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Jan Obdržálek, Jarett Schwartz,Jan Obdržálek, Jarett Schwartz,
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P. Hliněný, CSASC Koper, 2013 2 / 11 FO Properties of Interval Graphs

1 The Aim: Algorithmic Metatheorems1 The Aim: Algorithmic Metatheorems
– theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle’s Theorem* Courcelle’s Theorem
• All MSO2-definable prop. in linear-time FPT for bounded tree-width.

– perhaps the best known alg. metatheorem on graphs ˜1988

– clique-width + MSO1 version by [Courcelle–Makowsky–Rotics]

* Logic on Graphs* Logic on Graphs
• Propositional logic (∧∨ →) graph vertices/edges (x, y, z, .., e, . . . );

– e.g., ∀x, y
(
edge(x, y)→ x ∈ C∨y ∈ C

)
,



page.11
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1 The Aim: Algorithmic Metatheorems1 The Aim: Algorithmic Metatheorems
– theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle’s Theorem* Courcelle’s Theorem
• All MSO2-definable prop. in linear-time FPT for bounded tree-width.

– perhaps the best known alg. metatheorem on graphs ˜1988

– clique-width + MSO1 version by [Courcelle–Makowsky–Rotics]

* Logic on Graphs* Logic on Graphs
• Propositional logic (∧∨ →) graph vertices/edges (x, y, z, .., e, . . . );

– e.g., ∀x, y
(
edge(x, y)→ x ∈ C∨y ∈ C

)
, “C is vertex cover”

– FO logic (first-order): just this ↑
– MSO logic (monadic second-o.): quantifies vertex sets ∃X, Y

↑ MSO1 vs. MSO2 ↓
– or, quantifies vertex and edge sets together ∃X, Y,E, F .



page.11
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How far can one get?How far can one get?
* Not far with MSO* Not far with MSO

• On monotone graph classes:

– [Kreutzer–Tazari] not above polylog. tree-width with MSO2

– [GHLORS] not above polylog. tree-width with coloured MSO1

• On hereditary classes, perhaps the same with clique-width. . .

* Better with FO* Better with FO

• FO is always in XP, but we aim for FPT (fixed exponent poly.)!

– [Seese] on bounded degrees

– [Frick–Grohe] locally bounded tree-width

– [Dawar–Grohe–Kreutzer] locally excluding a minor

– [D-K / Dvǒrák–Král’–Thomas] locally bounded expansion

– nowhere dense classes in general ??
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P. Hliněný, CSASC Koper, 2013 4 / 11 FO Properties of Interval Graphs

2 Interval Graphs2 Interval Graphs

Why this? – Exten. FO metaresults towards (some) dense graph class. . .

• INT: Intersection graphs of intervals on the real line.



page.11
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2 Interval Graphs2 Interval Graphs

Why this? – Exten. FO metaresults towards (some) dense graph class. . .

• INT: Intersection graphs of intervals on the real line.

• L-interval graphs = interval lengths only from a set L.

• “Easy” to get an INT representation and to handle it;

yet capable of FO interpretation of arbitrary graphs.

• Note; open/close intervals do not matter.
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P. Hliněný, CSASC Koper, 2013 5 / 11 FO Properties of Interval Graphs

Interpreting in [1, 1+ε]-interval graphsInterpreting in [1, 1+ε]-interval graphs

• The rough idea in picture (based on three “staircase piles”):

V1 V2 V3

a

(vj)

(vk) (vk)
′

ej,k


0 . . . n

– vertices 1 . . . n interpreted in v1 . . . vn (left pile),

these have their “mates” v′1 . . . v
′
n on the right,



page.11
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• The rough idea in picture (based on three “staircase piles”):

V1 V2 V3
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0 . . . n

– vertices 1 . . . n interpreted in v1 . . . vn (left pile),

these have their “mates” v′1 . . . v
′
n on the right,

– edges such as {j, k} interpreted in “ej,k” slightly longer interv.

• The FO interpretation:

identify an “anchor” a, then define the left/right piles (V1 and V3),
define mates vi ↔ v′i using the mid-pile, and fin. “read off” ej,k.
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3 The Metatheorem: FO on restr. INT3 The Metatheorem: FO on restr. INT

• By the previous, FO hopeless even on [1, 1+ε]-interval graphs,

and the same holds for lengths from any dense subset of [1, 1+ε].

• MSO1 is hopeless already on unit interval graphs.

• Main result. For any finite set L ⊆ R+, any FO property can be
tested in time O(n log n) on L-interval graphs.

– for example, independent and dominating set, subgraph isom.,

etc.

– nearly tight result by the previous examples,

– rather easy to prove for rational L, but difficult otherwise.
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P. Hliněný, CSASC Koper, 2013 7 / 11 FO Properties of Interval Graphs

4 Locality of FO4 Locality of FO

(Note, regarding FO, locally bounded/excluding *** occurs quite often. . . )

Gaifman’s theorem. Every FO sentence is equivalent to a boolean
combination of basic local sentences:

∃ •, •, . . . , •. “scattered”(•, . . . , •) ∧2• |= λ(•) ∧ · · · ∧2• |= λ(•)'

&

$

%
s

s s
s s

• Restriction to fixed-radius neighbourh. (above) definable inside FO.

• Hence, it is enough to solve any given FO property in

every local neighbourhood!
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Locality in interval graphsLocality in interval graphs

An easy case for FO. . .

• Unit interval graphs have locally bounded clique-width.

→ easy FO property (model) checking via [Courcelle et al]

• Claim. The same holds for any L a finite set of rationals.

Outlining:

• equivalent INT representations ∼ same endpoint sequence

• simple INT repres. ∼ no two endpoints the same, all > 0

• accumulation points ∼ the infima of left ends over all equiv. repres.

– e.g., for unit interval L = {1} these are 0, 1, 2, . . .

• clique-width — simply order the intervals by their distance from the
resp. accumulation points → linear k-expression

– where k ∼ |L| ·#accum. points ! (finite in bounded radius)
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Non-locality in interval graphsNon-locality in interval graphs

The assumption of rationality was essential. . .

• Claim. For any irrational r, the class of {1, r}-interval graphs has

locally unbounded clique-width.

• Construction outline:

“Folding” sequence of staircase piles, with accumulation points at

1 + · · ·+ 1− r + 1 + · · ·+ 1− r + 1 · · · · · · − 2r + 1 · · ·

• Infinitely many accumulation points in a bounded interval ⇒ locally
unbounded clique-width (not trivial, though).
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5 The Irrational Case5 The Irrational Case

• Just briefly. . . Another approach to the rational case:

– many many intervals at the same accumulation point
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• Just briefly. . . Another approach to the rational case:

– many many intervals at the same accumulation point

→ some may be removed, preserving all FO of quant. rank r!

(E-F games, ∼ same game trees)

• Irrational L ⇒ infin. many accumulation pts. on bounded segment:

– these are linear integer combinations ~λ · ~L of the lengths

– all accumulation pts. may have few intervals each

• Close & scattered accumulation pts:

– close on the real line, but for any two α = ~λ · ~L and β = ~µ · ~L,

these are far away on the integer grid (‖~λ− ~µ‖ huge)

• By locality of FO, again, close & scattered can be taken as one ac-
cumulation pt. → again an irrelevant interval.
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Can one test FO properties in FPT for every nowhere dense class?



page.11
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6 Conclusions6 Conclusions

• Behind the Graph Sparsity theory of Nešeťril and Ossona de Mendez;

Can one test FO properties in FPT for every nowhere dense class?

• Our little contribution:

There exist natural somewhere dense graph classes on which FO

properties are in FPT.

• Other such examples? A broader metatheorem?

• And, apart from the previous;

What is the comput. complexity of recognizing L-interval graphs?

Thank you for attention.
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