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1 The Aim: Algorithmic Metatheorems

— theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle’s Theorem
e All MSO,-definable prop. in linear-time FPT for bounded tree-width.

— perhaps the best known alg. metatheorem on graphs “1988
— clique-width 4+ MSO; version by [Courcelle-Makowsky—Rotics]

* Logic on Graphs
e Propositional logic (A —) graph vertices/edges (z, v, 2, ...e,...);

— e.g., Vz,y(edge(z,y) - v € CVy € C), “Cis vertex cover”
— FO logic (first-order): just this 1
— MSO logic (monadic second-o.): quantifies vertex sets X, Y

T MSOI VS. MSO2 J,
— or, quantifies vertex and edge sets together XY £ F'.
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How far can one get?
* Not far with MSO

e On monotone graph classes:
— [Kreutzer—Tazari] not above polylog. tree-width with MSO,
— [GHLORS] not above polylog. tree-width with coloured MSO;

e On hereditary classes, perhaps the same with clique-width. ..

* Better with FO
e FO is always in XP, but we aim for FPT (fixed exponent poly.)!

— [Seese] on bounded degrees

— [Frick—Grohe] locally bounded tree-width

— [Dawar—Grohe—Kreutzer| locally excluding a minor

— [D-K / Dvotdk—Kral'=Thomas] locally bounded expansion
— nowhere dense classes in general 77
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2 Interval Graphs

Why this? — Exten. FO metaresults towards (some) dense graph class. . .

e INT: Intersection graphs of intervals on the real line.

D
A

B—— DbH—m——"7-—"7

Apbm—m———— EF—— Fb—"—"—

e [-interval graphs = interval lengths only from a set L.

e “Easy” to get an INT representation and to handle it;
yet capable of FO interpretation of arbitrary graphs.

e Note; open/close intervals do not matter.
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Interpreting in [1, 1+¢]-interval graphs

e The rough idea in picture (based on three “staircase piles”):

/ (v) e an (wn)
[

— vertices 1...n interpreted in v; ... v, (left pile),

these have their “mates” v/ ... v/, on the right,
— edges such as {j, i} interpreted in “¢; ;" slightly longer interv.

e The FO interpretation:

identify an “anchor” a, then define the left/right piles (1} and V3),
define mates v; <> v} using the mid-pile, and fin. “read off" e, .
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e By the previous, FO hopeless even on [1, 14-¢]-interval graphs,

and the same holds for lengths from any dense subset of [1,1+¢].

e MSO; is hopeless already on unit interval graphs.

e Main result. For any finite set L. C R", any FO property can be
tested in time O(nlogn) on L-interval graphs.

— for example, independent and dominating set, subgraph isom.,
etc.
— nearly tight result by the previous examples,

— rather easy to prove for rational L, but difficult otherwise.
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4 Locality of FO

(Note, regarding FO, locally bounded /excluding *** occurs quite often. . .)

Gaifman’s theorem.  Every FO sentence is equivalent to a boolean
combination of basic local sentences:

Je,e,... 0 “scattered’(s,..., o) A [F]F Ale) A== A ] FE Ale)

e Restriction to fixed-radius neighbourh. (above) definable inside FO.

e Hence, it is enough to solve any given FO property in
every local neighbourhood!
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Locality in interval graphs
An easy case for FO. ..

e Unit interval graphs have locally bounded clique-width.
— easy FO property (model) checking via [Courcelle et al

e Claim. The same holds for any L a finite set of rationals.
Outlining:
e equivalent INT representations ~ same endpoint sequence

e simple INT repres. ~ no two endpoints the same, all > 0

e accumulation points ~ the infima of left ends over all equiv. repres.
— e.g., for unit interval L = {1} these are 0, 1,2, ...

e clique-width — simply order the intervals by their distance from the
resp. accumulation points — linear k-expression

— where k ~ |L| - #:accum. points ! (finite in bounded radius)
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Non-locality in interval graphs
The assumption of rationality was essential. . .

e Claim. For any irrational 7, the class of {1, 7 }-interval graphs has

locally unbounded clique-width.

e Construction outline:

|

“Folding” sequence of staircase piles, with accumulation points at

1+---+1—-r+1+---+1-r+1.-- ---=2r+4+1-..

e Infinitely many accumulation points in a bounded interval = locally
unbounded clique-width (not trivial, though).
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5 The Irrational Case

Just briefly. .. Another approach to the rational case:

— many many intervals at the same accumulation point
— some may be removed, preserving all FO of quant. rank 7!

(E-F games, ~ same game trees)

[rrational ' = infin. many accumulation pts. on bounded segment:

— these are linear integer combinations X - L of the lengths

— all accumulation pts. may have few intervals each

Close & scattered accumulation pts:

— close on the real line, but for any two o = X-L and B=i- E

these are far away on the integer grid (|| X — /i]| huge)

By locality of FO, again, close & scattered can be taken as one ac-
cumulation pt. — again an irrelevant interval.
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6 Conclusions
e Behind the Graph Sparsity theory of NeSetfil and Ossona de Mendez;

Can one test FO properties in FPT for every nowhere dense class?

e OQur little contribution:

There exist natural somewhere dense graph classes on which FO

properties are in FPT.

e Other such examples? A broader metatheorem?
e And, apart from the previous;
What is the comput. complexity of recognizing L-interval graphs?

THANK YOU FOR ATTENTION.
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