FO Properties of Interval Graphs ... (FO model checking)

Petr Hliněný

Faculty of Informatics Masaryk University, Brno, CZ

Robert Ganian, Daniel Král', Jan Obdržálek, Jarett Schwartz, Jakub Teska

- theor. tools claiming efficient solvability of large classes of problems at once.

- theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle's Theorem

- All MSO₂-definable prop. in linear-time FPT for bounded tree-width.
 - perhaps the best known alg. metatheorem on graphs ~1988

- theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle's Theorem

- All MSO₂-definable prop. in linear-time FPT for bounded tree-width.
 - perhaps the best known alg. metatheorem on graphs ~1988
 - clique-width + MSO₁ version by [Courcelle–Makowsky–Rotics]

- theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle's Theorem

- All MSO₂-definable prop. in linear-time FPT for bounded tree-width.
 - perhaps the best known alg. metatheorem on graphs ~1988
 - clique-width + MSO₁ version by [Courcelle–Makowsky–Rotics]

- Propositional logic ($\land \lor \rightarrow$) graph vertices/edges (x, y, z, ..., e, ...);
 - e.g., $\forall x, y (edge(x, y) \rightarrow x \in C \lor y \in C)$,

- theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle's Theorem

- All MSO₂-definable prop. in linear-time FPT for bounded tree-width.
 - perhaps the best known alg. metatheorem on graphs ~1988
 - clique-width + MSO₁ version by [Courcelle–Makowsky–Rotics]

- Propositional logic ($\land \lor \rightarrow$) graph vertices/edges (x, y, z, ..., e, ...);
 - e.g., $\forall x, y (edge(x, y) \rightarrow x \in C \lor y \in C)$, "C is vertex cover"
 - FO logic (first-order): just this \uparrow

- theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle's Theorem

- All MSO₂-definable prop. in linear-time FPT for bounded tree-width.
 - perhaps the best known alg. metatheorem on graphs ~1988
 - clique-width + MSO₁ version by [Courcelle–Makowsky–Rotics]

- Propositional logic ($\land \lor \rightarrow$) graph vertices/edges (x, y, z, ..., e, ...);
 - e.g., $\forall x, y (edge(x, y) \rightarrow x \in C \lor y \in C)$, "C is vertex cover"
 - FO logic (first-order): just this \uparrow
 - **MSO logic** (monadic second-o.): quantifies vertex sets $\exists X, Y$

- theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle's Theorem

- All MSO₂-definable prop. in linear-time FPT for bounded tree-width.
 - perhaps the best known alg. metatheorem on graphs ~1988
 - clique-width + MSO₁ version by [Courcelle–Makowsky–Rotics]

- Propositional logic ($\land \lor \rightarrow$) graph vertices/edges (x, y, z, ..., e, ...);
 - e.g., $\forall x, y (edge(x, y) \rightarrow x \in C \lor y \in C)$, "C is vertex cover"
 - FO logic (first-order): just this \uparrow
 - **MSO logic** (monadic second-o.): quantifies vertex sets $\exists X, Y$

$$\uparrow MSO_1$$
 vs. $MSO_2 \downarrow$

- theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle's Theorem

- All MSO₂-definable prop. in linear-time FPT for bounded tree-width.
 - perhaps the best known alg. metatheorem on graphs ~1988
 - clique-width + MSO₁ version by [Courcelle–Makowsky–Rotics]

* Logic on Graphs

- Propositional logic ($\land \lor \rightarrow$) graph vertices/edges (x, y, z, ..., e, ...);
 - e.g., $\forall x, y (edge(x, y) \rightarrow x \in C \lor y \in C)$, "C is vertex cover"
 - FO logic (first-order): just this \uparrow
 - **MSO logic** (monadic second-o.): quantifies vertex sets $\exists X, Y$

 $\uparrow \mathsf{MSO}_1$ vs. $\mathsf{MSO}_2\downarrow$

- or, quantifies vertex and edge sets together $\exists X, Y, E, F$.

• On monotone graph classes:

- On monotone graph classes:
 - [Kreutzer-Tazari] not above polylog. tree-width with MSO₂

- On monotone graph classes:
 - [Kreutzer-Tazari] not above polylog. tree-width with MSO₂
 - [GHLORS] not above polylog. tree-width with coloured MSO₁

- On monotone graph classes:
 - [Kreutzer-Tazari] not above polylog. tree-width with MSO₂
 - [GHLORS] not above polylog. tree-width with coloured MSO₁
- On hereditary classes, perhaps the same with clique-width...

* Not far with MSO

- On monotone graph classes:
 - [Kreutzer-Tazari] not above polylog. tree-width with MSO₂
 - [GHLORS] not above polylog. tree-width with coloured MSO₁
- On hereditary classes, perhaps the same with clique-width...

* Better with FO

• FO is always in XP, but we aim for FPT (fixed exponent poly.)!

* Not far with MSO

- On monotone graph classes:
 - [Kreutzer-Tazari] not above polylog. tree-width with MSO₂
 - [GHLORS] not above polylog. tree-width with coloured MSO₁
- On hereditary classes, perhaps the same with clique-width...

- FO is always in XP, but we aim for FPT (fixed exponent poly.)!
 - [Seese] on bounded degrees

* Not far with MSO

- On monotone graph classes:
 - [Kreutzer-Tazari] not above polylog. tree-width with MSO₂
 - [GHLORS] not above polylog. tree-width with coloured MSO₁
- On hereditary classes, perhaps the same with clique-width...

- FO is always in XP, but we aim for FPT (fixed exponent poly.)!
 - [Seese] on bounded degrees
 - [Frick-Grohe] locally bounded tree-width

* Not far with MSO

- On monotone graph classes:
 - [Kreutzer-Tazari] not above polylog. tree-width with MSO₂
 - [GHLORS] not above polylog. tree-width with coloured MSO₁
- On hereditary classes, perhaps the same with clique-width...

- FO is always in XP, but we aim for FPT (fixed exponent poly.)!
 - [Seese] on bounded degrees
 - [Frick-Grohe] locally bounded tree-width
 - [Dawar–Grohe–Kreutzer] locally excluding a minor

* Not far with MSO

- On monotone graph classes:
 - [Kreutzer-Tazari] not above polylog. tree-width with MSO₂
 - [GHLORS] not above polylog. tree-width with coloured MSO₁
- On hereditary classes, perhaps the same with clique-width...

- FO is always in XP, but we aim for FPT (fixed exponent poly.)!
 - [Seese] on bounded degrees
 - [Frick-Grohe] locally bounded tree-width
 - [Dawar–Grohe–Kreutzer] locally excluding a minor
 - [D-K / Dvořák–Král'–Thomas] locally bounded expansion

* Not far with MSO

- On monotone graph classes:
 - [Kreutzer-Tazari] not above polylog. tree-width with MSO₂
 - [GHLORS] not above polylog. tree-width with coloured MSO₁
- On hereditary classes, perhaps the same with clique-width...

- FO is always in XP, but we aim for FPT (fixed exponent poly.)!
 - [Seese] on bounded degrees
 - [Frick-Grohe] locally bounded tree-width
 - [Dawar-Grohe-Kreutzer] locally excluding a minor
 - [D-K / Dvořák–Král'–Thomas] locally bounded expansion
 - nowhere dense classes in general ??

Why this? - Exten. FO metaresults towards (some) dense graph class...

Why this? - Exten. FO metaresults towards (some) dense graph class...

• INT: Intersection graphs of intervals on the real line.

Why this? - Exten. FO metaresults towards (some) dense graph class...

• INT: Intersection graphs of intervals on the real line.

• L-interval graphs = interval lengths only from a set L.

Why this? - Exten. FO metaresults towards (some) dense graph class...

• INT: Intersection graphs of intervals on the real line.

- L-interval graphs = interval lengths only from a set L.
- "Easy" to get an INT representation and to handle it; yet capable of FO interpretation of arbitrary graphs.

Why this? - Exten. FO metaresults towards (some) dense graph class...

• INT: Intersection graphs of intervals on the real line.

- L-interval graphs = interval lengths only from a set L.
- "Easy" to get an INT representation and to handle it; yet capable of FO interpretation of arbitrary graphs.
- Note; open/close intervals do not matter.

• The rough idea in picture (based on three "staircase piles"):

a

• The rough idea in picture (based on three "staircase piles"):

- vertices $1 \dots n$ interpreted in $v_1 \dots v_n$ (left pile), these have their "mates" $v'_1 \dots v'_n$ on the right,

• The rough idea in picture (based on three "staircase piles"):

- vertices $1 \dots n$ interpreted in $v_1 \dots v_n$ (left pile), these have their "mates" $v'_1 \dots v'_n$ on the right,
- edges such as $\{j, k\}$ interpreted in " $e_{j,k}$ " slightly longer interv.

• The rough idea in picture (based on three "staircase piles"):

- vertices $1 \dots n$ interpreted in $v_1 \dots v_n$ (left pile), these have their "mates" $v'_1 \dots v'_n$ on the right,
- edges such as $\{j, k\}$ interpreted in " $e_{j,k}$ " slightly longer interv.
- The FO interpretation:

identify an "anchor" a, then define the left/right piles (V_1 and V_3),

• The rough idea in picture (based on three "staircase piles"):

- vertices $1 \dots n$ interpreted in $v_1 \dots v_n$ (left pile), these have their "mates" $v'_1 \dots v'_n$ on the right,
- edges such as $\{j, k\}$ interpreted in " $e_{j,k}$ " slightly longer interv.
- The FO interpretation:

identify an "anchor" a, then define the left/right piles (V_1 and V_3), define mates $v_i \leftrightarrow v'_i$ using the mid-pile, and fin. "read off" $e_{j,k}$.

• By the previous, FO hopeless even on $[1, 1+\varepsilon]$ -interval graphs,

 By the previous, FO hopeless even on [1, 1+ε]-interval graphs, and the same holds for lengths from any dense subset of [1, 1+ε].

- By the previous, FO hopeless even on [1, 1+ε]-interval graphs, and the same holds for lengths from any dense subset of [1, 1+ε].
- MSO₁ is hopeless already on unit interval graphs.

- By the previous, FO hopeless even on [1, 1+ε]-interval graphs, and the same holds for lengths from any dense subset of [1, 1+ε].
- MSO₁ is hopeless already on unit interval graphs.
- Main result. For any finite set L ⊆ ℝ⁺, any FO property can be tested in time O(n log n) on L-interval graphs.
 - for example, independent and dominating set, subgraph isom., etc.

- By the previous, FO hopeless even on [1, 1+ε]-interval graphs, and the same holds for lengths from any dense subset of [1, 1+ε].
- MSO₁ is hopeless already on unit interval graphs.
- Main result. For any finite set L ⊆ ℝ⁺, any FO property can be tested in time O(n log n) on L-interval graphs.
 - for example, independent and dominating set, subgraph isom., etc.
 - nearly tight result by the previous examples,
 - rather easy to prove for rational L, but difficult otherwise.

(Note, regarding FO, locally bounded/excluding *** occurs quite often...)

(Note, regarding FO, locally bounded/excluding *** occurs quite often...) **Gaifman's theorem.** Every FO sentence is equivalent to a boolean combination of basic local sentences:

 $\exists \bullet, \bullet, \dots, \bullet, \text{ "scattered"}(\bullet, \dots, \bullet) \land \textcircled{\bullet} \models \lambda(\bullet) \land \dots \land \textcircled{\bullet} \models \lambda(\bullet)$

(Note, regarding FO, locally bounded/excluding *** occurs quite often...) **Gaifman's theorem.** Every FO sentence is equivalent to a boolean combination of basic local sentences:

 $\exists \bullet, \bullet, \dots, \bullet. \text{ "scattered"}(\bullet, \dots, \bullet) \land \textcircled{\bullet} \models \lambda(\bullet) \land \dots \land \textcircled{\bullet} \models \lambda(\bullet)$

• Restriction to fixed-radius neighbourh. (above) definable inside FO.

(Note, regarding FO, locally bounded/excluding *** occurs quite often...) **Gaifman's theorem.** Every FO sentence is equivalent to a boolean combination of basic local sentences:

- Restriction to fixed-radius neighbourh. (above) definable inside FO.
- Hence, it is enough to solve any given FO property in every local neighbourhood!

An easy case for FO...

- Unit interval graphs have locally bounded clique-width.
 - \rightarrow easy FO property (model) checking via [Courcelle et al]

An easy case for FO...

- Unit interval graphs have locally bounded clique-width.
 → easy FO property (model) checking via [Courcelle et al]
- Claim. The same holds for any L a finite set of rationals.

An easy case for FO...

- Unit interval graphs have locally bounded clique-width.
 → easy FO property (model) checking via [Courcelle et al]
- Claim. The same holds for any L a finite set of rationals.

Outlining:

• equivalent INT representations \sim same endpoint sequence

An easy case for FO...

- Unit interval graphs have locally bounded clique-width.
 → easy FO property (model) checking via [Courcelle et al]
- Claim. The same holds for any L a finite set of rationals.

Outlining:

- equivalent INT representations \sim same endpoint sequence
- simple INT repres. \sim no two endpoints the same, all > 0

An easy case for FO...

- Unit interval graphs have locally bounded clique-width.
 → easy FO property (model) checking via [Courcelle et al]
- Claim. The same holds for any L a finite set of rationals.

Outlining:

- equivalent INT representations \sim same endpoint sequence
- simple INT repres. \sim no two endpoints the same, all > 0
- accumulation points \sim the infima of left ends over all equiv. repres.

- e.g., for unit interval $L = \{1\}$ these are $0, 1, 2, \ldots$

An easy case for FO...

- Unit interval graphs have locally bounded clique-width.
 → easy FO property (model) checking via [Courcelle et al]
- Claim. The same holds for any L a finite set of rationals.

Outlining:

- equivalent INT representations \sim same endpoint sequence
- simple INT repres. \sim no two endpoints the same, all > 0
- accumulation points \sim the infima of left ends over all equiv. repres.

- e.g., for unit interval $L = \{1\}$ these are $0, 1, 2, \ldots$

 clique-width — simply order the intervals by their distance from the resp. accumulation points → linear k-expression

- where $k \sim |L| \cdot \#$ accum. points ! (finite in bounded radius)

Non-locality in interval graphs

The assumption of rationality was essential...

• Claim. For any irrational *r*, the class of $\{1, r\}$ -interval graphs has locally unbounded clique-width.

Non-locality in interval graphs

The assumption of rationality was essential...

- Claim. For any irrational r, the class of $\{1, r\}$ -interval graphs has locally unbounded clique-width.
- Construction outline:

"Folding" sequence of staircase piles, with accumulation points at

 $1 + \dots + 1 - r + 1 + \dots + 1 - r + 1 \dots \dots - 2r + 1 \dots$

Non-locality in interval graphs

The assumption of rationality was essential...

- Claim. For any irrational r, the class of $\{1, r\}$ -interval graphs has locally unbounded clique-width.
- Construction outline:

"Folding" sequence of staircase piles, with accumulation points at

 $1 + \dots + 1 - r + 1 + \dots + 1 - r + 1 \dots \dots - 2r + 1 \dots$

 Infinitely many accumulation points in a bounded interval ⇒ locally unbounded clique-width (not trivial, though).

• Just briefly... Another approach to the rational case:

- Just briefly... Another approach to the rational case:
 - many many intervals at the same accumulation point
 - \rightarrow some may be removed, preserving all FO of quant. rank r! (E-F games, \sim same game trees)

- Just briefly... Another approach to the rational case:
 - many many intervals at the same accumulation point
 some may be removed, preserving all EQ of quant re-
 - → some may be removed, preserving all FO of quant. rank r! (E-F games, ~ same game trees)
- Irrational $L \Rightarrow$ infin. many accumulation pts. on bounded segment:
 - these are linear integer combinations $\vec{\lambda} \cdot \vec{L}$ of the lengths
 - all accumulation pts. may have few intervals each

- Just briefly... Another approach to the rational case:
 - many many intervals at the same accumulation point
 → some may be removed, preserving all FO of quant. rank r!
 (E-F games, ~ same game trees)
- Irrational $L \Rightarrow$ infin. many accumulation pts. on bounded segment:
 - these are linear integer combinations $\vec{\lambda} \cdot \vec{L}$ of the lengths
 - all accumulation pts. may have few intervals each
- Close & scattered accumulation pts:
 - close on the real line, but for any two $\alpha = \vec{\lambda} \cdot \vec{L}$ and $\beta = \vec{\mu} \cdot \vec{L}$, these are far away on the integer grid ($\|\vec{\lambda} \vec{\mu}\|$ huge)

- Just briefly... Another approach to the rational case:
 - many many intervals at the same accumulation point
 → some may be removed, preserving all FO of quant. rank r!
 (E-F games, ~ same game trees)
- Irrational $L \Rightarrow$ infin. many accumulation pts. on bounded segment:
 - these are linear integer combinations $\vec{\lambda} \cdot \vec{L}$ of the lengths
 - all accumulation pts. may have few intervals each
- Close & scattered accumulation pts:
 - close on the real line, but for any two $\alpha = \vec{\lambda} \cdot \vec{L}$ and $\beta = \vec{\mu} \cdot \vec{L}$, these are far away on the integer grid ($\|\vec{\lambda} \vec{\mu}\|$ huge)
- By locality of FO, again, close & scattered can be taken as one accumulation pt. → again an irrelevant interval.

• Behind the Graph Sparsity theory of Nešetřil and Ossona de Mendez;

Can one test FO properties in FPT for every nowhere dense class?

• Behind the Graph Sparsity theory of Nešetřil and Ossona de Mendez;

Can one test FO properties in FPT for every nowhere dense class?

• Our little contribution:

There exist natural somewhere dense graph classes on which FO properties are in FPT.

• Behind the Graph Sparsity theory of Nešetřil and Ossona de Mendez;

Can one test FO properties in FPT for every nowhere dense class?

• Our little contribution:

There exist natural somewhere dense graph classes on which FO properties are in FPT.

• Other such examples?

• Behind the Graph Sparsity theory of Nešetřil and Ossona de Mendez;

Can one test FO properties in FPT for every nowhere dense class?

• Our little contribution:

There exist natural somewhere dense graph classes on which FO properties are in FPT.

• Other such examples? A broader metatheorem?

• Behind the Graph Sparsity theory of Nešetřil and Ossona de Mendez;

Can one test FO properties in FPT for every nowhere dense class?

• Our little contribution:

There exist natural somewhere dense graph classes on which FO properties are in FPT.

- Other such examples? A broader metatheorem?
- And, apart from the previous;

What is the comput. complexity of recognizing *L*-interval graphs?

• Behind the Graph Sparsity theory of Nešetřil and Ossona de Mendez;

Can one test FO properties in FPT for every nowhere dense class?

• Our little contribution:

There exist natural somewhere dense graph classes on which FO properties are in FPT.

- Other such examples? A broader metatheorem?
- And, apart from the previous;

What is the comput. complexity of recognizing *L*-interval graphs?

THANK YOU FOR ATTENTION.