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Abstract. Answering an open question from 2007, we construct infinite
k-crossing-critical families of graphs which contain arbitrarily often ver-
tices of any prescribed odd degree, for sufficiently large k. From this we
derive that, for any set of integers D such that min(D) > 3 and 3,4 € D,
and for all sufficiently large k& there exists an infinite k-crossing-critical
family such that the numbers in D are precisely the vertex degrees which
occur arbitrarily often in this family. We also investigate what are the
possible average degrees of such crossing-critical families.
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1 Introduction

Reducing the number of crossings in a drawing of a graph is considered one of the
most important drawing aesthetics. Consequently, great deal of research work has
been invested into understanding of what forces the number of edge crossings in
a drawing of the graph to be high. There exist strong quantitative lower bounds,
such as the famous Crossing Lemma [1, 14]. However, the quantitative bounds
typically show their strength only in dense graphs, while in the area of graph
drawing we often deal with graphs having “small” number of edges.

The reasons for sparse graphs to have many crossings in any drawing are
structural (there is a lot of “nonplanarity” in them). These reasons can be under-
stood via so called k-crossing-critical graphs, which are the minimal graphs that
require at least k edge crossings (the “minimal obstructions”). While there are
only two 1-crossing-critical graphs, up to subdivisions—the Kuratowski graphs
K5 and K33, it has been known already since Siran’s [19] and Kochol’s [13]
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constructions that the structure of crossing-critical graphs is quite rich and non-
trivial for any k > 2.

Although 2-crossing-critical graphs can be reasonably (although not easily)
described [5], a full description for any k > 3 is clearly out of our current reach.
Consequently, research has focused on interesting properties shared by all k-
crossing-critical graphs (for certain k). Successfull attempts include, e.g., [7, 8, 10,
12,17]. While we would like to establish as much specific properties of crossing-
critical graphs as possible, the reality unfortunately seems to be against it. Many
desired and conjectured properties of crossing-critical graphs have already been
disproved by often complex and sophisticated constructions showing the odd
behaviour of crossing-critical graphs on global scale, e.g. [6,11,9, 18].

We study properties of infinite families of k-crossing-critical graphs, for fixed
values of k, since sporadic “small” examples of critical graphs tend to behave
very wildly for every k > 1. Among the most studied such properties are those
related to vertex degrees in the critical families, see [3,6,8,11,18]. Often the
research focused on the average degree a k-crossing-critical family may have—
this rational number clearly falls into the interval [3,6] if we forbid degree-2
vertices. It is nowadays known [8] that the true values fall into the open interval
(3,6), and all the rational values there can be achieved [3].

In connection with the proof of bounded pathwidth for k-crossing-critical
families [9, 10], it turned out to be a fundamental question whether k-crossing-
critical graphs have maximum degree bounded in k. The somehow unexpected
negative answer was then given by Dvordk and Mohar [6]. In 2007, Bokal noted
that all the known (by that time) constructions of infinite k-crossing-critical
families seem to use only vertices of degrees 3,4,6, and he asked what other
degrees can occur frequently often in k-crossing-critical families. Shortly after
that Hlinény extended his previous construction [9] to include an arbitrary com-
bination of any even degrees [11], for sufficiently large k.

Though, [11] answered only an (easier) half of Bokal’s question, and it re-
mained a wide open problem of whether there exist infinite k-crossing-critical
families whose members contain many vertices of odd degrees greater than 5.
Our joint investigation has recently led to an ultimate positive answer.

The contribution and new results of our paper can be summarized as follows:

— In Section 2, we review the tools which are commonly used in constructions
of crossing-critical families.

— Section 3 presents the key new contribution—a construction of crossing-
critical graphs with repeated occurrence of any prescribed odd vertex degree
(Proposition 3.1 and Theorem 3.2).

— In Section 4, we combine the new construction of Section 3 with previously
known constructions to prove the following: for any set of integers D such
that min(D) > 3 and 3,4 € D, and for all sufficiently large k there exists an
infinite k-crossing-critical family such that the numbers in D are precisely
the vertex degrees which occur arbitrarily often in this family (Theorem 4.2).



— We then extend the previous results in Section 5 to include also an
exhaustive discussion of possible average vertex degrees attained by our
degree-restricted crossing-critical families (Theorem 5.1).

— Finally, in concluding Section 6 we pay special attention to 2-crossing-critical
graphs, and list some remaining open questions.

2 Preliminaries

We consider finite multigraphs without loops by default (i.e., we allow multiple
edges unless we explicitly call a graph simple), and use the standard graph
terminology otherwise. The degree of a vertex v in a graph G is the number of
edges of G incident to v (cf. multigraphs), and the average degree of G is the
average of all the vertex degrees of G.

Crossing number. In a drawing of a graph G, the vertices of G are points
and the edges are simple curves joining their endvertices. It is required that no
edge passes through a vertex, and no three edges cross in a common point. The
crossing number cr(G) of a graph G is the minimum number of crossing points
of edges in a drawing of G in the plane. For &k € N, we say that a graph G is
k-crossing-critical, if cr(G) > k but cr(G — e) < k for each edge e € E(G).

Notice that a vertex of degree 2 in G is not relevant for a drawing of G
and for the crossing number, and we will often replace such vertices by edges
between their two neighbours. Since also vertices of degree 1 are irrelevant for
the crossing number, it is quite common to assume minimum degree 3.

Degree-universality. The following terms formalize a vague notion that a
certain vertex degree occurs frequently or arbitrarily often in an infinite family.
For a set D C N, we say that a family of graphs F is D-universal, if and only if,
for every assignment of integers {mq | d € D}, there exists a graph G € F, such
that G has at least my vertices of degree d for each d € D. It follows easily that
F has infinitely many such graphs.

Clearly, if F is D universal and D’ C D, then F is also D’-universal. Thus
for a particular family F, we may focus our interest on the (unique) maximal
set D for which F has this property—we then say that F is D-maz-universal.

Tools for crossing-critical graphs. A principal tool used in many construc-
tions of crossing-critical graphs are tiles. They were implicitly used already in
the early papers by Kochol [13] and Richter—Thomassen [17], although they were
formalized only later in the work of Pinnontoan and Richter [15, 16]. In our con-
tribution, we use extension of their formalization from [3]. We refer also to the
Appendix for a more detailed treatment of this useful toolbox.

A tile is a triple T' = (G, A, p) where A\, p C V(G) are two disjoint sequences
of distinct vertices of G, called the left and right wall of T, respectively. A tile
drawing of T is a drawing of the underlying graph G in the unit square such that
the vertices of A occur in this order on the left side of the square and those of p



in this order on the right side of it. The tile crossing number ter(T) of a tile T
is the smallest crossing number over all tile drawings of T'.

For simplicity, in this brief exposition, we shall assume that all considered
tiles satisfy |A| = |p| = w for a suitable universal constant w > 2 (though, a more
general treatment is obviously possible). The join of two tiles T = (G, A, p) and
T = (G',N,p) is defined as the tile T @ T' := (G”,\,p’), where G” is the
graph obtained from the disjoint union of G and G’, by identifying p; with X} for
i=1,...,w. Specially, if p; = X} is a vertex of degree 2 (after the identification),
we replace it with a single edge in G”. Since the operation ® is associative,
we can safely define the join of a sequence of tiles T = (To,T1,...,Tm) as
RT =ToRT1®...®T,,. The cyclization of a tile T' = (G, A, p), denoted by o T,
is the ordinary graph obtained from G by identifying A; with p; fori =1,..., w.
The cyclization of a sequence of tiles T = (To,Th,...,Tm) is oT := o(®T).
Again, possible degree-2 vertices are replaced with single edges.

Let T = (G, \, p) be a tile. The right-inverted tile TV is the tile (G, \, p) and
the left-inverted tile ¥T is the tile (G, ), p), where X and j denote the inverted se-
quences of \, p. For a sequence of tiles T = (Ty, ..., T},), let T+ := (T, ... ,Tf%).

One can easily get [15]; for any tile T, cr(oT’) < ter(7T'), and for every se-
quence of tiles T = (Ty,T1,...,Ty), ter(®@T) < it ter(T;). On the other
hand, corresponding lower bounds on the crossing number of cyclizations of tile
sequences are also possible [3], under additional technical assumptions. A tile
T = (G, A, p) is planar if ter(T) = 0. T is perfect if the following hold:

— G — X and G — p are connected;

— for every v € A there is a path from v to the right wall p in G internally
disjoint from A, and for every u € p there is a path from u to the left wall A
in G internally disjoint from p;

— for every 0 < i < j < w, there is a pair of disjoint paths, one joining A; and
pi, and the other joining A; and p;.

We are in particular interested in the following specialized result:

Theorem 2.1 ([3]). Let Ty,..., T be copies of a perfect planar tile T, and
T = (To,...,Tm). Assume that, for some integer k > 1, we have m > 4k — 2
and ter(@(TY)) > k. Then, cr(o(TY)) > k.

To lower-bound the tile crossing number (e.g., for use in Theorem 2.1), we
use the following simple tool. A traversing path in a tile T = (G, A, p) is a path
P C G such that one end of P is in A and the other in p, and P is internally
disjoint from A U p. A pair of traversing paths {P,Q} is twisted if P,Q are
disjoint and the mutual order of their ends in A is the opposite of their order
in p. Obviously, a twisted pair must induce a crossing in any tile drawing of 7'
A family of twisted pairs of traversing paths is called a twisted family.

Lemma 2.2 ([3]). Let F be a twisted family in a tile T, such that no edge
occurs in two distinct paths of UF. Then, ter(T) > | F|.



The second tool for constructing crossing-critical families is the so called zip
product [2, 3], which we introduce in a simplified setting [11]. For ¢ € {1, 2}, let
G; be a simple graph and let v; € V(G;) be its vertex of degree 3, such that
G; — v; is connected. We denote the neighbours of v; by u; for j € {1,2,3}. The
zip product of G1 and Ga according to vy, vo and their neighbours, is obtained
from the disjoint union of G7 — v; and G5 — vy by adding the three edges uiu?,

udu3, udu?. The following is true in this special case:

Theorem 2.3 ([4]). Let G be a zip product of G1 and Ga according to degree-3
vertices. Then, cr(G) = cr(Gy) + cr(Gz). Consequently, if G; is k;-crossing-
critical for i = 1,2, then G is (k1 + ka)-crossing-critical.

3 Crossing-Critical Families with High Odd Degrees

We first present a new construction of a crossing-critical family containing many
vertices of an arbitrarily prescribed odd degree (recall that the question of an
existence of such families has been the main motivation for this research).
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Fig. 1. A tile drawing of the tile G3 4. The wall vertices are drawn in white.

The construction defines a graph G (¢, n, m) with three integer parameters ¢ >
1,n > 3 and odd m > 3, as follows. There is a tile Gy, with the walls of size n+
£—1, which is illustrated in Figure 1 and formally defined below. Let G(¢,n,m) =
(G, iGg,nﬁ, Gom - ,iGgyni, Gy,n) be a sequence of such tiles of length m. The
graph G(¢,n,m) is constructed as O(Q(ﬁ, n,m) i). In the degenerate case of £ = 0,
the graph G(0,n,m) is defined as the “staircase strip” graph from Bokal’s [3],
and G(0,n,m) will be contained in G(¢,n,m) as a subdivision for every £.

The tile Gy, is composed of three copies of a smaller tile Hy, such that
G =Hippn ® ng,ni ® Hp . A fragment illustrating the join Hz g ® ng,gi is
presented in Figure 2. Formally, H, , consists of 2¢ 4+ n pairwise edge disjoint
paths, grouped into three families Pj,..., P}, Q},...,Q}, and S7,...,5), and
an additional set F’ of 2(n — 2) edges not on these paths.

— The paths S7,...,S!, are pairwise vertex-disjoint except that 5] shares one
vertex with S% (wy in Figure 2). The additional 2(n — 2) edges of F’ are in



Fig. 2. A fragment of the tile G3 s = H3 s ® JA’Hg,,8$ ® Hs g; defining the one tile Hs g
(left, between the dashed margins) and showing the composition Hs g ®¥Hs ¢ in Gs s.

pairs between vertices of the paths S_; and S} for i = 3,...,n, as depicted
in Figure 2 (edges w121, 2223, . . ., 222223).

— The union SjU...US! UF" is (consequently) a subdivision of the aforemen-
tioned staircase tile from [3].

— The paths @, ..., Q) all share the bottom-most vertex u; of S}, on the left
wall of Hp ., and are combined in such a way that Qj, i = 1,...,¢, shares
exactly one vertex with Q;_; (with S/, for i = 1) other than u; and this
shared vertex is of degree 4, as depicted near the right wall in Figure 2
(vertices vg,vs, v19). The paths P[,..., P, analogously share the top-most
vertex ug of S{ on the right wall of Hy, and are symmetric to Q's.

Let P/, QY7,S! denote the paths obtained as the union of the three copies of
each of P/, Q%, S/ in Gy,,. Then P/,..., P/, QF,....Q), and S7,...,S) are all
traversing paths of the tile Gy . Let P;, Q;, S; denote the corresponding unions
of the paths in whole G(¢,n,m).

The proof of the following basic properties is straightforward, as attentive
reader could easily verify from the illustrating pictures of Hy ,, (recall that degree-
2 vertices are removed in a tile join).

Proposition 3.1. For every ¢ > 1 and n > 3, the tiles Hyp, and hence also
Gy, are perfect planar tiles. The graph G(£,n, m) has 3m(2¢+ 4n — 8) vertices,
out of which 3m - 2¢ have degree 4, 3m(4n —9) have degree 3, and remaining
3m wvertices have degree 20 + 3. The average degree of G(¢,n,m) is

50 4+ 6n — 12
l+2n—4

We conclude with the main desired property of the graph G(¢,n,m).



Fig. 3. A fragment of an optimal tile drawing of G274$.

Theorem 3.2. Let { > 1, n > 3 be integers. Let k = ((* + () — 1+ 2¢(n — 1))
and m > 4k — 1 be odd. Then the graph G(€,n,m) is k-crossing-critical.

Proof. By using Theorem 2.1 and symmetry, it suffices to prove the following:

I) ter(® g(f,n,m)i) >k, and
IT) every edge of Gy, corresponding to one copy of Hy, in it is critical, mean-
ing that ter(Gy,t —e) < k for every edge e € E(Hy,) € E(Gyp).

Recall the pairwise edge-disjoint traversing paths P, ..., P, Q1,...,Q¢, and
S1, ...,y of the composed tile ®G (¢, n, m). We define the following disjoint sets
of pairs of these paths, such that each pair is formed by wvertex-disjoint paths:

- A={{P,Q,}:1<i,j <} where |A] = (%
- B={{P,S;}:1<i<{1<j<n} where|B|=4{n—1),
- C={{Qi,S;}:1<i< 1< j<n} where |C| ={(n—1).

Each pair in AUBUC is twisted in G (¢, n, m)$, and so these pairs account for at
least |A|+|B|+|C| = 2¢(n—1)+£? crossings in a tile drawing of ®G(¢,n, m)¥, by
Lemma 2.2. Importantly, each of these crossings involves at least one edge of R =
PyU. . .UPUQ1U. . .UQy. The subgraph ®G (¢, n, m)—E(R) contains a subdivision
of the staircase strip ®G(0, n, m). Hence any tile drawing of ®G (¢, n, m)¥ contains
another at least tcr(® G(0,n, m)$) crossings not involving any edges of R. Since
ter(® G(0,n,m)*) > (%) — 1 by [3], we get ter (@ G(£,n,m)) > (3) —1+20(n—
1) + £? = k, thus proving (I).

To finish with (II), we investigate the tile drawing in Figure 3. It is routine
to count that a natural generalization of this drawing has precisely (";1) +
(n—2)0+ ({+1)2+ ({+1)(n—3)+ ¢ = k crossings, and so it is optimal.
Consequently, every edge which is crossed in Figure 3 is critical, are so are edges
which become crossed after suitable local sliding of some vertex or edge (while
preserving optimality) in the picture. This way one can easily verify that all the
edges of a copy of Hy 4 in G2 4, up to symmetry, are critical; except possibly
three 2324, z5us, z627. The following local changes in the picture verify criticality
also for the latter three edges:



— for 2324, slide the edge 2327 up (above us) and the edge wyus slightly down,
— for zsus, 2627, slide the edge z32z7 up (above zg), the edge wyue down (below
z4), and the edge z4v5 together with the vertex vs suitably up.

An extension of this argument to the general case of Gy, is again routine. 0O

4 Families with Prescribed Frequent Degrees

In order to fully answer the primary question of this paper—about which vertex
degrees other than 3,4, 6 can occur arbitrarily often in infinite k-crossing-critical
families—we start by repeating the three ingredients we have got so far. First,
there is a bunch of established critical constructions essentially covering all the
even degree cases and degree 3. Second, we have newly covered the cases of any
fixed odd degree in Section 3. And third, we have got the zip product operation.

Proposition 4.1. There exist (infinite) families F of simple, 3-connected, k-
crossing-critical graphs such that, in addition, the following holds:

a) ([11, Section 4J.) For every k > 10 or odd k > 5, and every rational r €
(4,6 — k%_l), a family F which is {4, 6}-maz-universal and each member of F
is of average degree exactly r, and another F which is {4}-maz-universal and
of average degree exactly 4. Every graph of the two families has the set of its
vertex degrees equal to {3,4,6} (e.g., degree 3 repeats siz times in each).

b) ([11, Section 3 and 4].) For every e > 0, any integer k > 5 and every set D,
of even integers such that min(D,) = 4 and 6 < max(D,.) < 2k — 2, a family
F which is D.-maz-universal, and each graph of F has the set of its vertex
degrees D, U {3} and is of average degree from the interval (4,4 + €).

¢) ([15] for k =2 and [3] for general k, see G(0,n,m).) For every k = (3) — 1
where n > 3 is an integer, a family F which is {3,4}-maz-universal and each
member of F is of average degree equal to 3 + 4n1_7.

d) (G(¢,3,m) in Theorem 3.2.) For every k = (%> + 40 + 2 where £ > 1 is an
integer, a family F which is {3, 4, 2¢ 4+ 3}-maz-universal and each member of
F is of average degree 5 — é-%'

Using the zip product and Theorem 2.3, we can hence easily combine all the
cases of Proposition 4.1 to obtain the following “ultimate” answer:

Theorem 4.2. Let D be any finite set of integers such that min(D) > 3. Then
there is an integer K = K(D), such that for every k > K, there exists a D-
universal family of simple, 3-connected, k-crossing-critical graphs. Moreover, if
either 3,4 € D or both 4 € D and D contains only even numbers, then there
exists a D-maz-universal such family. All the vertex degrees are from DU{3,4,6}.

We refer to the Appendix for a full formal proof.



5 Families with Prescribed Average Degree

In addition to Theorem 4.2 we are going to show that the claimed D-max-
universality property can be combined with nearly any feasible rational average
degree of the family. The full statement reads:

Theorem 5.1. Let D be any finite set of integers such that min(D) > 3 and
A C R an interval. Assume that at least one of the following assumptions holds:

a) DD {3,4,6} and A = (3,6),

b) D 2 {3,4} and A= (3,4], or D = {3,4} and A = (3,4),

¢) D2 {3,4} and A= (3,5— %) where b > 9 is the largest odd number in D,
d) D D {4,6} has only even numbers and A = (4,6), or D = {4} and A = {4}.

Then, for every rational r € ANQ, there is an integer K = K(D,r) such that
for every k > K, there exists a D-maz-universal family of simple, 3-connected,
k-crossing-critical graphs of average degree precisely r.

We refer to the Appendix for a full formal proof of the theorem which we only
sketch in this restricted space. The basic idea of balancing the average degree in
a crossing-critical family is quite simple; assume we have two families F,, F}, of
fixed average degrees a < b, respectively, and containing some degree-3 vertices.
Then, we can use zip product of graphs from the two families to obtain a new
family of average degree equal to a convex combination of a and b. This simple
scheme, however, has two difficulties:

I) If one combines graphs Gy € F, and Gy € F;, the average degree of the
disjoint union G; UG5 is the average of a, b weighted by the sizes of G, G3.
Hence we need flexibility in choosing members of F,, F; of various size.

IT) Moreover, after a zip product of G1, G2 the resulting average degree is no
longer this weighted average of a, b but a slightly different rational number.
We take care of this problem by introducing a special compensation gadget
whose role is to revert the change in average degree caused by zip product.

Addressing (I); a family of graphs F is scalable if all the graphs in F have
equal average degree and for every G € F and every integer a, there exists
H € Fsuch that |V(H)| = a|V(G)|. Furthermore, F is D-maz-universal scalable
if, additionally, H contains at least a vertices of each degree from D and the
number of vertices of degrees not in D is bounded independently of a.

Trivially, the families of Proposition 4.1¢),d) are D-max-universal scalable
for D = {3,4} and D = {3,4,2¢ + 3}, respectively. For families as in Proposi-
tion 4.1a),b), the analogous property can be established by a slight modification
of the very flexible construction from [11].

Addressing (II); we again exploit the construction from [11], defining a flexible
gadget M¢, as a special case of Proposition 4.1a) (see the Appendix for details).
The graph M, for any m > 12 and 0 < ¢ < m, is simple, 3-connected and
5-crossing-critical. The way “compensating by” M), works, is formulated next:



Lemma 5.2. Let G4,...,G; be graphs, each having at least two degree-3 ver-
tices, and q € N. If H is a graph obtained by arbitrarily using the zip product of
all Gy, ..., Gy and of M&Tt, m > max(q + t,12), then the average degree of H
is equal to the average degree of the disjoint union of G1,...,Gy and MZ .

The next step is to naturally combine available scalable critical families to
obtain, with the help of Theorem 2.3 and Lemma 5.2, new families of arbitrary
“intermediate” rational average degrees:

Lemma 5.3. Assume we have simple, D;-maz-universal scalable, 3-connected,
k;-crossing-critical families F; of average degree r;, i = 1,...,t, such that r1 <
ro. Then for every k > ki + -+ ki +5 and any r € (r1,72) N Q, there exists a
(D1 U ---U Dy)-maz-universal family of simple, 3-connected, k-crossing-critical
graphs of average degree exactly r.

While leaving technical details of these tools to the Appendix, we finish with
an overview of their case-specific application to Theorem 5.1:

Proof (of Theorem 5.1). The case d) has already been proved in [11], see Propo-
sition 4.1a). In all other cases, let F; be the family from Proposition 4.1 ¢) such
that the parameter n satisfies r;1 = 3+ qu <r (where r € ANQ, r > 3, is the
desired fixed average degree).

In the case a), let F» be a family from Proposition 4.1 a) with average degree
equal to arbitrary (but fixed) ro € (r,6) # (), and chosen as scalable. In the
case ¢), let F5 be the family from Proposition 4.1 d) for the parameter £ such that
b = 20+3; in this case ry = 5— b% > r. Finally, consider the remaining sub-cases
of b). If D = {3,4}, then let F» be the second family from Proposition 4.1a)
with average degree ro = 4. If D D {3,4}, then let F5 be the family from
Proposition 4.1b), made scalable and of fixed average degree ro > 4.

In each of the choices of Fi, Fa above, it holds ry < r < ry. Furthermore, if
needed to fulfil D-max-universality, add more scalable families F3,... as in the
proof of Theorem 4.2. Theorem 5.1 then follows directly from Lemma 5.3. O

6 Final Remarks

In the previous constructions, we have always assumed that the fixed crossing
number k of the families is sufficiently large. One can, on the other hand, ask
what happens if we fix a small value of k beforehand (i.e., independently of the
asked degree properties).

In this direction, there is the remarkable result of Dvoidk and Mohar [6]
proving the existence of k-crossing-critical families with unbounded maximum
degree for any k > 171. Unfortunately, since [6] is not really constructive, we
do not know anything exact about the degrees occurring in these families. An
explicit construction of a k-crossing-critical family with unbounded maximum
degree is known only in the projective plane [12] for & > 2, but that falls outside
of the area of interest of this paper.
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Fig. 4. Fractions (each of three tiles) of constructions of simple, 3-connected, 2-cross-
ing-critical and D-max-universal families for D = {3,5} (left) and D = {3,6} (right).

It thus appears natural to thoroughly investigate the least non-trivial case
of k = 2, with help of the remarkably involved characterization result [5]3. Due
to limited space, we can only very briefly survey the obtained results, and refer
to the Appendix for extensive details and the proofs.

Theorem 6.1. A simple, 3-connected 2-crossing-critical D-max-universal fam-
ily exists if and only if {3} € D C {3,4,5,6}. Without the simplicity requirement,
such a family exists if and only if D C {3,4,5,6}, |D| > 2, and DN {3,4} # 0.

We remark that it is important that Theorem 6.1 deals with infinite such families
(via the universality property) since not all of the (finitely many) sporadic small
2-crossing-critical graphs are explicitly known [5]. Examples of two sub-cases of
Theorem 6.1 can be found in Figure 4.

Theorem 6.2. A simple, 3-connected, 2-crossing-critical infinite family of
graphs with average degree v € Q exists if and only if r € [3%,4]. Without
the simplicity requirement, such a family exists if and only if r € [3%,4%],

At last, we return to the statement of Theorem 4.2, which always requires
4 € D. On the other hand, from Theorem 6.1 we know that there exist D-max-
universal families of simple, 3-connected, 2-crossing-critical graphs for D = {3,5}
and D = {3,6} (Figure 4), e.g., when 4 ¢ D, and these can be generalized to
any k > 2 by a zip product with copies of K3 3.

Hence it is an interesting open question of whether there exists a D-max-
universal k-crossing-critical family such that D N {3,4} = (). It is unlikely that
the answer would be easy since the question is related to another long standing
open problem—whether there exists a 5-regular k-crossing-critical infinite family.
Related to this is the same question of existence of a 4-regular family, which does
exist for k = 3 [17] and the construction can be generalized to any k > 6, but
the cases k = 4,5 remain open.

Many more questions can be asked in a direct relation to the statement of
Theorem 5.1, but we can mention only a few of the interesting ones. E.g., if
6 ¢ D, can the average degree of such a family be from the interval [5,6)? Or,
assuming 3 € D but 4 ¢ D, for which sets D one can achieve D-max-universality
and what are the related average degrees?

We finish with another interesting structural conjecture:

3 Even though this very long manuscript [5] is not published yet, its main result has
been known already for many years and it is widely believed to be right.

11



Conjecture 6.3. There is a function g : N — R such that, any simple 3-con-
nected k-crossing-critical graph has average degree greater than 3 + g(k).
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A Appendix

In this appendix we provide extended full versions with complete proofs of the
sections which had to be shortened due to space restrictions in the main paper.
(We also repeat all the formal statements.)

A-2 Tools for constructing crossing-critical graphs

A principal tool used in construction of crossing-critical graphs are tiles. They
were used already in the early papers on infinite families of crossing-critical
graphs by Kochol [13] and Richter and Thomassen [17], although they were for-
malized only in the work of Pinnontoan and Richter [15, 16], answering Salazar’s
question [18] on average degrees in infinite families of k-crossing-critical graphs.
Bokal built upon these results to fully settle Salazar’s question when combining
tiles with zip product [3]. Also a recent result that all large 2-crossing-critical
graphs are composed of large multi-sets of 42 different tiles [5] demonstrates
that tiles are intimately related to crossing-critical graphs. In this section, we
summarize the known results from [3, 5, 15], which we need for our constructions.

Tiles are essentially graphs equipped with two sequences of vertices that are
identified among tiles or within a tile in order to, respectively, form new tiles
or graphs of tiles. The tiles can be drawn in unit square respecting the order of
special sequences of vertices, thus providing special, restricted drawings of tiles.
Due to the restriction, the crossing number of these special drawings is an upper
bound to the crossing number of either underlying graphs, or the graphs obtained
by identifying these specific vertices. The formal concepts allowing these oper-
ations are summarized in the following definition and the lemma immediately
after it:

Definition A-2.1. Let A = (A1,...,A;) and p = (p1,...,pr) be two sequences
of distinct vertices of a graph G, where no vertex of G appears in both X\ and p.

1. For any sequence X, let X denote its reversed sequence.
2. Atile is a triple T = (G, \, p).
8. The sequence of vertices \ is called the left wall and the sequence of vertices
p is called the right wall of T.
4. A tile drawing of a tile T = (G, \,p) is a drawing of G in unit square
[0,1] x [0, 1] such that:
— all vertices of the left wall are drawn in {0} x [0,1] and all vertices of
the right wall are drawn in {1} x [0,1];
— y-coordinates of wall vertices consistently respect the order in sequences
A and p.
5. The tile crossing number cr(T) of a tile T is the smallest crossing number
over all tile drawings of T .
6. A tile T = (G, ), p) is compatible with a tile T' = (G', N, p') if |p| = |N|
and cyclically-compatible if it is compatible with itself.
7. A sequence of tiles (Ty, ..., Tm) is compatible, if tiles T; and T;1+1 are com-
patible fori=0,...,m — 1.
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10.
11.

12.

15.

1.

Lemma A-2.2 ([15]). Let T be a cyclically-compatible tile. Then, cr(oT)
ter(T). Let T = (To, - .., Tin) be a compatible sequence of tiles. Then, ter(QT)

A sequence is cyclically-compatible if also T, is compatible with Tj.

The join of two compatible tiles T = (G, A\, p) and T = (G', N, p') is defined
as the tile T® T' = (G ® G',\,p'), where G ® G' represents the graph
obtained from the union of graphs G and G’, by identifying p; with X, for
i =1,...,|p|. We can get vertices of degree two by joining two tiles. We
remove these vertices and contract an incident edge. By joining two tiles, we
can also get double edges, and we keep them.

Since the operator ® is associative, we can define the join of a compatible
sequence of tiles T = (To, ..., Tpn) as QT =To ® ... Tp,.

Let T = (G, A\, p) be a cyclically-compatible tile. The cyclization oT of a tile
T is the graph G in which we identify A\; with p; fori=1,...,|A].

Let To = (G, N, p), ..., T, = (G, N, p') be cyclically-compatible tiles. The
cyclization of a cyclically-compatible sequence of tiles is defined as o] =
o(To ® ... ®Ty,), where we identify p; with N; fori=1,...,]A|

Let T = (G, \, p) be a tile. The right-inverted tile T% is the tile (G, \, p) and
the left-inverted tile *T is the tile (G, X, p). The inverted tile of T is the tile
ITY = (G, N\, p) and the reversed tile of T is the tile T = (G, p, \).

For a compatible sequence of tiles T, we define a twist as the sequence
Tt = (T07...,T7£), and we define an i-cut of T as the sequence T /i =
(Ti+17 AN ,Tm,To, e ,Tifl).

<
<

S ter(T).

The above Lemma applies without any information on the internal struc-

ture of the tiles. However, by exploiting their internal structure (planarity and
enough connectivity), we can also prove a lower bound on the tile crossing num-
ber, which can, with sufficiently many tiles, be exploited for the lower bound
on the crossing number of the graph resulting from the tile. Prerequisites for
these applications are summarized in the following definition and applied in the
theorem that follows.

Definition A-2.3. Let T = (G, A\, p) be a tile. Then:

1.
2.
3.

T is connected if G is connected.
T is planar if ter(T) = 0.
T is perfect if the following holds:

R

- G — X and G — p are connected;

— for every v € X there is a path to the right wall p in G internally disjoint
from X and for everyu € p there is a path to the left wall A in G internally
disjoint from p;

— for every 0 < i < j < |A|, there is a pair of disjoint paths, one joining
Xi and p;, and the other joining A\; and p;.

Theorem A-2.4 ([3]). Let T = (To, ..., T1,...,Tm) be a cyclically-compatible
sequence of tiles. Assume that, for some integer k > 0, the following hold: m >
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4k — 2, ter(®T) /1) > k, and the tile T; is a perfect planar tile, both for every
i=0,...,m, m#1. Then, cr(cT) > k.

This theorem can yield exact crossing number under the assumptions of the
next corollary.

Corollary A-2.5 ([3]). Let T = (To,..., T}, ..., Tm) be a cyclically-compatible
sequence of tiles and k = min; ter(®(7T /i)). If m > 4k — 2 and the tile T; is a
perfect planar tile for every i =0,...,m, i #1, then cr(oT) = k.

Exact lower bounds facilitate establishing criticality of the tiles and graphs,
as the smallest drop in crossing number suffices for criticality of an edge. For
combinatorially handling the criticality of the constructed graph on the basis of
the properties of tiles, we introduce degeneracy of tiles and criticality of sequences
of tiles as follows:

Definition A-2.6. 1. A tile T is k-degenerate if it is planar and ter(T+ —e) <
k for any e € E(T).
2. A sequence T = (To,...,Tm) is k-critical if the tile T; is k-degenerate for
every i = 0,...,m and min;z,, ter(@(T4/i)) > k.

Using these concepts, Corollary A-2.5 can be applied to establish criticality of
graphs resulting from crossing critical sequences of tiles or from degenerate tiles.

Corollary A-2.7 ([3]). Let T = (Ty, ..., Tm) be a k-critical sequence of tiles.
Then, T = QT is a k-degenerate tile. If m > 4k — 2 and T is cyclically-
compatible, then O(Ti) 18 a k-crossing-critical graph.

To estimate the tile crossing number, we use an informal tool called gadget. This
can be any structure inside of a tile 7', which guarantees a certain number of
crossings in every tile drawing of T'. The gadgets we use are twisted pairs of paths,
guaranteeing one crossing each, and staircase strips of width n, guaranteeing

(g) — 1 crossings.

Definition A-2.8. A traversing path in a tile T = (G,\,p) is a path P
in a graph G, for which there exist indices i(P) € {1,...,|\|}, and j(P) €
{0,...,|pl}, so that P is a path from X(P) = X\ypy to p(P) = pj(py and A\(P)
and p(P) are the only wall vertices of P.

A pair of disjoint traversing paths {P,Q} is twisted if i(P) < i(Q) and
J(P) > j(Q), and aligned otherwise. A family F of pairs of disjoint traversing
paths is aligned, if all the pairs in F are aligned. The family is twisted, if all
the pairs are twisted.

If the traversing paths in a twisted pair {P,Q} are disjoint, this implies one
crossing in any tile drawing of T'. This is generalized to twisted families in the
following lemma:

Lemma A-2.9 ([3]). Let F be a twisted family in a tile T, such that no edge
oceurs in two distinct paths of UF. Then, ter(T) > | F|.
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A staircase sequence of width n, which is a cyclically-compatible sequence of
specific tiles of odd length, was introduced in [3]. The definition is rather tech-
nical and we do not repeat it here; it suffices to know that the paths S; spanned
in the tile G(¢,n,m) in Section 3 induce a staircase strip, to which the following
Theorem applies:

Theorem A-2.10 ([3]). Let T be a tile and assume that P = {Py, Py, ..., P,}
forms a twisted staircase strip of width n in T. Then, tcr(T) > (5) — 1.

This concludes our discussion of known results on tiles in graphs. Tiled graphs
are joined together using zip product construction [2,3]. We use the version
restricted to vertices of degree three, as introduced in [11].

Definition A-2.11. Fori € {1,2}, let G; be a simple graph and let v; € V(G;)
be its vertex of degree 3, such that G; —v; is connected. We denote the neighbours
of v; by u; for j € {1,2,3}. The zip product of G1 and Gy according to vertices
v1, Vo and their neighbours, is obtained from the disjoint union of G1 — v1 and
Go — vg by adding three edges uiu?, ulu3, uiu3.

While crossing number is super-additive over general zip products only under
a technical connectivity condition, the following theorem holds for zip products
of degree (at most) three:

Theorem A-2.12 ([4]). Let G be a zip product of G1 and Ga as in Definition
A-2.11. Then, ct(G) = cr(Gy)+cr(Ge). Consequently, if G; is k;-crossing-critical
fori=1,2, then G is (ki + kz)-crossing-critical.

A-4 Families with Prescribed Frequent Degrees

We now get back to the primary question which motivated the research leading to
[11] and this paper: which vertex degrees other than 3,4,6 can occur arbitrarily
often in infinite k-crossing-critical families? First, we summarize the relevant
particular constructions—our future building blocks—obtained so far (note that
some of the claimed results have been proved in a more general form than stated
here, but we state them right in the form we shall use).

Proposition A-4.1. There exist (infinite) families F of simple, 3-connected,
k-crossing-critical graphs such that, in addition, the following holds:

a) ([11, Section 4].) For every k > 10 or odd k > 5, and every rational r €
8

(4,6 — 757), a family F which is {4, 6}-maz-universal and each member of F
is of average degree exactly r, and another F which is {4}-maz-universal and
of average degree exactly 4. Every graph of the two families has the set of its
vertex degrees equal to {3,4,6} (e.g., degree 3 repeats siz times in each).

b) ([11, Section 8 and 4].) For every € > 0, any integer k > 5 and every set D,
of even integers such that min(D.) =4 and 6 < max(D.) < 2k —2, a family
F which is D.-maz-universal, and each graph of F has the set of its vertex
degrees D, U {3} and is of average degree from the interval (4,4 + €).
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¢) ([15] for k =2 and [3] for general k, see G(0,n,m).) For every k = (3) — 1
where n > 3 is an integer, a family F which is {3,4}-maz-universal and each
member of F is of average degree equal to 3 + 4n1_7.

d) (G(¢,3,m) in Theorem 3.2.) For every k = (* + 4 + 2 where £ > 1 is an
integer, a family F which is {3,4, 2¢ 4+ 3}-maz-universal and each member of

F is of average degree 5 — Z%.

Having the particular constructions of Proposition A-4.1 and the zip prod-
uct with Theorem A-2.12 at hand, it is now quite easy to give the “ultimate”
combined construction as follows. For two graph families Fi, Fy of simple 2-
connected graphs such that each graph in F; U F3 has a vertex of degree 3, we
define the zip product of F; and F> as the family of all graphs H such that there
exist G1 € Fi, Gy € Fy and vertices v1 € V(G1), v € V(G2) of degree 3, and
H is the zip product of G; and G5 according to vy, vs.

Lemma A-4.2. Let F;, i = 1,2, be a D;-mazx-universal family of simple 2-
connected graphs such that each graph in F; has a vertex of degree 3. Then the
zip product of F1 and Fo is a (D1 U Dsy)-maz-universal family.

Proof. Let F denote the zip product of F; and F>. We first prove that F is
(D1 U Dy)-universal. Choose any set of integers {mq | d € Dy U D2}, and graphs
G; € F;, 1 = 1,2, such that G; contains at least my vertices of degree d for each
d € D;, and G; has at least m3 + 1 vertices of degree 3 if 3 € D;. Then the zip
product of G; and G (according to any pair of their degree-3 vertices) has at
least my vertices of degree d for each d € Dy U Ds.

Conversely, assume that F is {d}-universal for some integer d. Then for every
integer m there exists G € F such that G has at least 2m vertices of degree d.
Since G is a zip product of graphs G; € F;, i = 1,2, one of GG1, G2 contains at
least m vertices of degree d. W.l.o.g., this happens infinitely often for ¢ = 1, and
so (up to symmetry) F; is {d}-universal. Therefore, d € D1 U Dy which proves
that F is (D; U Dy)-max-universal. O

Theorem A-4.3 (Theorem 4.2). Let D be any finite set of integers such that
min(D) > 3. Then there is an integer K = K(D), such that for every k >
K, there exists a D-universal family of simple, 3-connected, k-crossing-critical
graphs. Moreover, if either 3,4 € D or both 4 € D and D contains only even
numbers, then there exists a D-mazx-universal such family. All the vertex degrees
in the families are from D U{3,4,6}.

Proof. Tt suffices to prove the second claim (D-max-universal) since a (D U
{3,4})-max-universal family is also D-universal. Furthermore, if D contains only
even numbers, then the claim has already been proved in [11], here in Proposi-
tion A-4.1Db).

Hence assume the case 3,4 € D, and let D, C D be the subset of the
even integers from D. Let F. denote the family from Proposition A-4.1b) for
ke = %maX(De) + 1, and F3 the family from Proposition A-4.1c¢) for k = 2. For
every a € D\ De, a > 3, let F, denote the family from Proposition A-4.1d)
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for 20, +3 = a and the crossing number k, = ¢2+4¢,+2. Since, in particular, F3
is {3}-universal, we may assume that every graph in F3 has more than |D\ D.|
vertices of degree 3. We now construct a family F as the iterated zip product of
F3, Fe, and (possibly) of each F, where a € D\ D., a > 3.

Clearly, every graph from F is simple 3-connected. By Lemma A-4.2, F
is moreover D-max-universal, and by Theorem A-2.12, F is K-crossing-critical
where K =k, +2+> D\D.,a>3 kq. This construction creates only vertices of
degrees from DU{3,4,6}. To extend the construction of F to any parameter k >
K, we simply replace the family F. by analogous F. from Proposition A-4.1b)
with the parameter k., = k. + (k — K). O

Fig.5. A possible way of combining the ideas of the construction [11] with the tile
Gs,3.

At last we shortly remark that building blocks of the “crossed belt” con-
struction of [11] (Proposition A-4.1b) can be directly combined with the new
construction of G(¢,n, m), without invoking a zip product. Such a combination
is outlined in Figure 5. However, since this construction can only achieve a com-
bination of various even degrees with one prescribed odd degree (greater than 3),
it cannot replace the proof of Theorem A-4.3 and so we refrain from giving the
lengthy technical details in this paper.

A-5 Families with Prescribed Average Degree

In addition to Theorem A-4.3 we are going to show that the claimed D-max-
universality property can be combined with nearly any feasible rational average
degree of the family.

Theorem A-5.1 (Theorem 5.1). Let D be any finite set of integers such that
min(D) > 3 and A C R be an interval of reals. Assume that at least one of the
following assumptions holds:

a) DD {3,4,6} and A = (3,6),

b) D 2 {3,4} and A= (3,4], or D = {3,4} and A = (3,4),

¢) D2 {3,4} and A= (3,5 — %) where b is the largest odd number in D and
b>9,
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d) D D {4,6} contains only even numbers and A = (4,6), or D = {4} and
A= {4}.

Then, for every rational r € ANQ, there is an integer K = K(D,r) such that
for every k > K, there exists a D-max-universal family of simple 3-connected
k-crossing-critical graphs of average degree precisely r.

Before we prove the theorem, we informally review the coming steps. The
basic idea of balancing the average degree in a crossing-critical family is quite
simple; assume we have two families F,, F, of fixed average degrees a < b,
respectively, and containing some degree-3 vertices. Then, we can use zip product
of graphs from the two families to obtain new graphs of average degrees which are
convex combinations of ¢ and b. This simple scheme, however, has two difficulties:

— If one combines graphs G; € F, and G2 € F}, then the average degree of the
disjoint union G U G2 is the average of a, b weighted by the sizes of G, Gs.
Hence we need great flexibility in choosing members of F,, F;, of various size,
and this will be taken care of by the notion of a scalable family.

— Second, after applying a zip product of GG1, G the resulting average degree is
no longer this weighted average of a, b but a slightly different rational num-
ber. We will take care of this problem by introducing a special compensation
gadget whose role is to revert the change in average degree caused by zip
product.

Fig. 6. The k-crossing-critical “crossed belt” construction of [11]: the shaded part is
any plane graph consisting of an edge-disjoint union of k cycles, satisfying certain
(rather weak) technical and connectivity conditions; the six marked vertices are all of
degree three.

We start with addressing the second point. The compensation gadget (one
for a whole family) will be picked from the family in Proposition A-4.1a). To
describe it precisely, we have to (at least informally) introduce the very general
crossed belt construction of crossing-critical families from [11]—see it is Figure 6.
Let T be the planar tile depicted in Figure 7 on the left, and let M/, be the planar
graph obtained as the cyclization o(Ty, ..., T,—1) where each T; = T. Let M,,,
m > 12, be constructed from M/ by adding six new degree-3 vertices and five
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Fig. 7. The tile T (left) used to construct our “compensation gadget” M,,, and the
tile 7" (called “double-split” in [11]) that can replace T in the compensation gadget.

new edges as in Figure 6, such that four of the new vertices subdivide rim edges
of the tiles To, T\ 415 T \m 2] T|3mya)- Let MG, be constructed exactly as My,
but replacing arbitrary ¢ > 0 of the tiles T with 7" shown on the right in
Figure 7.

Proposition A-5.2 ([11]). The graph M¢,, for any m > 12 and 0 < ¢ < m, is
5-crossing-critical.

The way “compensating by” the gadget M, works, is formulated next.

Lemma A-5.3 (Lemma 5.2). Let Gy,...,G; be graphs, each having at least
two degree-3 vertices, and q € N. If H is a graph obtained using the zip product
of all Gy,...,Gy and of M2t (in any order and any way, and for any m >
max(q + t,12)), then the average degree of H is equal to the average degree of
the disjoint union of G1,...,Gy and MJ,.

Proof. Let n; = |V(G;)| and s; be the sum of degrees in G;, and let ng =
6m + 6 + 2q, so = 28m + 18 + 6¢ be the same quantities in MJ,. Then nj =
[V(MET)| = ng + 2t and the sum of degrees of M% is sj = so + 6t. Since
performing one zip operation decreases the number of vertices by 2 and the sum
of degrees by 6, we have |[V(H)| =n{ +n1+---+ns—2t=ng+ny1+---+ny
and the sum of degrees in H is s§ + 81 + -+ + st — 6t = 59 + 1 + - - + S, and
the claim follows. O

To address the first point, we give the following definition. A family of graphs
F is scalable if all the graphs in F have equal average degree and for every
G € F and every integer a, there exists H € F such that |V (H)| = a|V(G)|.
Furthermore, F is D-mazx-universal scalable if, additionally, H contains at least
a vertices of each degree from D and the number of vertices of degrees not in D
is bounded from above independently of a.

Trivially, the families of Proposition A-4.1c¢),d) are D-max-universal scal-
able for D = {3,4} and D = {3,4,2¢ + 3}, respectively. For the families as in
Proposition A-4.1a),b), we have:

Lemma A-5.4. There exist families, satisfying the conditions of Proposi-
tion A-4.1a),b), which are D-maz-universal scalable for their respective sets D.

Note that in the case extending Proposition A-4.1b), the newly constructed
family will also have fixed average degree.
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Proof. The proof is completely based on the constructions from [11], but since
the question of scalability is not considered there, we have to discuss some further
details of the crossed belt construction of [11] (recall Figure 6).

First, consider a {4}-max-universal family F4 of simple, 3-connected, k-
crossing-critical graphs of average degree 4, as in Proposition A-4.1a). Pick any
G € Fy; then G has precisely six degree-3 vertices, and since the only other
vertex degrees occurring in G are 4 and 6, G has precisely three degree-6 ver-
tices. Let G’ be the “planar belt” of G (the shaded part in Figure 6, without
degree-3 vertices). Then G’ can be cut to form a perfect planar tile T such
that oTg: = G'. For integer a > 1, let G/, denote the cyclization of a copies of
T¢r, and let GI/ denote the graph G/, with the six degree-3 vertices added back
(such that four of them subdivide the same edges of one copy of the tile T as
they do in G). By [11], G¥ is again k-crossing-critical. If n = |V(G’)| and s is
the degree sum of G', then |V(G)| = n + 6 and the degree sum of G is s + 18.
Furthermore, |V(GY)| = an 4+ 6 and the degree sum of G/ is as + 18, and G/
has 3a degree-6 vertices. We denote by G, the graph obtained by 3a — 3 “double
split” operations each replacing a degree-6 vertex by three degree-4 vertices as
illustrated in Figure 7. Then [V (G,)| = an + 6 + 2(3a — 3) = a|V(G)| and the
degree sum of G, is as + 18 + 6(3a — 3) = a(s + 18), and so the average degree
is the same as of G. There are only three degree-6 vertices left in G,. Hence we
may assume G, € Fy as well, for every a > 1.

Second, consider a {4,6}-max-universal family JF, of simple 3-connected
k-crossing-critical graphs of average degree r € (4,6 — kiﬂ), as in Proposi-
tion A-4.1a). Then the proof follows the same line as in the previous para-
graph, only that now we have many degree-6 vertices by the assumption of
{6}-universality.

Third, consider a D.-max-universal family F. of simple 3-connected k-
crossing-critical graphs, as in Proposition A-4.1b). This case is somehow different
from the previous two since we have no vertices of degree 6 (unless 6 € D.) and
Fe contains graphs of various average degrees. Though, F. can be chosen such
that the average degree of every member of F. is from the interval (4,4 + ¢/2)
for any fixed € > 0. Pick arbitrary but sufficiently large G € F.. Then one can
find (see [11] for details) three edges in G not close to each other and not having
vertices of degree other than 4 in close neighbourhood, and let G; be obtained
by contracting these three edges (into vertices of degree 6). By [11], G is again
k-crossing-critical. Since G is sufficiently large, the average degree of GG1 is equal
to some r1 € (4,4 4 ¢). Now the construction from the first case above applies
to G and gives a whole scalable family of average degree ry. ad

The next step is to combine suitable scalable families to obtain arbitrary
rational average degrees in a given interval (roughly, between the sparsest and
the densest available family).

Lemma A-5.5. Assume, fori = 1,...,t, that F; is a D;-maz-universal scal-

able family of simple 3-connected k;-crossing-critical graphs of average degree
exactly r;, and that every graph in F1 U---U F; has at least two degree-3 wver-
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tices. For every k > ki + -+ + k¢ + 5 there exists rational ro € (3,6) such that,
for every aq,...,a,c € N, the following holds:

a) there exists a simple, 3-connected, k-crossing-critical graph G having at least
a; vertices of each degree from D;,

b) the number of vertices of G of degree not in Dy U ---U Dy is bounded from
above by a number depending only on c, k and the families F1,...,F, and

¢) the average degree of G is precisely

. Z§=1 a;r; + cro (1)
t-, a; +c¢ .
=1

Proof. Let £ =k — (k1 + -+ k¢ +5) and denote by Ky a set of ¢ disjoint copies
of the graph K3 3. Pick arbitrary G; € F;, i =1,...,t. We may w.l.o.g. assume
that ng = |[V(G1)| = --- = |[V(G¢)| and ng divisible by 6, since otherwise we
take the least common multiple of 6 and all the graph sizes and apply scalability
of the families F;. Clearly, ng can be chosen arbitrarily large as well, such as
ng > 6(40+t+4). Let Gy = M20/67(8+1) (the compensation gadget defined
above) and Hy denote the disjoint union of Iy and Gy. Then |V (Hy)| = ng and
we choose 7y to be the average degree of Hy;

180+ 28(no/6 — (£+1) +18 _ 14ng/3 — 10(¢ + 1)
O — = .
) o

Again by scalability, there exist G " € F; (of average degree ;) such that

. . . 3(c—1)(+1 .
V(G )| = a;ng for i = 1,...,¢. Similarly, we let G§¢ = MCT(LE/GE(C(;+)1). It is
simple calculus to verify that the disjoint union of Iy and G§° has cng vertices

and the average degree equal to

180 4-28(cng/6 —c(£+1)) +6-3(c—1)({ + 1)+ 18  1dcng/3 — 10c(£ 4 1)
Cno o Cno

=T0-

Hence the average degree of the disjoint union of Ky and G§¢ and G, ... G,
indeed is .
2_i—1 @iMoTi + CNoTo

t
D imq Ging +cng

=r. (2)

Finally, we let G = Mfé‘;;gz(f&i%“t and construct the simple 3-connected
graph G as the zip product of K, and G{™ and G;",...,G;*. By Theo-
rem A-2.12, G is crossing-critical with the parameter £ + 5+ ky + --- + k; = k,

as required. The degrees condition in a) follows from max-universal scalability

of F1,...,F, and b) then follows as well since the size of G{,* is bounded with
respect to ¢, k. Moreover, by compensation Lemma A-5.3, the average degree of
G is equal to r, as in (2). O

Corollary A-5.6 (Lemma 5.3). Assume D;-maz-universal scalable k;-cross-
ing-critical families F; of average degree r;, i = 1,...,t, as in Lemma A-5.5,
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such that r1 < ro. Then for everyk > ki +---+ki+5 and any r € (r1,72) NQ,
there exists a (D1 U --- U Dy)-maz-universal family of simple, 3-connected, k-
crossing-critical graphs of average degree exactly r.

Proof. The proof is a simple exercise in calculus based on Lemma A-5.5. Let
r= % where p, q are relatively prime integers. Our task is to find infinitely many
suitable choices of aq,...,a; such that, by (1),

p_ 22:1 a;T; + Cro 3)
q 22:1 a; +c

for some (unknown) rational rg € (3,6) and suitable (but fixed, see below) c.

To further simplify the task, we choose sufficiently large integer m such that
ri=(mri4+rs+--+r)/(m+t—2) <randset a; = ma, ag =--- = a; = a,
az = b for yet unknown a, b. Then (3) reads:

p  mary+ars+---+ary +bry+crg  a(m+t—2)ry +bry + cro
q alm—+t—2)+b+c  a(m+t—2)+b+ec

Let s=m+t—2,and r] = B2 pry = B2y = ’;—g. We continue with equivalent

. da av’
processing:

Pa Dy Po
aste + pBb 4 PO
P _ "4qa a 40

q as+b+c

p(as + b+ ¢)qaqpq0 = asqqqoPa + b4GaqoPs + €qqaqvPo

Finally, we get that (3) under our special substitution for aq, ..., a, is equivalent
to the following linear Diophantine equation in a, b:

a - 8q5q0(Pqa — Paq) + b - 4aqo(Pq — Pbq) = cqaqb(Poq — Pqo0)

Setting ¢ = qo - GCD (sqb(pqa = Daq), qa(Pqs — pbq)), this equation has infinitely
many integer solutions, and since rj < r < 12, we have that pg, — paq > 0 and
pgp — purq < 0 and so infinitely many of the solutions are among positive integers
(regardless of whether the right-hand side is positive, zero or negative). O

Proof (Proof of Theorem A-5.1). The case d) has already been proved in [11],
see Proposition A-4.1a). In all other cases, let F; be the family from Propo-
sition A-4.1c¢) such that the parameter n satisfies r; = 3 + ﬁ < r (where
r€ ANQ, r > 3, is the desired fixed average degree).

In the case a), let F3 be a family from Proposition A-4.1a) with average de-
gree equal to arbitrary (but fixed) ro € (r,6) # 0, which can be chosen as scalable
by Lemma A-5.4. In the case c), let F» be the family from Proposition A-4.1d)
for the parameter ¢ such that b = 2¢ + 3; in this case ro =5 — bil > r. Finally,
we consider the remaining subcases of b). If D = {3,4}, then let F3 be the sec-
ond family from Proposition A-4.1a) with average degree 1o = 4. If D D {3,4},
then let F» be the family from Proposition A-4.1b), made scalable and of fixed
average degree ro > 4 by Lemma A-5.4.
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In each one of the choices of F;, F3 above, it holds r; < r < ry. Furthermore,
if necessary in order to fulfil D-max-universality, we introduce additional scalable
families F3,... as in the proof of Theorem A-4.3. Theorem A-5.1 then follows
directly from Corollary A-5.6. a

A-6 Properties of 2-Crossing-critical Families

In this section, we use the characterization of all 3-connected, 2-crossing-critical
graphs from [5].

o O o O

Fig. 8. The two frames.

Definition A-6.1. The set S of tiles, obtained as combinations of two frames,
tllustrated in Figure 8, and 13 pictures, shown in Figure 9, in such a way, that
a picture is inserted into a frame by identifying the two squares. A given picture
may be inserted into a frame either with the given orientation or with a 180°
rotation.

The set T(S) consists of all graphs of the form o(T+), where T is a sequence
(To X Ty, T, .. Y Tom—1¥, Tom) so that m > 1 and, for eachi=0,1,2,...,2m,
T, €S.

Operations o, ® and ¥ on tiles and sequences were defined in Section A-2.
There are examples of some tiles from S in Figure 10. These tiles are labelled
from T, to Ty and next we will use these labels.

Theorem A-6.2. ([5/) Only finitely many 3-connected 2-crossing-critical
graphs do not contain a subdivision of Vig (the graph Vi, is obtained from a
2n-cycle by adding the n main diagonals).

G is a 3-connected 2-crossing-critical graph containing a subdivision of Vg

if and only if G € T(S).

Note: A 3-connected, 2-crossing-critical family of graphs contains at most
finitely many not-almost-planar graphs because any tile from 7(S) is almost-
planar.

We are interested only about infinite family of such graphs, so by this charac-
terization we are interested about graphs which have tile structure and tiles are
joining of pictures in Figure 9. Now we can answer our questions about existence
of D-max-universal family for 3-connected 2-crossing-critical graphs.
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Fig. 9. The thirteen pictures.

Theorem A-6.3 (Theorem 6.1). A simple, 3-connected 2-crossing-critical D-
maz-universal family exists if and only if {3} € D C {3,4,5,6}.

Proof. Let F be any 3-connected 2-crossing-critical D-max-universal family. By
Theorem A-6.2, we may assume F C T (S). There are only nine simple tiles in
S and by join of any two of them we can only construct vertices with degrees
3,4, 5 and 6, so D C {3,4,5,6}. On the other hand, any simple tile from S
has a vertex of degree 3 that is not in its left or right wall, so {3} C D, and we
get some vertex with degree not equal to 3 after we join any two of them, so

{3}1\%05 ;7ve must only construct family F for any such set D. Consider sequences
T({3,4},m) = (T, 1.5 T,, ... Y T,%. T,) (Figure 11),
T({3,5},m) = (T} T}, To,... * T4, T,)  (Figure 12),
T({3,6},m) = (T} T4, Ty, ... * T4, Th)  (Figure 13),
T({3,4,5},m) = (T, } T,%, T, a,...,dei,Ta) (Figure 14),
T({3,4,6},m) = (T, T4 T.,... Y T,;*, T,) (Figure 15),
T({3,5,6},2m) = (T, * .Y, T, * ¥, T,, ... ¥ Ty¥, T,)  combine T({3,5},m) with T({3,6},
T({3,4,5,6},m) = (T T,%, T, c,...}Tbi,:rc) (Figure 16),

where T (D, m) is a sequence of length 2m+1 for each set D and positive integer
number m.

Let {3} € D C {3,4,5,6}. Then o(T (D, m)%) is 2-crossing-critical by Theo-
rem A-6.2 and contains vertices only with degrees from D, each at least m times.
Hence

T(D) = {o(T(D,m)*);m € Z* Am is even when D = {3,5,6}}
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b—0o o o
(a) tile T, (b) tile Ty (c) tile T, (d) tile Ty
(e, (e, (e, (e,
) )
(e) tile T. (f) tile Ty (g) tile Ty (h) tile T
(e, (e, (e, (e,
o o b—0
(i) tile T; (j) tile T3 (k) tile Tk (1) tile T;
(e, : (e,
D—@q Q—o b—o
(m) tile T}, (n) tile T), (o) tile Ty

Fig. 10. Examples of tiles from S

o ° o P P

\ O ® 4 O

Fig. 11. Tile ®7 ({3,4}, m) for m=1. Fig. 12. Tile ®7 ({3,5}, m) for m=1.

o ° °

L g ¥ 0

Fig. 13. Tile ®7 ({3,6},m) for m=1.  Fig. 14. Tile ®7 ({3,4,5}, m) for m=1.
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Fig. 15. Tile ®7 ({3,4,6},m) for m=1. Fig.16. Tile ®7T ({3,4,5,6},m) for m=1.

is a 3-connected 2-crossing-critical D-max-universal family. a

Theorem A-6.4 (Theorem 6.1). A 3-connected, 2-crossing-critical D-maz-
unsversal family exists if and only if D C {3,4,5,6}, |D| > 2, and DN{3,4} # 0.

Proof. Let F be any 3-connected 2-crossing-critical D-max-universal family. By
Theorem A-6.2, we may assume F C T(S). These graphs only have degrees 3,
4,5 and 6, so D C {3,4,5,6}. On the other hand, any join of tiles has at least
two vertices of different degrees, at least one vertex of them being either 3 or 4,
so |D| > 2 and DN{3,4} # 0.

For the converse, we must construct a family F for any prescribed set D.
Using Theorem A-6.3, only sets D Z 3 need to be considered. Define:

T({4,5},m) = (T; 315, Ty, ... Y T4, Ty) - (Figure 17),
T({4,6},m) = (T 1.5 T,.,... * .Y, T.) (Figure 18),
T({4,5,6},m) = (T..Y T4 T, ... YTV, T.)  (Figure 19),

where T (D, m) is sequence of length 2m + 1 for all set D and positive integer
number m.

Fig.17. Tile ®7({4,5}, m) for m=1. Fig. 18. Tile 7T ({4,6},m) for m=1.

& 4 —O0

Fig. 19. Tile ®7 ({4,5,6},m) for m=1.

Let D C {3,4,5,6}, |D| > 2, DN {3,4} # 0. Then o(7(D,m)?) is 2-crossing
critical by Theorem A-6.2, contains only vertices of degrees from D, each at least
m times. Hence

T(D) = {o(’T(D,m)i);m € Z* Am is even when D = {3,5,6}}
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is a 3-connected 2-crossing-critical D-max-universal family. ad

Lemma A-6.5. Let x, a, b, ¢1, co, di, do are positive integer numbers.

Ifx:%:% > 2—2, then x = Zi_z > Z——:—_cclz
Also ifx:%:% < CCZ—Z, then x = Zigi < Ziz
Proof. If
a c c
x = gzd% > d%’
then

b+di b+d  b+d;

atc  br+dzx  (b+di)r

All numbers are positive so every next modification is equivalent:

a—+co
T b+ds
x(b+dy) >a+ca=ab+co
xdy > ¢

T

c
332—2
da

Proof for the second inequality is analogous. a

Theorem A-6.6. A simple, 3-connected, 2-crossing-critical infinite family of
graphs with average degree r € Q exists if and only if r € [3%, 4].

Proof. Let T is any tile from S (from Definition A-6.1). Then o(T%) has v ver-

tices and its sum of degrees is s. The number # is the average degree of tile T'.

If we have any other tile T} from S, for which O(Tli) has v; vertices and its sum
of degrees is s1, then o((T,¥T;H)?) has average degree ii—ii By Lemma A-6.5,
a simple, 3-connected, 2-crossing-critical family with maximum (minimum) av-
erage degree exists and contains at most all graphs, which consist of simple tiles
with the same maximum (minimum) average degree.

We consider only the simple tiles from S. The tiles T, and T,; have maximum
degree (i.e. 4) and T, has minimum degree (i.e. 31). So 7({3,4}) (from the proof
of Theorem A-6.3) is the family with average degree 3% and it is minimum and
T({3,4,6}) (from the proof of Theorem A-6.3) is the family with average degree
4 and it is maximum.

Now we must only construct simple 3-connected 2-crossing-critical family
with average degree r € Q for any r € (3%,4). Let % € (3%,4) (p, q are natural
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and coprime) be arbitrary and k is any positive integer number. Then:

5p > 164q 4q9>p

5p — 16g > 0 16g —4p > 0
5p—16¢g—1>0 16g—4p—12>0

30p —96¢g —6 >0 96g —24p—6 >0

30p —96g —5 >0 96g —24p—4 >0

(30p —96g —5)(2k—1) >0 (96g —24p —4)(2k—1) >0

Consider sequence T (k) = (Tq, R R N N I 7 1 R Y Wy N Oy AR

where T, (together with $7,%) is (96 — 24p — 4)(2k — 1)-times, T}, (together with
1% is 8(2k — 1)-times and T, (together with $7.%) is (30p — 96¢ — 5)(2k — 1)-
times. Length of this sequence is

(96q — 24p — 4)(2k — 1) + 8(2k — 1) + (30p — 96¢ — 5)(2k — 1) = (6p — 1)(2k — 1)

and it is an odd number.

Graph o(Tai) has 5 vertices and its sum of degrees is 16, o(Tbi) has 5 vertices
and its sum of degrees is 18 and O(TCI) has 4 vertices and its sum of degrees is
16. So average degree of o(T(k’)i) is

16(96g — 24p — 4)(2k — 1) + 18 - 8(2k — 1) 4+ 16(30p — 96 — 5)(2k — 1)
5(96g — 24p — 4)(2k — 1) + 5 - 8(2k — 1) + 4(30p — 96¢ — 5)(2k — 1)
 —384p— 64 +480p — 80+ 144 96p p

480 — 20 — 384 —204+40 96 ¢’

Hence {T(k);k € Z"} is simple 3-connected 2-crossing-critical family with av-
erage degree %. O

Theorem A-6.7. A 3-connected, 2-crossing-critical infinite family with average
degree v € Q exists if and only if r € [3;4%].

Proof. Asin the previous proof, we can prove that 3-connected 2-crossing-critical
family with maximum (minimum) average degree exists and contains graphs that
consist of tiles with the same maximum (minimum) average degree.

We consider only few tiles from S. From these tiles 7, has maximum de-
gree (i.e. 42) and T, has minimum degree (i.e. 31). So T({3,4}) (from Proof
of Theorem A-6.3) is family with average degree 3% and it is minimum and
T({4,6}) (from Proof of Theorem A-6.4) is family with average degree 4% and
it is minimum.

Now we must only construct 3-connected 2-crossing-critical family with av-
erage degree 7 € Q for any r € (3%,4%). Let % € (3%,4%) (p, q are natural and
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coprime) be arbitrary and k is any positive integer number. Then:

o5p > 16q 14qg > 3p

5p — 16g > 0 14¢g—3p >0
5p—16g—12>0 14¢g—3p—12>0

40p — 128¢ -8 >0 122q —24p—8 >0

(40p — 128¢ — 8)(2k — 1) > 0 (122 — 24p— 4)(2k —1) > 0

Consider sequence T (k) = (T, ¥}, ... T, 1, % 1. 1.t At 1 3t 1, 3T T,
where T, (together with iTai) is (112¢—24p—4)(2k—1)-times, T, (together with
7,7 is 11(2k — 1)-times and T, (together with ¥7,%) is (40p — 128¢ — 8)(2k — 1)-
times. Length of this sequence is

(112q—24p—4)(2k—1)+11(2k—1)+(40p—128¢—8) (2k—1) = (16p—16¢—1)(2k—1)

and it is odd number.

Graph o(T,%) has 5 vertices and its sum of degrees is 16, o(T,%) has 4 vertices
and its sum of degrees is 16 and o(Te$) has 3 vertices and its sum of degrees is
14. So average degree of o(T(k)*) is

16(112q — 24p — 4)(2k — 1) + 16 - 11(2k — 1) + 18(40p — 128¢ — 8)(2k — 1)
5(112q — 24p — 4)(2k — 1) + 4 - 11(2k — 1) + 3(40p — 128q — 8)(2k — 1)
1792 — 384p — 64 + 560p — 1792g — 112+ 176 176p _ p

560q — 120p — 20 + 120p — 384 — 24 +44  176q ¢

Hence {T(k);k € Z"} is simple 3-connected 2-crossing-critical family with av-
erage degree %. O

Theorem A-6.8. Let D be such that there exists a D-max-universal 3-
connected 2-crossing-critical family. Then let Ip (or I3, for simple graphs) is
set of all rational numbers, such that there is a D-max-universal 3-connected
2-crossing-critical (simple) family with average degree r if and only if r € Ip
(r € 1})). Then I}, and Ip are intervals and moreover:

L D [ 5 | b |
(3.4} 15 FIF 7
3.5y [ {&} [[5, 7]
{3.67 || {Z} | {3}
{4,5} 0 {3}
{4,6} 0| {5}
{3.4.5} | (54| (5.4]
{3.4.6} || (.4 [(F.7)
{3,5,6} (5. I F)
{456t | 0 [(5.3)
{3,456} (5.4 [(§. 3)




