FO Model Checking of Interval Graphs

Petr Hliněný

Faculty of Informatics Masaryk University, Brno, CZ

Robert Ganian, Daniel Král', Jan Obdržálek, Jarett Schwartz, Jakub Teska

- theor. tools claiming efficient solvability of large classes of problems at once.

- theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle's Theorem

- All MSO₂-definable prop. in linear-time FPT for bounded tree-width.
 - perhaps the best known alg. metatheorem on graphs (1988)

- theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle's Theorem

- All MSO₂-definable prop. in linear-time FPT for bounded tree-width.
 - perhaps the best known alg. metatheorem on graphs (1988)
 - clique-width + MSO₁ version by [Courcelle–Makowsky–Rotics]

- theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle's Theorem

- All MSO₂-definable prop. in linear-time FPT for bounded tree-width.
 - perhaps the best known alg. metatheorem on graphs (1988)
 - clique-width + MSO₁ version by [Courcelle–Makowsky–Rotics]

- Propositional logic ($\land \lor \rightarrow$), graph vertices/edges (x, y, z, ..., e, ...);
 - e.g., $\forall x, y (edge(x, y) \rightarrow x \in C \lor y \in C)$,

- theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle's Theorem

- All MSO₂-definable prop. in linear-time FPT for bounded tree-width.
 - perhaps the best known alg. metatheorem on graphs (1988)
 - clique-width + MSO₁ version by [Courcelle–Makowsky–Rotics]

- Propositional logic ($\land \lor \rightarrow$), graph vertices/edges (x, y, z, ..., e, ...);
 - e.g., $\forall x, y (edge(x, y) \rightarrow x \in C \lor y \in C)$, "C is vertex cover"
 - FO logic (first-order): just this ↑

- theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle's Theorem

- All MSO₂-definable prop. in linear-time FPT for bounded tree-width.
 - perhaps the best known alg. metatheorem on graphs (1988)
 - clique-width + MSO₁ version by [Courcelle–Makowsky–Rotics]

- Propositional logic ($\land \lor \rightarrow$), graph vertices/edges (x, y, z, ..., e, ...);
 - e.g., $\forall x, y (edge(x, y) \rightarrow x \in C \lor y \in C)$, "C is vertex cover"
 - FO logic (first-order): just this \uparrow
 - **MSO logic** (monadic second-o.): quantifies vertex sets $\exists X, Y$

- theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle's Theorem

- All MSO₂-definable prop. in linear-time FPT for bounded tree-width.
 - perhaps the best known alg. metatheorem on graphs (1988)
 - clique-width + MSO₁ version by [Courcelle–Makowsky–Rotics]

- Propositional logic ($\land \lor \rightarrow$), graph vertices/edges (x, y, z, ..., e, ...);
 - e.g., $\forall x, y (edge(x, y) \rightarrow x \in C \lor y \in C)$, "C is vertex cover"
 - FO logic (first-order): just this \uparrow
 - **MSO logic** (monadic second-o.): quantifies vertex sets $\exists X, Y$

$$\uparrow MSO_1$$
 vs. $MSO_2 \downarrow$

- theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle's Theorem

- All MSO₂-definable prop. in linear-time FPT for bounded tree-width.
 - perhaps the best known alg. metatheorem on graphs (1988)
 - clique-width + MSO₁ version by [Courcelle–Makowsky–Rotics]

* Logic on Graphs

- Propositional logic ($\land \lor \rightarrow$), graph vertices/edges (x, y, z, ..., e, ...);
 - e.g., $\forall x, y (edge(x, y) \rightarrow x \in C \lor y \in C)$, "C is vertex cover"
 - FO logic (first-order): just this \uparrow
 - **MSO logic** (monadic second-o.): quantifies vertex sets $\exists X, Y$

 $\uparrow MSO_1$ vs. $MSO_2 \downarrow$

- or, quantifies vertex and edge sets together $\exists X, Y, E, F$.

• On monotone graph classes:

- On monotone graph classes:
 - [Kreutzer-Tazari] not above polylog. tree-width with MSO₂

- On monotone graph classes:
 - [Kreutzer-Tazari] not above polylog. tree-width with MSO₂
 - [GHLORS] not above polylog. tree-width with coloured MSO₁

- On monotone graph classes:
 - [Kreutzer-Tazari] not above polylog. tree-width with MSO₂
 - [GHLORS] not above polylog. tree-width with coloured MSO₁
- On hereditary classes, perhaps the same with clique-width...?

* Not far with MSO

- On monotone graph classes:
 - [Kreutzer-Tazari] not above polylog. tree-width with MSO₂
 - [GHLORS] not above polylog. tree-width with coloured MSO₁
- On hereditary classes, perhaps the same with clique-width...?

* Better with FO

• FO is always in XP, but we aim for FPT (fixed exponent poly.)!

* Not far with MSO

- On monotone graph classes:
 - [Kreutzer-Tazari] not above polylog. tree-width with MSO₂
 - [GHLORS] not above polylog. tree-width with coloured MSO₁
- On hereditary classes, perhaps the same with clique-width...?

- FO is always in XP, but we aim for FPT (fixed exponent poly.)!
 - [Seese] on bounded degree graphs (1996)

* Not far with MSO

- On monotone graph classes:
 - [Kreutzer-Tazari] not above polylog. tree-width with MSO₂
 - [GHLORS] not above polylog. tree-width with coloured MSO₁
- On hereditary classes, perhaps the same with clique-width...?

- FO is always in XP, but we aim for FPT (fixed exponent poly.)!
 - [Seese] on bounded degree graphs (1996)
 - [Frick-Grohe] locally bounded tree-width

* Not far with MSO

- On monotone graph classes:
 - [Kreutzer-Tazari] not above polylog. tree-width with MSO₂
 - [GHLORS] not above polylog. tree-width with coloured MSO₁
- On hereditary classes, perhaps the same with clique-width...?

- FO is always in XP, but we aim for FPT (fixed exponent poly.)!
 - [Seese] on bounded degree graphs (1996)
 - [Frick-Grohe] locally bounded tree-width
 - [Dawar-Grohe-Kreutzer] locally excluding a minor

* Not far with MSO

- On monotone graph classes:
 - [Kreutzer-Tazari] not above polylog. tree-width with MSO₂
 - [GHLORS] not above polylog. tree-width with coloured MSO₁
- On hereditary classes, perhaps the same with clique-width...?

- FO is always in XP, but we aim for FPT (fixed exponent poly.)!
 - [Seese] on bounded degree graphs (1996)
 - [Frick-Grohe] locally bounded tree-width
 - [Dawar-Grohe-Kreutzer] locally excluding a minor
 - [D.-K. / Dvořák–Král'–Thomas] locally bounded expansion

* Not far with MSO

- On monotone graph classes:
 - [Kreutzer-Tazari] not above polylog. tree-width with MSO₂
 - [GHLORS] not above polylog. tree-width with coloured MSO₁
- On hereditary classes, perhaps the same with clique-width...?

- FO is always in XP, but we aim for FPT (fixed exponent poly.)!
 - [Seese] on bounded degree graphs (1996)
 - [Frick-Grohe] locally bounded tree-width
 - [Dawar-Grohe-Kreutzer] locally excluding a minor
 - [D.-K. / Dvořák–Král'–Thomas] locally bounded expansion
 - nowhere dense classes in general...???

• Why these?

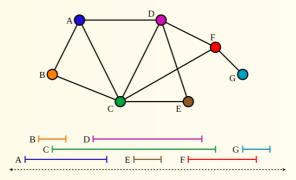
• Why these?

Extending FO metaresults towards (some) dense graph class...

• Why these?

Extending FO metaresults towards (some) dense graph class...

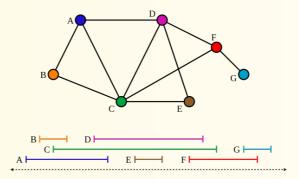
• INT: Intersection graphs of intervals on the real line.



• Why these?

Extending FO metaresults towards (some) dense graph class...

• INT: Intersection graphs of intervals on the real line.



L-interval graphs = interval lengths only from a set *L*. (Unit-interval graphs: *L* = {1}.)

Technical remarks

• Note; open/close intervals do not matter.

We consider half-closed intervals [a, b).

Technical remarks

• Note; open/close intervals do not matter.

We consider half-closed intervals [a, b).

• Although the recognition problems for interval and for unit-interval graphs are in P, we do not know about *L*-interval graphs!

Technical remarks

• Note; open/close intervals do not matter.

We consider half-closed intervals [a, b).

- Although the recognition problems for interval and for unit-interval graphs are in P, we do not know about *L*-interval graphs!
- Thus, we assume graphs are given by their interval representations, and these representations are handled by the real-precision RAM model (no tricks, though).

 For any dense subset L of [1, 1+ε], the L-interval graphs interpret, by means of FO, arbitrary graphs.

- For any dense subset L of [1, 1+ε], the L-interval graphs interpret, by means of FO, arbitrary graphs.
 - hence, FO model checking is hopeless on these graphs
 - and similarly for MSO₁ already on unit interval graphs

- For any dense subset L of [1, 1+ε], the L-interval graphs interpret, by means of FO, arbitrary graphs.
 - hence, FO model checking is hopeless on these graphs
 - and similarly for MSO₁ already on unit interval graphs

• The main result.

For any finite set $L \subseteq \mathbb{R}^+$, any FO property can be tested in time $\mathcal{O}(n \log n)$ on *L*-interval graphs.

 for example, independent and dominating set, subgraph isom., etc.

- For any dense subset L of [1, 1+ε], the L-interval graphs interpret, by means of FO, arbitrary graphs.
 - hence, FO model checking is hopeless on these graphs
 - and similarly for MSO₁ already on unit interval graphs

• The main result.

For any finite set $L \subseteq \mathbb{R}^+$, any FO property can be tested in time $\mathcal{O}(n \log n)$ on *L*-interval graphs.

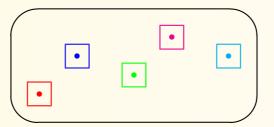
- for example, independent and dominating set, subgraph isom., etc.
- nearly tight result by the previous examples
- rather easy to prove for rational L, but difficult otherwise

(Note, regarding FO, locally bounded/excluding *** occurs quite often...)

(Note, regarding FO, locally bounded/excluding *** occurs quite often...)

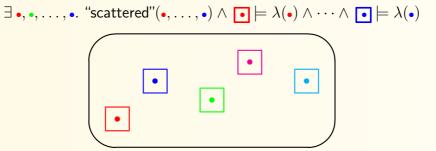
Gaifman's theorem. Every FO sentence is equivalent to a boolean combination of basic local sentences:

 $\exists \bullet, \bullet, \dots, \bullet. \text{ "scattered"}(\bullet, \dots, \bullet) \land \boxed{\bullet} \models \lambda(\bullet) \land \dots \land \boxed{\bullet} \models \lambda(\bullet)$



(Note, regarding FO, locally bounded/excluding *** occurs quite often...)

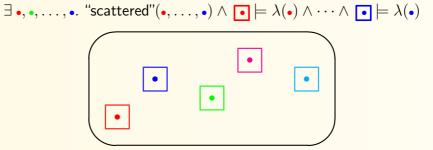
Gaifman's theorem. Every FO sentence is equivalent to a boolean combination of basic local sentences:



• Restriction to fixed-radius neighbourh. (above) definable inside FO.

(Note, regarding FO, locally bounded/excluding *** occurs quite often...)

Gaifman's theorem. Every FO sentence is equivalent to a boolean combination of basic local sentences:



- Restriction to fixed-radius neighbourh. (above) definable inside FO.
- Hence, it is enough to solve any given FO property in every local neighbourhood!

Locality in interval graphs

For fin. $L \subseteq \mathbb{R}^+$, any FO prop. tested in $\mathcal{O}(n \log n)$ on L-interval graphs.

- Unit interval graphs have locally bounded clique-width.
 - \rightarrow immediate FO model checking via [Courcelle et al]

Locality in interval graphs

For fin. $L \subseteq \mathbb{R}^+$, any FO prop. tested in $\mathcal{O}(n \log n)$ on L-interval graphs.

- Unit interval graphs have locally bounded clique-width.
 - \rightarrow immediate FO model checking via [Courcelle et al]
- Claim. The same holds for any L a finite set of rationals.

For fin. $L \subseteq \mathbb{R}^+$, any FO prop. tested in $\mathcal{O}(n \log n)$ on L-interval graphs.

- Unit interval graphs have locally bounded clique-width.
 - \rightarrow immediate FO model checking via [Courcelle et al]
- Claim. The same holds for any L a finite set of rationals.

Outlining:

• equivalent INT representations \sim same endpoint sequence

For fin. $L \subseteq \mathbb{R}^+$, any FO prop. tested in $\mathcal{O}(n \log n)$ on L-interval graphs.

- Unit interval graphs have locally bounded clique-width.
 → immediate FO model checking via [Courcelle et al]
- Claim. The same holds for any L a finite set of rationals.

Outlining:

- equivalent INT representations \sim same endpoint sequence
- simple INT repres. \sim no two endpoints the same, all > 0

For fin. $L \subseteq \mathbb{R}^+$, any FO prop. tested in $\mathcal{O}(n \log n)$ on L-interval graphs.

- Unit interval graphs have locally bounded clique-width.
 → immediate FO model checking via [Courcelle et al]
- Claim. The same holds for any L a finite set of rationals.

Outlining:

- equivalent INT representations \sim same endpoint sequence
- simple INT repres. \sim no two endpoints the same, all > 0
- accumulation points \sim the infima of left ends over all equiv. repres.

- e.g., for unit interval $L = \{1\}$ these are $0, 1, 2, \ldots$

For fin. $L \subseteq \mathbb{R}^+$, any FO prop. tested in $\mathcal{O}(n \log n)$ on L-interval graphs.

- Unit interval graphs have locally bounded clique-width.
 → immediate FO model checking via [Courcelle et al]
- Claim. The same holds for any L a finite set of rationals.

Outlining:

- equivalent INT representations \sim same endpoint sequence
- simple INT repres. \sim no two endpoints the same, all > 0
- accumulation points ~ the infima of left ends over all equiv. repres.
 e.g., for unit interval L = {1} these are 0, 1, 2, ...
- clique-width simply order the intervals by their distance from the resp. accumulation points \rightarrow linear k-expression

- where $k \sim |L| \cdot \#$ accum. points ! (finite in bounded radius)

For fin. $L \subseteq \mathbb{R}^+$, any FO prop. tested in $\mathcal{O}(n \log n)$ on L-interval graphs.

• Claim. For any irrational r, the class of $\{1, r\}$ -interval graphs has locally unbounded clique-width.

- Claim. For any irrational r, the class of $\{1, r\}$ -interval graphs has locally unbounded clique-width.
- So, what next?
 - Recall [Seese] about FO on bounded-degree graphs.

- Claim. For any irrational r, the class of $\{1, r\}$ -interval graphs has locally unbounded clique-width.
- So, what next?
 - Recall [Seese] about FO on bounded-degree graphs.
 - Recall the accumulation points:
 - * these are linear integer combinations $\vec{\lambda} \cdot \vec{L}$ of the lengths

- Claim. For any irrational r, the class of $\{1, r\}$ -interval graphs has locally unbounded clique-width.
- So, what next?
 - Recall [Seese] about FO on bounded-degree graphs.
 - Recall the accumulation points:
 - * these are linear integer combinations $\vec{\lambda} \cdot \vec{L}$ of the lengths
 - * many many intervals "at" the same accumulation point
 - \rightarrow remove some, preserving all FO of quant. rank d!

- Claim. For any irrational r, the class of $\{1, r\}$ -interval graphs has locally unbounded clique-width.
- So, what next?
 - Recall [Seese] about FO on bounded-degree graphs.
 - Recall the accumulation points:
 - * these are linear integer combinations $\vec{\lambda} \cdot \vec{L}$ of the lengths
 - * many many intervals "at" the same accumulation point
 - \rightarrow remove some, preserving all FO of quant. rank d!
 - * hint: consider "locality" on the integer grid $(\vec{\lambda})$

- Claim. For any irrational r, the class of $\{1, r\}$ -interval graphs has locally unbounded clique-width.
- So, what next?
 - Recall [Seese] about FO on bounded-degree graphs.
 - Recall the accumulation points:
 - * these are linear integer combinations $\vec{\lambda} \cdot \vec{L}$ of the lengths
 - * many many intervals "at" the same accumulation point
 - \rightarrow remove some, preserving all FO of quant. rank d!
 - * hint: consider "locality" on the integer grid $(\vec{\lambda})$
 - Now, not many intervals anywhere \rightarrow bounded degree.

- Claim. For any irrational r, the class of $\{1, r\}$ -interval graphs has locally unbounded clique-width.
- So, what next?
 - Recall [Seese] about FO on bounded-degree graphs.
 - Recall the accumulation points:
 - * these are linear integer combinations $\vec{\lambda} \cdot \vec{L}$ of the lengths
 - * many many intervals "at" the same accumulation point
 - \rightarrow remove some, preserving all FO of quant. rank d!
 - * hint: consider "locality" on the integer grid $(\vec{\lambda})$
 - Now, not many intervals anywhere \rightarrow bounded degree.
- Finished with any finite L.

- So, many intervals start in one tiny section A of the real line.
 - tiny \sim the smallest distance def. by a local section of the grid

- So, many intervals start in one tiny section A of the real line.
 - tiny \sim the smallest distance def. by a local section of the grid
- Take W; these intervals plus the intervals starting in the tiny distance to (the accumulation points in) a grid-neighbourhood of A.

For fin. $L \subseteq \mathbb{R}^+$, any FO prop. tested in $\mathcal{O}(n \log n)$ on L-interval graphs.

- So, many intervals start in one tiny section A of the real line.
 - tiny \sim the smallest distance def. by a local section of the grid
- Take W; these intervals plus the intervals starting in the tiny distance to (the accumulation points in) a grid-neighbourhood of A.
 - in this W, one can remove some $w \in W$ such that

 $G[W] \equiv_d G[W \setminus w]$ (by E-F game trees in the paper...)

For fin. $L \subseteq \mathbb{R}^+$, any FO prop. tested in $\mathcal{O}(n \log n)$ on L-interval graphs.

- So, many intervals start in one tiny section A of the real line.
 - tiny \sim the smallest distance def. by a local section of the grid
- Take W; these intervals plus the intervals starting in the tiny distance to (the accumulation points in) a grid-neighbourhood of A.
 - in this W, one can remove some $w \in W$ such that

 $G[W] \equiv_d G[W \setminus w]$ (by E-F game trees in the paper...)

- Now, play a "derived" E-F game on the whole G:
 - start with flagging all the intervals of A

For fin. $L \subseteq \mathbb{R}^+$, any FO prop. tested in $\mathcal{O}(n \log n)$ on L-interval graphs.

- So, many intervals start in one tiny section A of the real line.
 - tiny \sim the smallest distance def. by a local section of the grid
- Take W; these intervals plus the intervals starting in the tiny distance to (the accumulation points in) a grid-neighbourhood of A.
 - in this W, one can remove some $w \in W$ such that

 $G[W] \equiv_d G[W \setminus w]$ (by E-F game trees in the paper...)

- Now, play a "derived" E-F game on the whole G:
 - start with flagging all the intervals of A
 - far (on the grid) from flagged the duplicator simply duplicates

For fin. $L \subseteq \mathbb{R}^+$, any FO prop. tested in $\mathcal{O}(n \log n)$ on L-interval graphs.

- So, many intervals start in one tiny section A of the real line.
 - tiny \sim the smallest distance def. by a local section of the grid
- Take W; these intervals plus the intervals starting in the tiny distance to (the accumulation points in) a grid-neighbourhood of A.
 - in this W, one can remove some $w \in W$ such that

 $G[W] \equiv_d G[W \setminus w]$ (by E-F game trees in the paper...)

- Now, play a "derived" E-F game on the whole G:
 - start with flagging all the intervals of A
 - far (on the grid) from flagged the duplicator simply duplicates
 - near to flagged flag this one, and play the duplic. by $W\setminus w$

• Behind the Graph Sparsity theory of Nešetřil and Ossona de Mendez;

Can one test FO properties in FPT for every nowhere dense class?

• Behind the Graph Sparsity theory of Nešetřil and Ossona de Mendez;

Can one test FO properties in FPT for every nowhere dense class?

• Our little contribution:

There exist natural somewhere dense graph classes on which FO properties are in FPT.

• Behind the Graph Sparsity theory of Nešetřil and Ossona de Mendez;

Can one test FO properties in FPT for every nowhere dense class?

• Our little contribution:

There exist natural somewhere dense graph classes on which FO properties are in FPT.

• Other such examples?

• Behind the Graph Sparsity theory of Nešetřil and Ossona de Mendez;

Can one test FO properties in FPT for every nowhere dense class?

• Our little contribution:

There exist natural somewhere dense graph classes on which FO properties are in FPT.

• Other such examples? A broader metatheorem?

• Behind the Graph Sparsity theory of Nešetřil and Ossona de Mendez;

Can one test FO properties in FPT for every nowhere dense class?

• Our little contribution:

There exist natural somewhere dense graph classes on which FO properties are in FPT.

- Other such examples? A broader metatheorem?
- And, apart from the previous;

What is the comput. complexity of recognizing *L*-interval graphs?

• Behind the Graph Sparsity theory of Nešetřil and Ossona de Mendez;

Can one test FO properties in FPT for every nowhere dense class?

• Our little contribution:

There exist natural somewhere dense graph classes on which FO properties are in FPT.

- Other such examples? A broader metatheorem?
- And, apart from the previous;

What is the comput. complexity of recognizing *L*-interval graphs?

THANK YOU FOR ATTENTION.