• Rank-width to be used in place of clique-width in param. algorithms.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 19 Myhill–Nerode Meets Parameterized. . .

5 Final remarks5 Final remarks

Our talk suggests (tries to, at least) the following research directions. . .
as ordered from the very general one to the very concrete example:

• The use of Myhill–Nerode type congruences in dynamic progr. alg. design

– can give very rigorous proofs for algorithms (almost for free), and

– immediately provides a rather simple test of “what is possible”.

• Rank-width to be used in place of clique-width in param. algorithms.

• Rank-width is useful for variants of SAT via the signed graph.

'

&

$

%

'

&

$

%P. Hliněný, PCCR 2010, Brno CZ 19 Myhill–Nerode Meets Parameterized. . .

5 Final remarks5 Final remarks

Our talk suggests (tries to, at least) the following research directions. . .
as ordered from the very general one to the very concrete example:

• The use of Myhill–Nerode type congruences in dynamic progr. alg. design

– can give very rigorous proofs for algorithms (almost for free), and

– immediately provides a rather simple test of “what is possible”.

• Rank-width to be used in place of clique-width in param. algorithms.

• Rank-width is useful for variants of SAT via the signed graph.

THANK YOU FOR YOUR ATTENTION

	Decomposing the Input
	The Concept of a Canonical Equivalence
	Measuring Graphs: Clique-width and Rank-width
	#SAT -- our Sample Application
	Final remarks

