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1 Measuring Graph “Width”1 Measuring Graph “Width”

Motivation: Trees are easy to understand and to handle, so how “tree-like” our
graph is in some well-defined sense?

• A topic occuring both in pure theory (e.g. Graph Minors),
and in algorithms (Fixed parameter tractability)
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1 Measuring Graph “Width”1 Measuring Graph “Width”

Motivation: Trees are easy to understand and to handle, so how “tree-like” our
graph is in some well-defined sense?

• A topic occuring both in pure theory (e.g. Graph Minors),
and in algorithms (Fixed parameter tractability)

• Many definitions known,
e.g. tree-width, path-width, branch-width, DAG-width . . .
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1 Measuring Graph “Width”1 Measuring Graph “Width”

Motivation: Trees are easy to understand and to handle, so how “tree-like” our
graph is in some well-defined sense?

• A topic occuring both in pure theory (e.g. Graph Minors),
and in algorithms (Fixed parameter tractability)

• Many definitions known,
e.g. tree-width, path-width, branch-width, DAG-width . . .

• Clique-width – another graph complexity measure [Courcelle and Olariu],
defined by operations on vertex–labeled graphs:

– create a new vertex with label i,

– take the disjoint union of two labeled graphs,

– add all edges between vertices of label i and label j,

– and relabel all vertices with label i to have label j.
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Rank-DecompositionRank-Decomposition

• [Oum and Seymour, 03] Bringing the branch-decomposition approach to
measure “complexity” of vertex subsets X ⊆ V (G) via cut-rank:

%G(X) = rank of

V (G)−X

X

0 1 0 0 1
1 0 1 0 0
1 0 0 1 1

 modulo 2
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%P. Hliněný and R. Ganian, AGT 2009 3 Parse trees, Myhill–Nerode, and rank-width

Rank-DecompositionRank-Decomposition

• [Oum and Seymour, 03] Bringing the branch-decomposition approach to
measure “complexity” of vertex subsets X ⊆ V (G) via cut-rank:

%G(X) = rank of

V (G)−X

X

0 1 0 0 1
1 0 1 0 0
1 0 0 1 1

 modulo 2

Definition. Decompose V (G) one-to-one into the leaves of a subcubic tree.
Then

fX V (G) −X

width(e) = %G(X) where X is displayed by f in the tree.
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Rank-DecompositionRank-Decomposition

• [Oum and Seymour, 03] Bringing the branch-decomposition approach to
measure “complexity” of vertex subsets X ⊆ V (G) via cut-rank:

%G(X) = rank of

V (G)−X

X

0 1 0 0 1
1 0 1 0 0
1 0 0 1 1

 modulo 2

Definition. Decompose V (G) one-to-one into the leaves of a subcubic tree.
Then

fX V (G) −X

width(e) = %G(X) where X is displayed by f in the tree.

Rank-width = minrank-decs. of G max
{

width(f) : f tree edge
}
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An example. Cycle C5 and its rank-decomposition of width 2:

s s
s

s
s

a b

c

d

e

a b

cd

e
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0 0 1
1 0 0

« 0@1 0
0 1
0 0
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Comparing these twoComparing these two

• Rank-width t is related to clique-width k as t ≤ k ≤ 2t+1 − 1.

• Both these measures are NP -hard in general.
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Comparing these twoComparing these two

• Rank-width t is related to clique-width k as t ≤ k ≤ 2t+1 − 1.

• Both these measures are NP -hard in general.

• Clique-width expressions seem to be much more “explicit” than rank-
decompositions, and more suited for design of actual algorithms.

On the other hand, however. . .
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Comparing these twoComparing these two

• Rank-width t is related to clique-width k as t ≤ k ≤ 2t+1 − 1.

• Both these measures are NP -hard in general.

• Clique-width expressions seem to be much more “explicit” than rank-
decompositions, and more suited for design of actual algorithms.

On the other hand, however. . .

• [Corneil and Rotics, 05] Clique-width can really be up to exponentially
higher than rank-width.
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Comparing these twoComparing these two

• Rank-width t is related to clique-width k as t ≤ k ≤ 2t+1 − 1.

• Both these measures are NP -hard in general.

• Clique-width expressions seem to be much more “explicit” than rank-
decompositions, and more suited for design of actual algorithms.

On the other hand, however. . .

• [Corneil and Rotics, 05] Clique-width can really be up to exponentially
higher than rank-width.

• [Oum and PH, 07] There is an FPT algorithm for computing an optimal
rank-decomposition of a graph in time O(f(t) · n3).
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Comparing these twoComparing these two

• Rank-width t is related to clique-width k as t ≤ k ≤ 2t+1 − 1.

• Both these measures are NP -hard in general.

• Clique-width expressions seem to be much more “explicit” than rank-
decompositions, and more suited for design of actual algorithms.

On the other hand, however. . .

• [Corneil and Rotics, 05] Clique-width can really be up to exponentially
higher than rank-width.

• [Oum and PH, 07] There is an FPT algorithm for computing an optimal
rank-decomposition of a graph in time O(f(t) · n3).

• And some new results suggest that algorithms designed on rank-decompo-
sitions run faster than those designed on clique-width expressions. . .
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2 Dynamic Algorithms and Parse Trees2 Dynamic Algorithms and Parse Trees

• A typical idea for a dynamic algorithm on a “tree-like” decomposition:

– Capture all relevant information about the problem on a subtree.

– Process this information bottom-up in the decomposition.

– Importantly, this information has size depending only on k, and not
on the graph size.
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2 Dynamic Algorithms and Parse Trees2 Dynamic Algorithms and Parse Trees

• A typical idea for a dynamic algorithm on a “tree-like” decomposition:

– Capture all relevant information about the problem on a subtree.

– Process this information bottom-up in the decomposition.

– Importantly, this information has size depending only on k, and not
on the graph size.

• How to understand words “all relevant information about the problem”?

Look for inspiration in traditional finite automata theory!
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%P. Hliněný and R. Ganian, AGT 2009 6 Parse trees, Myhill–Nerode, and rank-width

2 Dynamic Algorithms and Parse Trees2 Dynamic Algorithms and Parse Trees

• A typical idea for a dynamic algorithm on a “tree-like” decomposition:

– Capture all relevant information about the problem on a subtree.

– Process this information bottom-up in the decomposition.

– Importantly, this information has size depending only on k, and not
on the graph size.

• How to understand words “all relevant information about the problem”?

Look for inspiration in traditional finite automata theory!

Theorem. [Myhill–Nerode, folklore]
Finite automaton states (this is our information) ↔

right congruence classes on the words (of a regular language).
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2 Dynamic Algorithms and Parse Trees2 Dynamic Algorithms and Parse Trees

• A typical idea for a dynamic algorithm on a “tree-like” decomposition:

– Capture all relevant information about the problem on a subtree.

– Process this information bottom-up in the decomposition.

– Importantly, this information has size depending only on k, and not
on the graph size.

• How to understand words “all relevant information about the problem”?

Look for inspiration in traditional finite automata theory!

Theorem. [Myhill–Nerode, folklore]
Finite automaton states (this is our information) ↔

right congruence classes on the words (of a regular language).

• Combinatorial extensions of this concept appeared e.g. in the works
[Abrahamson and Fellows, 93], [PH, 03], or [Ganian and PH, 08].
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The concept of a canonical equivalenceThe concept of a canonical equivalence

How does the right congruence extend
from formal words with the concatention operation

to, say, graphs with a kind of a “join” operation?
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The concept of a canonical equivalenceThe concept of a canonical equivalence

How does the right congruence extend
from formal words with the concatention operation

to, say, graphs with a kind of a “join” operation?

• Consider the universe of graphs Uk implicitly associated with

– some (small) distinguished “boundary of size k” of each graph, and

– a join operation G⊕H acting on the boundaries of disjoint G, H.

• Let P be a graph property we study.
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The concept of a canonical equivalenceThe concept of a canonical equivalence

How does the right congruence extend
from formal words with the concatention operation

to, say, graphs with a kind of a “join” operation?

• Consider the universe of graphs Uk implicitly associated with

– some (small) distinguished “boundary of size k” of each graph, and

– a join operation G⊕H acting on the boundaries of disjoint G, H.

• Let P be a graph property we study.

Definition. The canonical equivalence of P on Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊕H ∈ P ⇐⇒ G2 ⊕H ∈ P .



'

&

$

%

'

&

$
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The concept of a canonical equivalenceThe concept of a canonical equivalence

How does the right congruence extend
from formal words with the concatention operation

to, say, graphs with a kind of a “join” operation?

• Consider the universe of graphs Uk implicitly associated with

– some (small) distinguished “boundary of size k” of each graph, and

– a join operation G⊕H acting on the boundaries of disjoint G, H.

• Let P be a graph property we study.

Definition. The canonical equivalence of P on Uk is defined:

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊕H ∈ P ⇐⇒ G2 ⊕H ∈ P .

• Informally, the classes of ≈P,k capture all information about the property
P that can “cross” our graph boundary of size k

(regardless of actual meaning of “boundary” and “join”).
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Parse Trees of decompositionsParse Trees of decompositions

To give a real usable meaning to the above terms “boundary, join, and universe”
we set them in the context of tree-shaped decompositions as follows. . .
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Parse Trees of decompositionsParse Trees of decompositions

To give a real usable meaning to the above terms “boundary, join, and universe”
we set them in the context of tree-shaped decompositions as follows. . .

• Considering a rooted ???-decomposition of a graph G,
we build on the following correspondence:

boundary size k ↔ restricted bag-size / width / etc in decomposition

join operator ⊕ ↔ the way pieces of G “stick together” in decomp.
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Parse Trees of decompositionsParse Trees of decompositions

To give a real usable meaning to the above terms “boundary, join, and universe”
we set them in the context of tree-shaped decompositions as follows. . .

• Considering a rooted ???-decomposition of a graph G,
we build on the following correspondence:

boundary size k ↔ restricted bag-size / width / etc in decomposition

join operator ⊕ ↔ the way pieces of G “stick together” in decomp.

• This can be (visually) seen as. . .

...

...
...

...
...

...
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3 Parse Trees for Rank-Decompositions3 Parse Trees for Rank-Decompositions

Unlike for branch- or tree-decompositions with obvious parse trees, what is the
“boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank!
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3 Parse Trees for Rank-Decompositions3 Parse Trees for Rank-Decompositions

Unlike for branch- or tree-decompositions with obvious parse trees, what is the
“boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank!

• Bilinear product approach of [Courcelle and Kanté, 07]:

– boundary ∼ labeling lab : V (G)→ 2{1,2,...,t} (multi-colouring),
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3 Parse Trees for Rank-Decompositions3 Parse Trees for Rank-Decompositions

Unlike for branch- or tree-decompositions with obvious parse trees, what is the
“boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank!

• Bilinear product approach of [Courcelle and Kanté, 07]:

– boundary ∼ labeling lab : V (G)→ 2{1,2,...,t} (multi-colouring),

– join ∼ bilinear form g over GF (2)t (i.e. “odd intersection”) s.t.

edge uv ↔ lab(u) · g · lab(v) = 1.
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3 Parse Trees for Rank-Decompositions3 Parse Trees for Rank-Decompositions

Unlike for branch- or tree-decompositions with obvious parse trees, what is the
“boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank!

• Bilinear product approach of [Courcelle and Kanté, 07]:

– boundary ∼ labeling lab : V (G)→ 2{1,2,...,t} (multi-colouring),

– join ∼ bilinear form g over GF (2)t (i.e. “odd intersection”) s.t.

edge uv ↔ lab(u) · g · lab(v) = 1.

• Join → a composition operator with relabelings f1, f2;

(G1, lab
1) ⊗[g | f1, f2] (G2, lab

2) = (H, lab)

=⇒ the rank-width parse tree [Ganian and PH, 08]:
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3 Parse Trees for Rank-Decompositions3 Parse Trees for Rank-Decompositions

Unlike for branch- or tree-decompositions with obvious parse trees, what is the
“boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank!

• Bilinear product approach of [Courcelle and Kanté, 07]:

– boundary ∼ labeling lab : V (G)→ 2{1,2,...,t} (multi-colouring),

– join ∼ bilinear form g over GF (2)t (i.e. “odd intersection”) s.t.

edge uv ↔ lab(u) · g · lab(v) = 1.

• Join → a composition operator with relabelings f1, f2;

(G1, lab
1) ⊗[g | f1, f2] (G2, lab

2) = (H, lab)

=⇒ the rank-width parse tree [Ganian and PH, 08]:

k-labeling parse tree for G ⇐⇒ rank-width of G ≤ t.
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3 Parse Trees for Rank-Decompositions3 Parse Trees for Rank-Decompositions

Unlike for branch- or tree-decompositions with obvious parse trees, what is the
“boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank!

• Bilinear product approach of [Courcelle and Kanté, 07]:

– boundary ∼ labeling lab : V (G)→ 2{1,2,...,t} (multi-colouring),

– join ∼ bilinear form g over GF (2)t (i.e. “odd intersection”) s.t.

edge uv ↔ lab(u) · g · lab(v) = 1.

• Join → a composition operator with relabelings f1, f2;

(G1, lab
1) ⊗[g | f1, f2] (G2, lab

2) = (H, lab)

=⇒ the rank-width parse tree [Ganian and PH, 08]:

k-labeling parse tree for G ⇐⇒ rank-width of G ≤ t.

• Independently considered related notion of Rk-join decompositions by
[Bui-Xuan, Telle, and Vatshelle, 08].
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Parse tree. An example generating the cycle C5 (of rank-width 2):

⊙ a

⊙ b ⊙ c ⊙ d ⊙ e

⊗[id | · , · ]

⊗[id | id, 1→2]
⊗[id | id, 1→∅] ⊗[id |1→2, id]

s sss
b {1}

c {1}

d {1}

e {1}
→ s s sss

a {1} b {1}

c {2}

d {2}

e {1}
→ s s

sss
a {1} b ∅

c {2}

d {2}

e {1}
→

→ s s
sss

a b

c

d

e
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4 Canonical Equivalence and Algorithms4 Canonical Equivalence and Algorithms

So, how can one use a canonical equivalence when designing actual algorithms?
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4 Canonical Equivalence and Algorithms4 Canonical Equivalence and Algorithms

So, how can one use a canonical equivalence when designing actual algorithms?

• Let us recall. . .

Theorem. [Myhill–Nerode, folklore]
A finite automaton accepts a given language ⇐⇒

the number of right congruence classes on the words is finite.
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4 Canonical Equivalence and Algorithms4 Canonical Equivalence and Algorithms

So, how can one use a canonical equivalence when designing actual algorithms?

• Let us recall. . .

Theorem. [Myhill–Nerode, folklore]
A finite automaton accepts a given language ⇐⇒

the number of right congruence classes on the words is finite.

• This automaton is constructible and can be emulated in linear time.
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4 Canonical Equivalence and Algorithms4 Canonical Equivalence and Algorithms

So, how can one use a canonical equivalence when designing actual algorithms?

• Let us recall. . .

Theorem. [Myhill–Nerode, folklore]
A finite automaton accepts a given language ⇐⇒

the number of right congruence classes on the words is finite.

• This automaton is constructible and can be emulated in linear time.

• For parse trees, a straightforward generalization reads:

Theorem. (Analogy of [Myhill–Nerode])

P is accepted by a finite tree automaton on parse trees of boundary size ≤ k
⇐⇒ the canonical equivalence ≈P,k has finitely many classes on Uk.

(Actually, this is a “metatheorem” which requires several more unspoken tech-
nical conditions on the parse trees to hold true. . . )
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Extended canonical equivalenceExtended canonical equivalence

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊕H |= P ⇐⇒ G2 ⊕H |= P .

• To apply this concept to predicates P(X1, . . . ) with free variables, we
extend the universe Uk to partially-equipped graphs of boundary ≤ k.
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Extended canonical equivalenceExtended canonical equivalence

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊕H |= P ⇐⇒ G2 ⊕H |= P .

• To apply this concept to predicates P(X1, . . . ) with free variables, we
extend the universe Uk to partially-equipped graphs of boundary ≤ k.

Theorem. [Ganian and PH, 08]

Suppose φ is a formula in the language MS1. Then the canonical equivalence
≈φ,t has finite index in the universe of t-labeled partially-equipped graphs.
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Extended canonical equivalenceExtended canonical equivalence

G1 ≈P,k G2 for any G1, G2 ∈ Uk if and only if, for all H ∈ Uk,

G1 ⊕H |= P ⇐⇒ G2 ⊕H |= P .

• To apply this concept to predicates P(X1, . . . ) with free variables, we
extend the universe Uk to partially-equipped graphs of boundary ≤ k.

Theorem. [Ganian and PH, 08]

Suppose φ is a formula in the language MS1. Then the canonical equivalence
≈φ,t has finite index in the universe of t-labeled partially-equipped graphs.

• From that one easily concludes an older result:

Theorem. [Courcelle, Makowsky, and Rotics 00]

All LinEMSO graph optimization problems (in MS1 language – only vertices!)
on the graphs of bounded rank-width t can be solved in time O(f(t) · n).

Core idea: In dynamic processing of the given parse tree, record optimal repre-
sentatives of each class of the extended canonical equivalence ≈φ,t . . .
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Faster new algorithmsFaster new algorithms

Furthermore, the concept of a canonical equivalence gives us a fine control over
the runtime dependency on the width parameter – we simply estimate its index.

Consider the universe of partially-equipped t-labeled graphs (of rank-width ≤ t).

• As shown already by [Bui-Xuan, Telle, and Vatshelle, 08];

the canonical equivalence of independent-set(X) has index ≤ 2t(t+1)/4

(this relates to the number of subspaces of GF (2)t).
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Faster new algorithmsFaster new algorithms

Furthermore, the concept of a canonical equivalence gives us a fine control over
the runtime dependency on the width parameter – we simply estimate its index.

Consider the universe of partially-equipped t-labeled graphs (of rank-width ≤ t).

• As shown already by [Bui-Xuan, Telle, and Vatshelle, 08];

the canonical equivalence of independent-set(X) has index ≤ 2t(t+1)/4

(this relates to the number of subspaces of GF (2)t).

Theorem. [Bui-Xuan, Telle, and Vatshelle, 08]
The independent set problem can be solved in time O

(
2t(t+1)/2 · t3 · |V (G)|),

and the c-colourability (fixed c) in time O
(
2ct(t+1)/2 · ct3 · |V (G)|).
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Faster new algorithmsFaster new algorithms

Furthermore, the concept of a canonical equivalence gives us a fine control over
the runtime dependency on the width parameter – we simply estimate its index.

Consider the universe of partially-equipped t-labeled graphs (of rank-width ≤ t).

• As shown already by [Bui-Xuan, Telle, and Vatshelle, 08];

the canonical equivalence of independent-set(X) has index ≤ 2t(t+1)/4

(this relates to the number of subspaces of GF (2)t).

Theorem. [Bui-Xuan, Telle, and Vatshelle, 08]
The independent set problem can be solved in time O

(
2t(t+1)/2 · t3 · |V (G)|),

and the c-colourability (fixed c) in time O
(
2ct(t+1)/2 · ct3 · |V (G)|).

• An extesion: the canonical equiv. of clique(X) has index ≤ 2(t+1)(t+2)/4.
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Faster new algorithmsFaster new algorithms

Furthermore, the concept of a canonical equivalence gives us a fine control over
the runtime dependency on the width parameter – we simply estimate its index.

Consider the universe of partially-equipped t-labeled graphs (of rank-width ≤ t).

• As shown already by [Bui-Xuan, Telle, and Vatshelle, 08];

the canonical equivalence of independent-set(X) has index ≤ 2t(t+1)/4

(this relates to the number of subspaces of GF (2)t).

Theorem. [Bui-Xuan, Telle, and Vatshelle, 08]
The independent set problem can be solved in time O

(
2t(t+1)/2 · t3 · |V (G)|),

and the c-colourability (fixed c) in time O
(
2ct(t+1)/2 · ct3 · |V (G)|).

• An extesion: the canonical equiv. of clique(X) has index ≤ 2(t+1)(t+2)/4.

Theorem. [Ganian and PH, 08]
Split graphs can be recognized in time O

(
2(t+1)2 · t3 · |V (G)|), and so called

c-co-colourability problem can be solved in time O
(
2ct(t+1) · ct3 · |V (G)|).
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5 The new extension: PCE Scheme5 The new extension: PCE Scheme

(PCE = prepartitioned canonical equivalence)

Starting point: The dominating-set(X) predicate has a double-exponential
number of canonical equivalence classes. Yet solvable with single-exponential
dependency on the rank-width [Bui-Xuan, Telle, and Vatshelle, 08].
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5 The new extension: PCE Scheme5 The new extension: PCE Scheme

(PCE = prepartitioned canonical equivalence)

Starting point: The dominating-set(X) predicate has a double-exponential
number of canonical equivalence classes. Yet solvable with single-exponential
dependency on the rank-width [Bui-Xuan, Telle, and Vatshelle, 08].

How to cope with this in our formalism?

• Canonical equivalence records only the information we already know.
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5 The new extension: PCE Scheme5 The new extension: PCE Scheme

(PCE = prepartitioned canonical equivalence)

Starting point: The dominating-set(X) predicate has a double-exponential
number of canonical equivalence classes. Yet solvable with single-exponential
dependency on the rank-width [Bui-Xuan, Telle, and Vatshelle, 08].

How to cope with this in our formalism?

• Canonical equivalence records only the information we already know.

• What can we do with the future information we get from further dynamic
processing of our graph?
Possible at all?
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5 The new extension: PCE Scheme5 The new extension: PCE Scheme

(PCE = prepartitioned canonical equivalence)

Starting point: The dominating-set(X) predicate has a double-exponential
number of canonical equivalence classes. Yet solvable with single-exponential
dependency on the rank-width [Bui-Xuan, Telle, and Vatshelle, 08].

How to cope with this in our formalism?

• Canonical equivalence records only the information we already know.

• What can we do with the future information we get from further dynamic
processing of our graph?
Possible at all?

• Yes, we work with an “expectation” of future graph data (of H), and
record known information wrt. all these possible “expectations”.

Recall: G1 ≈P,k G2 for any G1, G2 ∈ Ut if and only if, for all H ∈ Ut,
G1 ⊕H |= P ⇐⇒ G2 ⊕H |= P .
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What is a PCE schemeWhat is a PCE scheme

Consider the universe Ut of part.-equipped t-labeled graphs (of rank-width ≤ t).

Definition. A property π has a prepartitioned canonical equivalence scheme
(PCE scheme) if, for all t, there exist partitions Bt and ABt , B ∈ Bt, of Ut:

– Classes of Bt present our “expectation” of future data (graph H).

– Wrt. particular expectation B ∈ Bt, we record only a class of ABt
the (so far processed) graph G1 belongs to.



'

&

$

%

'

&

$
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What is a PCE schemeWhat is a PCE scheme

Consider the universe Ut of part.-equipped t-labeled graphs (of rank-width ≤ t).

Definition. A property π has a prepartitioned canonical equivalence scheme
(PCE scheme) if, for all t, there exist partitions Bt and ABt , B ∈ Bt, of Ut:

– Classes of Bt present our “expectation” of future data (graph H).

– Wrt. particular expectation B ∈ Bt, we record only a class of ABt
the (so far processed) graph G1 belongs to.

(i) Bt is “compatible” with the composition oper. occuring in the parse trees.
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What is a PCE schemeWhat is a PCE scheme

Consider the universe Ut of part.-equipped t-labeled graphs (of rank-width ≤ t).

Definition. A property π has a prepartitioned canonical equivalence scheme
(PCE scheme) if, for all t, there exist partitions Bt and ABt , B ∈ Bt, of Ut:

– Classes of Bt present our “expectation” of future data (graph H).

– Wrt. particular expectation B ∈ Bt, we record only a class of ABt
the (so far processed) graph G1 belongs to.

(i) Bt is “compatible” with the composition oper. occuring in the parse trees.

(ii) The ABt -class of our graph is “uniq. determined” from a Bt-expectation.
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What is a PCE schemeWhat is a PCE scheme

Consider the universe Ut of part.-equipped t-labeled graphs (of rank-width ≤ t).

Definition. A property π has a prepartitioned canonical equivalence scheme
(PCE scheme) if, for all t, there exist partitions Bt and ABt , B ∈ Bt, of Ut:

– Classes of Bt present our “expectation” of future data (graph H).

– Wrt. particular expectation B ∈ Bt, we record only a class of ABt
the (so far processed) graph G1 belongs to.

(i) Bt is “compatible” with the composition oper. occuring in the parse trees.

(ii) The ABt -class of our graph is “uniq. determined” from a Bt-expectation.

(iii) There is a constant d independent of t such that the following equivalence
∼A,Bπ on A has index ≤ d (even d = 1) for all B ∈ Bt and A ∈ ABt :

It is Ḡ1 ∼A,Bπ Ḡ2 if and only if Ḡ1, Ḡ2 ∈ A and

Ḡ1 ⊗ H̄ |= π ⇐⇒ Ḡ2 ⊗ H̄ |= π for all H̄ ∈ B.
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%P. Hliněný and R. Ganian, AGT 2009 16 Parse trees, Myhill–Nerode, and rank-width

Algorithms coming from PCE schemesAlgorithms coming from PCE schemes

• Re-using the idea of an independent-set canonical classes, and employing
“expectations”, one gets:

Theorem. cf. [Bui-Xuan, Telle, and Vatshelle, 08]
The dominating set problem can be solved in time O

(
23t(t+1)/4 · t3 · |V (G)|).
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Algorithms coming from PCE schemesAlgorithms coming from PCE schemes

• Re-using the idea of an independent-set canonical classes, and employing
“expectations”, one gets:

Theorem. cf. [Bui-Xuan, Telle, and Vatshelle, 08]
The dominating set problem can be solved in time O

(
23t(t+1)/4 · t3 · |V (G)|).

• Furthermore, with some more involved linear algebra;

Theorem. [Ganian and PH, 08] The acyclic-set(X) and connected-set(X)

predicates have PCE schemes of “size” 2O(t2).
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Algorithms coming from PCE schemesAlgorithms coming from PCE schemes

• Re-using the idea of an independent-set canonical classes, and employing
“expectations”, one gets:

Theorem. cf. [Bui-Xuan, Telle, and Vatshelle, 08]
The dominating set problem can be solved in time O

(
23t(t+1)/4 · t3 · |V (G)|).

• Furthermore, with some more involved linear algebra;

Theorem. [Ganian and PH, 08] The acyclic-set(X) and connected-set(X)

predicates have PCE schemes of “size” 2O(t2).

Corrolaries.

• The acyclic colouring problem solvable in O
(
25 c2t2 · c2t3 · |V (G)|).
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Algorithms coming from PCE schemesAlgorithms coming from PCE schemes

• Re-using the idea of an independent-set canonical classes, and employing
“expectations”, one gets:

Theorem. cf. [Bui-Xuan, Telle, and Vatshelle, 08]
The dominating set problem can be solved in time O

(
23t(t+1)/4 · t3 · |V (G)|).

• Furthermore, with some more involved linear algebra;

Theorem. [Ganian and PH, 08] The acyclic-set(X) and connected-set(X)

predicates have PCE schemes of “size” 2O(t2).

Corrolaries.

• The acyclic colouring problem solvable in O
(
25 c2t2 · c2t3 · |V (G)|).

• Other problems like connected dominating set, feedback vertex set, etc,

have O
(
2O(t2) · |V (G)|) algorithms on graphs of rank-width t . . .
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6 Conclusions6 Conclusions

• Parse trees give a useful tool for algorithms on graphs of bounded width,

– giving an accessible “bridge” between design of specific algorithms
and those very general results (like the MSO theorem).
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6 Conclusions6 Conclusions

• Parse trees give a useful tool for algorithms on graphs of bounded width,

– giving an accessible “bridge” between design of specific algorithms
and those very general results (like the MSO theorem).

• Focus on the precise number of canonical equivalence classes gives a fine
control over the runtime of a dynamic algorithm wrt. our width parameter.

– not being considered in depth before. . .
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• Parse trees give a useful tool for algorithms on graphs of bounded width,

– giving an accessible “bridge” between design of specific algorithms
and those very general results (like the MSO theorem).

• Focus on the precise number of canonical equivalence classes gives a fine
control over the runtime of a dynamic algorithm wrt. our width parameter.

– not being considered in depth before. . .

• Even more, one can work with an “expectation” of future data and achieve
additional speed-up, as with our new PCE scheme formalism.

– can this be useful in other areas of algorithmic design?
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• Parse trees give a useful tool for algorithms on graphs of bounded width,

– giving an accessible “bridge” between design of specific algorithms
and those very general results (like the MSO theorem).

• Focus on the precise number of canonical equivalence classes gives a fine
control over the runtime of a dynamic algorithm wrt. our width parameter.

– not being considered in depth before. . .

• Even more, one can work with an “expectation” of future data and achieve
additional speed-up, as with our new PCE scheme formalism.

– can this be useful in other areas of algorithmic design?

– and is there a room for even more powerful speed-up techniques on
parse trees? Where and how?
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%P. Hliněný and R. Ganian, AGT 2009 17 Parse trees, Myhill–Nerode, and rank-width
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• Parse trees give a useful tool for algorithms on graphs of bounded width,

– giving an accessible “bridge” between design of specific algorithms
and those very general results (like the MSO theorem).

• Focus on the precise number of canonical equivalence classes gives a fine
control over the runtime of a dynamic algorithm wrt. our width parameter.

– not being considered in depth before. . .

• Even more, one can work with an “expectation” of future data and achieve
additional speed-up, as with our new PCE scheme formalism.

– can this be useful in other areas of algorithmic design?

– and is there a room for even more powerful speed-up techniques on
parse trees? Where and how?
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