

AGT 2009

On Parse Trees and Myhill–Nerode Tools for Graphs of Bounded Rank-width

Petr Hliněný* and Robert Ganian

Faculty of Informatics, Masaryk University Botanická 68a, 60200 Brno, Czech Republic

e-mail: hlineny@fi.muni.cz ganian@mail.muni.cz http://www.fi.muni.cz/~hlineny

ný and R. Ganian, AGT 2009 1 Parse trees, Myhill–Nerode, and rank-width

1 Measuring Graph "Width"

Motivation: Trees are easy to understand and to handle, so how "tree-like" our graph is in some well-defined sense?

• A topic occuring both in pure theory (e.g. Graph Minors), and in algorithms (Fixed parameter tractability)

1 Measuring Graph "Width"

Motivation: Trees are easy to understand and to handle, so how "tree-like" our graph is in some well-defined sense?

- A topic occuring both in pure theory (e.g. Graph Minors), and in algorithms (Fixed parameter tractability)
- Many definitions known,

e.g. tree-width, path-width, branch-width, DAG-width

1 Measuring Graph "Width"

Motivation: Trees are easy to understand and to handle, so how "tree-like" our graph is in some well-defined sense?

- A topic occuring both in pure theory (e.g. Graph Minors), and in algorithms (Fixed parameter tractability)
- Many definitions known,
 e.g. tree-width, path-width, branch-width, DAG-width ...
- **Clique-width** another graph complexity measure [Courcelle and Olariu], defined by operations on vertex–labeled graphs:
 - create a new vertex with label i,
 - take the disjoint union of two labeled graphs,
 - add all edges between vertices of label i and label j,
 - and relabel all vertices with label i to have label j.

P. Hliněný and R. Ganian, AGT 2009 2 Parse trees, Myhill–Nerode, and rank-width

Rank-Decomposition

 [Oum and Seymour, 03] Bringing the branch-decomposition approach to measure "complexity" of vertex subsets X ⊆ V(G) via *cut-rank*:

$$\varrho_G(X) = \operatorname{rank} \operatorname{of} X \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix} \operatorname{modulo} 2$$

Rank-Decomposition

 [Oum and Seymour, 03] Bringing the branch-decomposition approach to measure "complexity" of vertex subsets X ⊆ V(G) via cut-rank:

$$\varrho_G(X) = \operatorname{rank} \operatorname{of} X \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix} \operatorname{modulo} 2$$

Definition. Decompose V(G) one-to-one into the leaves of a subcubic tree. Then

width $(e) = \rho_G(X)$ where X is displayed by f in the tree.

Rank-Decomposition

 [Oum and Seymour, 03] Bringing the branch-decomposition approach to measure "complexity" of vertex subsets X ⊆ V(G) via cut-rank:

$$\varrho_G(X) = \operatorname{rank} \operatorname{of} X \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix} \operatorname{modulo} 2$$

Definition. Decompose V(G) one-to-one into the leaves of a subcubic tree. Then

width $(e) = \rho_G(X)$ where X is displayed by f in the tree.

 $\mathsf{Rank-width} = \min_{\mathsf{rank-decs. of } G} \max \left\{ \mathsf{width}(f) : f \mathsf{ tree edge} \right\}$

P. Hliněný and R. Ganian, AGT 2009 3 Parse trees, Myhill–Nerode, and rank-width

- Rank-width t is related to clique-width k as $t \leq k \leq 2^{t+1} 1$.
- Both these measures are *NP*-hard in general.

- Rank-width t is related to clique-width k as $t \leq k \leq 2^{t+1} 1$.
- Both these measures are *NP*-hard in general.
- Clique-width *expressions* seem to be much more "explicit" than *rank- decompositions*, and more suited for design of actual algorithms.

On the other hand, however...

- Rank-width t is related to clique-width k as $t \leq k \leq 2^{t+1} 1$.
- Both these measures are *NP*-hard in general.
- Clique-width *expressions* seem to be much more "explicit" than *rank- decompositions*, and more suited for design of actual algorithms.

On the other hand, however...

• [Corneil and Rotics, 05] Clique-width can really be up to exponentially higher than rank-width.

- Rank-width t is related to clique-width k as $t \leq k \leq 2^{t+1} 1$.
- Both these measures are *NP*-hard in general.
- Clique-width *expressions* seem to be much more "explicit" than *rank-decompositions*, and more suited for design of actual algorithms.

On the other hand, however...

- [Corneil and Rotics, 05] Clique-width can really be up to exponentially higher than rank-width.
- [Oum and PH, 07] There is an *FPT algorithm* for computing an optimal rank-decomposition of a graph in time $O(f(t) \cdot n^3)$.

- Rank-width t is related to clique-width k as $t \leq k \leq 2^{t+1} 1$.
- Both these measures are *NP*-hard in general.
- Clique-width *expressions* seem to be much more "explicit" than *rank-decompositions*, and more suited for design of actual algorithms.

On the other hand, however...

- [Corneil and Rotics, 05] Clique-width can really be up to exponentially higher than rank-width.
- [Oum and PH, 07] There is an *FPT algorithm* for computing an optimal rank-decomposition of a graph in time $O(f(t) \cdot n^3)$.
- And some new results suggest that algorithms designed on rank-decompositions run faster than those designed on clique-width expressions...

P. Hliněný and R. Ganian, AGT 2009 5 Parse trees, Myhill–Nerode, and rank-widt

- A typical idea for a *dynamic algorithm* on a "tree-like" decomposition:
 - Capture all relevant information about the problem on a subtree.
 - Process this information bottom-up in the decomposition.
 - Importantly, this information has size depending only on k, and not on the graph size.

- A typical idea for a *dynamic algorithm* on a "tree-like" decomposition:
 - Capture all relevant information about the problem on a subtree.
 - Process this information bottom-up in the decomposition.
 - Importantly, this information has size depending only on k, and not on the graph size.
- How to understand words "all relevant information about the problem"? Look for inspiration in traditional finite automata theory!

- A typical idea for a *dynamic algorithm* on a "tree-like" decomposition:
 - Capture all relevant information about the problem on a subtree.
 - Process this information bottom-up in the decomposition.
 - Importantly, this information has size depending only on k, and not on the graph size.
- How to understand words "all relevant information about the problem"? Look for inspiration in traditional finite automata theory!

Theorem. [Myhill–Nerode, folklore]
Finite automaton states (this is our information) ↔ *right congruence* classes on the words (of a regular language).

- A typical idea for a *dynamic algorithm* on a "tree-like" decomposition:
 - Capture all relevant information about the problem on a subtree.
 - Process this information bottom-up in the decomposition.
 - Importantly, this information has size depending only on k, and not on the graph size.
- How to understand words "all relevant information about the problem"? Look for inspiration in traditional finite automata theory!

Theorem. [Myhill–Nerode, folklore]
Finite automaton states (this is our information) ↔ *right congruence* classes on the words (of a regular language).

• Combinatorial extensions of this concept appeared e.g. in the works [Abrahamson and Fellows, 93], [PH, 03], or [Ganian and PH, 08].

How does the right congruence extend from formal words with the concatention operation to, say, graphs with a kind of a "join" operation?

How does the right congruence extend from formal words with the concatention operation to, say, graphs with a kind of a "join" operation?

- Consider the universe of graphs \mathcal{U}_k implicitly associated with
 - some (small) distinguished "boundary of size k" of each graph, and
 - a join operation $G \oplus H$ acting on the boundaries of disjoint G, H.
- Let ${\mathcal P}$ be a graph property we study.

How does the right congruence extend from formal words with the concatention operation to, say, graphs with a kind of a "join" operation?

- Consider the universe of graphs U_k implicitly associated with
 - some (small) distinguished "boundary of size k" of each graph, and
 - a join operation $G \oplus H$ acting on the boundaries of disjoint G, H.
- Let ${\mathcal P}$ be a graph property we study.

Definition. The canonical equivalence of \mathcal{P} on \mathcal{U}_k is defined: $G_1 \approx_{\mathcal{P}, k} G_2$ for any $G_1, G_2 \in \mathcal{U}_k$ if and only if, for all $H \in \mathcal{U}_k$, $G_1 \oplus H \in \mathcal{P} \iff G_2 \oplus H \in \mathcal{P}$.

How does the right congruence extend from formal words with the concatention operation to, say, graphs with a kind of a "join" operation?

- Consider the universe of graphs \mathcal{U}_k implicitly associated with
 - some (small) distinguished "boundary of size k" of each graph, and
 - a join operation $G \oplus H$ acting on the boundaries of disjoint G, H.
- Let ${\mathcal P}$ be a graph property we study.

Definition. The *canonical equivalence* of \mathcal{P} on \mathcal{U}_k is defined:

 $G_1 \approx_{\mathcal{P},k} G_2$ for any $G_1, G_2 \in \mathcal{U}_k$ if and only if, for all $H \in \mathcal{U}_k$,

 $G_1 \oplus H \in \mathcal{P} \iff G_2 \oplus H \in \mathcal{P}.$

• Informally, the classes of $\approx_{\mathcal{P},k}$ capture all information about the property \mathcal{P} that can "cross" our graph boundary of size k (regardless of actual meaning of "boundary" and "join").

P. Hliněný and R. Ganian, AGT 2009 7 Parse trees, Myhill–Nerode, and rank-width

Parse Trees of decompositions

To give a real usable meaning to the above terms "boundary, join, and universe" we set them in the context of tree-shaped decompositions as follows...

Parse Trees of decompositions

To give a real usable meaning to the above terms "boundary, join, and universe" we set them in the context of tree-shaped decompositions as follows...

- Considering a rooted ???-decomposition of a graph *G*, we build on the following correspondence:
 - *boundary size* $k \leftrightarrow$ restricted bag-size / width / etc in decomposition
 - *join operator* $\oplus \leftrightarrow$ the way pieces of G "stick together" in decomp.

Parse Trees of decompositions

To give a real usable meaning to the above terms "boundary, join, and universe" we set them in the context of tree-shaped decompositions as follows...

• Considering a rooted ???-decomposition of a graph G, we build on the following correspondence:

boundary size $k \leftrightarrow$ restricted bag-size / width / etc in decomposition join operator $\oplus \leftrightarrow$ the way pieces of G "stick together" in decomp.

• This can be (visually) seen as. . .

P. Hliněný and R. Ganian, AGT 2009 8 Parse trees, Myhill–Nerode, and rank-width

Unlike for branch- or tree-decompositions with obvious parse trees, what is the "boundary" and "join" operation for rank-width?

Our "boundary" includes all vertices, and "join" is just an implicit matrix rank!

Unlike for branch- or tree-decompositions with obvious parse trees, what is the "boundary" and "join" operation for rank-width?

Our "boundary" includes all vertices, and "join" is just an implicit matrix rank!

• Bilinear product approach of [Courcelle and Kanté, 07]:

- boundary ~ labeling $lab: V(G) \rightarrow 2^{\{1,2,\dots,t\}}$ (multi-colouring),

Unlike for branch- or tree-decompositions with obvious parse trees, what is the "boundary" and "join" operation for rank-width?

Our "boundary" includes all vertices, and "join" is just an implicit matrix rank!

- Bilinear product approach of [Courcelle and Kanté, 07]:
 - boundary ~ labeling $lab: V(G) \rightarrow 2^{\{1,2,\dots,t\}}$ (multi-colouring),
 - join ~ bilinear form g over $GF(2)^t$ (i.e. "odd intersection") s.t.

 $\mathsf{edge} \ uv \ \leftrightarrow \ lab(u) \cdot \mathbf{g} \cdot lab(v) = 1.$

Unlike for branch- or tree-decompositions with obvious parse trees, what is the "boundary" and "join" operation for rank-width?

Our "boundary" includes all vertices, and "join" is just an implicit matrix rank!

- Bilinear product approach of [Courcelle and Kanté, 07]:
 - boundary ~ labeling $lab: V(G) \rightarrow 2^{\{1,2,\dots,t\}}$ (multi-colouring),
 - join ~ bilinear form g over $GF(2)^t$ (i.e. "odd intersection") s.t. edge $uv \leftrightarrow lab(u) \cdot g \cdot lab(v) = 1$.
- Join \rightarrow a composition operator with relabelings f_1, f_2 ; $(G_1, lab^1) \otimes [\mathbf{g} \mid f_1, f_2] (G_2, lab^2) = (H, lab)$

 \implies the rank-width **parse tree** [Ganian and PH, 08]:

Unlike for branch- or tree-decompositions with obvious parse trees, what is the "boundary" and "join" operation for rank-width?

Our "boundary" includes all vertices, and "join" is just an implicit matrix rank!

- Bilinear product approach of [Courcelle and Kanté, 07]:
 - boundary ~ labeling $lab: V(G) \rightarrow 2^{\{1,2,\dots,t\}}$ (multi-colouring),
 - join ~ bilinear form g over $GF(2)^t$ (i.e. "odd intersection") s.t. edge $uv \leftrightarrow lab(u) \cdot g \cdot lab(v) = 1$.
- Join \rightarrow a composition operator with relabelings f_1, f_2 ; $(G_1, lab^1) \otimes [\mathbf{g} \mid f_1, f_2] (G_2, lab^2) = (H, lab)$
 - \implies the rank-width **parse tree** [Ganian and PH, 08]:

k-labeling parse tree for $G \iff$ rank-width of $G \leq t$.

Unlike for branch- or tree-decompositions with obvious parse trees, what is the "boundary" and "join" operation for rank-width?

Our "boundary" includes all vertices, and "join" is just an implicit matrix rank!

- Bilinear product approach of [Courcelle and Kanté, 07]:
 - boundary ~ labeling $lab: V(G) \rightarrow 2^{\{1,2,\dots,t\}}$ (multi-colouring),
 - join ~ bilinear form \mathbf{g} over $GF(2)^t$ (i.e. "odd intersection") s.t. edge $uv \leftrightarrow lab(u) \cdot \mathbf{g} \cdot lab(v) = 1$.
- Join \rightarrow a composition operator with relabelings f_1, f_2 ; $(G_1, lab^1) \otimes [\mathbf{g} \mid f_1, f_2] (G_2, lab^2) = (H, lab)$
 - \implies the rank-width **parse tree** [Ganian and PH, 08]:

k-labeling parse tree for $G \iff$ rank-width of $G \leq t$.

• Independently considered related notion of R_k -join decompositions by [Bui-Xuan, Telle, and Vatshelle, 08].

P. Hliněný and R. Ganian, AGT 2009 9 Parse trees, Myhill–Nerode, and rank-width

So, how can one use a canonical equivalence when designing actual algorithms?

P. Hliněný and R. Ganian, AGT 2009 11 Parse trees, Myhill–Nerode, and rank-wid

So, how can one use a canonical equivalence when designing actual algorithms?

• Let us recall...

 Theorem.
 [Myhill–Nerode, folklore]

 A finite automaton accepts a given language
 ↔

 the number of *right congruence* classes on the words is finite.

So, how can one use a canonical equivalence when designing actual algorithms?

• Let us recall...

 Theorem.
 [Myhill–Nerode, folklore]

 A finite automaton accepts a given language
 ↔

 the number of *right congruence* classes on the words is finite.

• This automaton is constructible and can be emulated in linear time.

So, how can one use a canonical equivalence when designing actual algorithms?

• Let us recall...

Theorem. [Myhill–Nerode, folklore]
A finite automaton accepts a given language ↔
the number of *right congruence* classes on the words is finite.

- This automaton is constructible and can be emulated in linear time.
- For parse trees, a straightforward generalization reads:

Theorem. (Analogy of [Myhill–Nerode])

 ${\mathcal P}$ is accepted by a finite tree automaton on parse trees of boundary size $\leq k$

 \Rightarrow the canonical equivalence $\approx_{\mathcal{P},k}$ has finitely many classes on \mathcal{U}_k .

(Actually, this is a "metatheorem" which requires several more unspoken technical conditions on the parse trees to hold true...)

P. Hliněný and R. Ganian, AGT 2009 11 Parse trees, Myhill–Nerode, and rank-width

Extended canonical equivalence

 $G_1 \approx_{\mathcal{P},k} G_2$ for any $G_1, G_2 \in \mathcal{U}_k$ if and only if, for all $H \in \mathcal{U}_k$, $G_1 \oplus H \models \mathcal{P} \iff G_2 \oplus H \models \mathcal{P}$.

• To apply this concept to predicates $\mathcal{P}(X_1,...)$ with free variables, we extend the universe \mathcal{U}_k to partially-equipped graphs of boundary $\leq k$.

Extended canonical equivalence

 $G_1 \approx_{\mathcal{P},k} G_2$ for any $G_1, G_2 \in \mathcal{U}_k$ if and only if, for all $H \in \mathcal{U}_k$, $G_1 \oplus H \models \mathcal{P} \iff G_2 \oplus H \models \mathcal{P}$.

• To apply this concept to predicates $\mathcal{P}(X_1,...)$ with free variables, we extend the universe \mathcal{U}_k to partially-equipped graphs of boundary $\leq k$.

Theorem. [Ganian and PH, 08]

Suppose ϕ is a formula in the language MS₁. Then the canonical equivalence $\approx_{\phi,t}$ has finite index in the universe of *t*-labeled partially-equipped graphs.

Extended canonical equivalence

 $G_1 \approx_{\mathcal{P}, k} G_2$ for any $G_1, G_2 \in \mathcal{U}_k$ if and only if, for all $H \in \mathcal{U}_k$, $G_1 \oplus H \models \mathcal{P} \iff G_2 \oplus H \models \mathcal{P}$.

• To apply this concept to predicates $\mathcal{P}(X_1,...)$ with free variables, we extend the universe \mathcal{U}_k to partially-equipped graphs of boundary $\leq k$.

Theorem. [Ganian and PH, 08]

Suppose ϕ is a formula in the language MS₁. Then the canonical equivalence $\approx_{\phi,t}$ has finite index in the universe of *t*-labeled partially-equipped graphs.

• From that one easily concludes an older result:

Theorem. [Courcelle, Makowsky, and Rotics 00] All *LinEMSO graph optimization* problems (in MS₁ language – only vertices!) on the graphs of bounded rank-width t can be solved in time $O(f(t) \cdot n)$.

Core idea: In dynamic processing of the given parse tree, record optimal representatives of each class of the extended canonical equivalence $\approx_{\phi,t} \dots$

P. Hliněný and R. Ganian, AGT 2009 12 Parse trees, Myhill–Nerode, and rank-width

Furthermore, the concept of a canonical equivalence gives us a fine control over the runtime dependency on the width parameter – we simply estimate its index.

Consider the universe of partially-equipped *t*-labeled graphs (of rank-width $\leq t$).

As shown already by [Bui-Xuan, Telle, and Vatshelle, 08];
 the canonical equivalence of *independent-set(X)* has index ≤ 2^{t(t+1)/4} (this relates to the number of subspaces of GF(2)^t).

Furthermore, the concept of a canonical equivalence gives us a fine control over the runtime dependency on the width parameter – we simply estimate its index.

Consider the universe of partially-equipped *t*-labeled graphs (of rank-width $\leq t$).

As shown already by [Bui-Xuan, Telle, and Vatshelle, 08];

the canonical equivalence of *independent-set*(X) has index $\leq 2^{t(t+1)/4}$ (this relates to the number of subspaces of $GF(2)^t$).

Theorem. [Bui-Xuan, Telle, and Vatshelle, 08] The *independent set* problem can be solved in time $O(2^{t(t+1)/2} \cdot t^3 \cdot |V(G)|)$, and the *c*-colourability (fixed c) in time $O(2^{ct(t+1)/2} \cdot ct^3 \cdot |V(G)|)$.

Furthermore, the concept of a canonical equivalence gives us a fine control over the runtime dependency on the width parameter – we simply estimate its index.

Consider the universe of partially-equipped *t*-labeled graphs (of rank-width $\leq t$).

As shown already by [Bui-Xuan, Telle, and Vatshelle, 08];
 the canonical equivalence of *independent-set*(X) has index ≤ 2^{t(t+1)/4}

(this relates to the number of subspaces of $GF(2)^t$).

Theorem. [Bui-Xuan, Telle, and Vatshelle, 08] The *independent set* problem can be solved in time $O(2^{t(t+1)/2} \cdot t^3 \cdot |V(G)|)$, and the *c*-colourability (fixed c) in time $O(2^{ct(t+1)/2} \cdot ct^3 \cdot |V(G)|)$.

• An extession: the canonical equiv. of clique(X) has index $\leq 2^{(t+1)(t+2)/4}$.

Furthermore, the concept of a canonical equivalence gives us a fine control over the runtime dependency on the width parameter – we simply estimate its index.

Consider the universe of partially-equipped t-labeled graphs (of rank-width $\leq t$).

As shown already by [Bui-Xuan, Telle, and Vatshelle, 08];
 the canonical equivalence of *independent-set*(X) has index ≤ 2^{t(t+1)/4} (this relates to the number of subspaces of GF(2)^t).

Theorem. [Bui-Xuan, Telle, and Vatshelle, 08] The *independent set* problem can be solved in time $O(2^{t(t+1)/2} \cdot t^3 \cdot |V(G)|)$, and the *c*-colourability (fixed c) in time $O(2^{ct(t+1)/2} \cdot ct^3 \cdot |V(G)|)$.

• An extession: the canonical equiv. of clique(X) has index $\leq 2^{(t+1)(t+2)/4}$.

Theorem. [Ganian and PH, 08] Split graphs can be recognized in time $O(2^{(t+1)^2} \cdot t^3 \cdot |V(G)|)$, and so called *c-co-colourability* problem can be solved in time $O(2^{ct(t+1)} \cdot ct^3 \cdot |V(G)|)$.

P. Hliněný and R. Ganian, AGT 2009 13 Parse trees, Myhill–Nerode, and rank-width

(PCE = prepartitioned canonical equivalence)

Starting point: The *dominating-set*(X) predicate has a double-exponential number of canonical equivalence classes. Yet solvable with single-exponential dependency on the rank-width [Bui-Xuan, Telle, and Vatshelle, 08].

(PCE = prepartitioned canonical equivalence)

Starting point: The *dominating-set*(X) predicate has a double-exponential number of canonical equivalence classes. Yet solvable with single-exponential dependency on the rank-width [Bui-Xuan, Telle, and Vatshelle, 08].

How to cope with this in our formalism?

• Canonical equivalence records only the information we already know.

(PCE = prepartitioned canonical equivalence)

Starting point: The *dominating-set*(X) predicate has a double-exponential number of canonical equivalence classes. Yet solvable with single-exponential dependency on the rank-width [Bui-Xuan, Telle, and Vatshelle, 08].

How to cope with this in our formalism?

- Canonical equivalence records only the information we already know.
- What can we do with the future information we get from further dynamic processing of our graph? Possible at all?

(PCE = prepartitioned canonical equivalence)

Starting point: The *dominating-set*(X) predicate has a double-exponential number of canonical equivalence classes. Yet solvable with single-exponential dependency on the rank-width [Bui-Xuan, Telle, and Vatshelle, 08].

How to cope with this in our formalism?

- Canonical equivalence records only the information we already know.
- What can we do with the future information we get from further dynamic processing of our graph? Possible at all?
- Yes, we work with an "*expectation*" of future graph data (of *H*), and record known information wrt. all these possible "expectations".

Recall: $G_1 \approx_{\mathcal{P}, k} G_2$ for any $G_1, G_2 \in \mathcal{U}_t$ if and only if, for all $H \in \mathcal{U}_t$, $G_1 \oplus H \models \mathcal{P} \iff G_2 \oplus H \models \mathcal{P}$.

Consider the universe \mathcal{U}_t of part.-equipped *t*-labeled graphs (of rank-width $\leq t$).

Definition. A property π has a *prepartitioned canonical equivalence scheme* (PCE scheme) if, for all t, there exist partitions \mathcal{B}_t and \mathcal{A}_t^B , $B \in \mathcal{B}_t$, of \mathcal{U}_t :

- Classes of \mathcal{B}_t present our "expectation" of future data (graph H).
- Wrt. particular expectation $B \in \mathcal{B}_t$, we record only a class of \mathcal{A}_t^B the (so far processed) graph G_1 belongs to.

Consider the universe \mathcal{U}_t of part.-equipped *t*-labeled graphs (of rank-width $\leq t$).

Definition. A property π has a *prepartitioned canonical equivalence scheme* (PCE scheme) if, for all t, there exist partitions \mathcal{B}_t and \mathcal{A}_t^B , $B \in \mathcal{B}_t$, of \mathcal{U}_t :

- Classes of \mathcal{B}_t present our "expectation" of future data (graph H).
- Wrt. particular expectation $B \in \mathcal{B}_t$, we record only a class of \mathcal{A}_t^B the (so far processed) graph G_1 belongs to.
- (i) \mathcal{B}_t is "compatible" with the composition oper. occuring in the parse trees.

Consider the universe \mathcal{U}_t of part.-equipped *t*-labeled graphs (of rank-width $\leq t$).

Definition. A property π has a *prepartitioned canonical equivalence scheme* (PCE scheme) if, for all t, there exist partitions \mathcal{B}_t and \mathcal{A}_t^B , $B \in \mathcal{B}_t$, of \mathcal{U}_t :

- Classes of \mathcal{B}_t present our "expectation" of future data (graph H).
- Wrt. particular expectation $B \in \mathcal{B}_t$, we record only a class of \mathcal{A}_t^B the (so far processed) graph G_1 belongs to.
- (i) \mathcal{B}_t is "compatible" with the composition oper. occuring in the parse trees. (ii) The \mathcal{A}_t^B -class of our graph is "uniq. determined" from a \mathcal{B}_t -expectation.

Consider the universe \mathcal{U}_t of part.-equipped *t*-labeled graphs (of rank-width $\leq t$).

Definition. A property π has a *prepartitioned canonical equivalence scheme* (PCE scheme) if, for all t, there exist partitions \mathcal{B}_t and \mathcal{A}_t^B , $B \in \mathcal{B}_t$, of \mathcal{U}_t :

- Classes of \mathcal{B}_t present our "expectation" of future data (graph H).
- Wrt. particular expectation $B \in \mathcal{B}_t$, we record only a class of \mathcal{A}_t^B the (so far processed) graph G_1 belongs to.
- (i) \mathcal{B}_t is "compatible" with the composition oper. occuring in the parse trees.
- (ii) The \mathcal{A}_t^B -class of our graph is "uniq. determined" from a \mathcal{B}_t -expectation.
- (iii) There is a constant d independent of t such that the following equivalence $\sim_{\pi}^{A,B}$ on A has index $\leq d$ (even d = 1) for all $B \in \mathcal{B}_t$ and $A \in \mathcal{A}_t^B$:

It is $\bar{G}_1 \sim_{\pi}^{A,B} \bar{G}_2$ if and only if $\bar{G}_1, \bar{G}_2 \in A$ and

 $\bar{G}_1 \otimes \bar{H} \models \pi \iff \bar{G}_2 \otimes \bar{H} \models \pi \text{ for all } \bar{H} \in B.$

P. Hliněný and R. Ganian, AGT 2009 15 Parse trees, Myhill–Nerode, and rank-width

• Re-using the idea of an independent-set canonical classes, and employing "expectations", one gets:

Theorem. cf. [Bui-Xuan, Telle, and Vatshelle, 08] The *dominating set* problem can be solved in time $O(2^{3t(t+1)/4} \cdot t^3 \cdot |V(G)|)$.

• Re-using the idea of an independent-set canonical classes, and employing "expectations", one gets:

Theorem. cf. [Bui-Xuan, Telle, and Vatshelle, 08] The *dominating set* problem can be solved in time $O(2^{3t(t+1)/4} \cdot t^3 \cdot |V(G)|)$.

• Furthermore, with some more involved linear algebra;

Theorem. [Ganian and PH, 08] The *acyclic-set*(X) and *connected-set*(X) predicates have PCE schemes of "size" $2^{O(t^2)}$.

• Re-using the idea of an independent-set canonical classes, and employing "expectations", one gets:

Theorem. cf. [Bui-Xuan, Telle, and Vatshelle, 08] The *dominating set* problem can be solved in time $O(2^{3t(t+1)/4} \cdot t^3 \cdot |V(G)|)$.

• Furthermore, with some more involved linear algebra;

Theorem. [Ganian and PH, 08] The *acyclic-set*(X) and *connected-set*(X) predicates have PCE schemes of "size" $2^{O(t^2)}$.

Corrolaries.

• The acyclic colouring problem solvable in $O(2^{5c^2t^2} \cdot c^2t^3 \cdot |V(G)|)$.

• Re-using the idea of an independent-set canonical classes, and employing "expectations", one gets:

Theorem. cf. [Bui-Xuan, Telle, and Vatshelle, 08] The *dominating set* problem can be solved in time $O(2^{3t(t+1)/4} \cdot t^3 \cdot |V(G)|)$.

• Furthermore, with some more involved linear algebra;

Theorem. [Ganian and PH, 08] The *acyclic-set*(X) and *connected-set*(X) predicates have PCE schemes of "size" $2^{O(t^2)}$.

Corrolaries.

- The acyclic colouring problem solvable in $O(2^{5c^2t^2} \cdot c^2t^3 \cdot |V(G)|)$.
- Other problems like connected dominating set, feedback vertex set, etc, have $O(2^{O(t^2)} \cdot |V(G)|)$ algorithms on graphs of rank-width $t \dots$

- Parse trees give a useful tool for algorithms on graphs of bounded width,
 - giving an accessible "bridge" between design of specific algorithms and those very general results (like the MSO theorem).

- Parse trees give a useful tool for algorithms on graphs of bounded width,
 - giving an accessible "bridge" between design of specific algorithms and those very general results (like the MSO theorem).
- Focus on the precise number of canonical equivalence classes gives a fine control over the runtime of a dynamic algorithm wrt. our width parameter.
 - not being considered in depth before...

- Parse trees give a useful tool for algorithms on graphs of bounded width,
 - giving an accessible "bridge" between design of specific algorithms and those very general results (like the MSO theorem).
- Focus on the precise number of canonical equivalence classes gives a fine control over the runtime of a dynamic algorithm wrt. our width parameter.
 - not being considered in depth before...
- Even more, one can work with an "expectation" of future data and achieve additional speed-up, as with our new PCE scheme formalism.
 - can this be useful in other areas of algorithmic design?

- Parse trees give a useful tool for algorithms on graphs of bounded width,
 - giving an accessible "bridge" between design of specific algorithms and those very general results (like the MSO theorem).
- Focus on the precise number of canonical equivalence classes gives a fine control over the runtime of a dynamic algorithm wrt. our width parameter.
 - not being considered in depth before...
- Even more, one can work with an "expectation" of future data and achieve additional speed-up, as with our new PCE scheme formalism.
 - can this be useful in other areas of algorithmic design?
 - and is there a room for even more powerful speed-up techniques on parse trees? Where and how?

- Parse trees give a useful tool for algorithms on graphs of bounded width,
 - giving an accessible "bridge" between design of specific algorithms and those very general results (like the MSO theorem).
- Focus on the precise number of canonical equivalence classes gives a fine control over the runtime of a dynamic algorithm wrt. our width parameter.
 - not being considered in depth before...
- Even more, one can work with an "expectation" of future data and achieve additional speed-up, as with our new PCE scheme formalism.
 - can this be useful in other areas of algorithmic design?
 - and is there a room for even more powerful speed-up techniques on parse trees? Where and how?

THANK YOU FOR YOUR ATTENTION

P. Hliněný and R. Ganian, AGT 2009 17 Parse trees, Myhill–Nerode, and rank-width