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1 Introduction: Tree-likeness1 Introduction: Tree-likeness

What is tree-likeness good for?

• Having graphs “structurally nice”;

– extending easy properties of trees,

– using the tree structure in proofs,

etc. . .

• Solving algorithmic problems;

– e.g., running DP algorithms on
decompositions,

– and proving algorithmic metatheorems.
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P. Hliněný, Graphs and Matroids – Maastricht, 2012 3 / 16 Shrubs: Can dense graphs be ”sparse”?

Tree-likenessTree-likeness

- two basic kinds on undirected graphs. . .



page.16

P. Hliněný, Graphs and Matroids – Maastricht, 2012 3 / 16 Shrubs: Can dense graphs be ”sparse”?

Tree-likenessTree-likeness

- two basic kinds on undirected graphs. . .

Tree-widthTree-width Clique-widthClique-width

∼ branch-width ∼ rank-width



page.16
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Tree-likenessTree-likeness

- two basic kinds on undirected graphs. . .

Tree-widthTree-width Clique-widthClique-width

∼ branch-width ∼ rank-width

bounded → only “few” edges bounded (cw. 2) even on cliques,

nearly-closed on complement

subgraph-monotone
(generally on minors)

hereditary – induced subgr.

(gen. on vertex-minors)

related to graph MSO2 logic related to graph MSO1 logic
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2 Shrubs: When Trees Grow Low2 Shrubs: When Trees Grow Low

Why, again . . . ?

• Some even nicer structural properties;

– Ding’s WQO theorem (for graphs with no long paths),

– low tree-width decomp. [Devos, Oporowski, Sanders, Reed, Seymour, Vertigan]

vs. low tree-depth colouring [Nešeťril and Ossona de Mendez].

• And some algorithmic applications;

– testing FO properties in FPT on bounded expansion classes

[Dvǒrák, Král’, Thomas], and

– [NEW] kernelization for MSO model checking on trees of bd.
height→ elementary FPT algorithm (faster than Courcelle).
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When trees grow low, IWhen trees grow low, I

of the first, tree-width, kind:

Tree-widthTree-width Tree-depthTree-depth

any tree in the decomp. only shrubs (bd. height)

rel. to recursiv. low connectivity cont. no long paths as subgraphs

WQO minors [Robertson, Seymour]

(generalizable to all graphs)
WQO induced subgraphs [Ding]

(gen. m-partite cographs [NEW])

MSO2 model checking in FPT,
but nonelementary in φ [Courcelle]

MSO2 model checking in ele-
mentary FPT wrt. φ [NEW],
by the previous kernelization

– extending, e.g., [Lampis 2010]

with vertex cover
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P. Hliněný, Graphs and Matroids – Maastricht, 2012 6 / 16 Shrubs: Can dense graphs be ”sparse”?

When trees grow low, IIWhen trees grow low, II

What does this mean for clique-width?

Clique-widthClique-width ??? -depth ?????? -depth ???

interpretation in any lab. trees
“tree model” of bounded height

↓

Shrub-depthShrub-depth [NEW]



page.16
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When trees grow low, IIWhen trees grow low, II

What does this mean for clique-width?

Clique-widthClique-width ??? -depth ?????? -depth ???

interpretation in any lab. trees
“tree model” of bounded height

↓

Shrub-depthShrub-depth [NEW]

WQO vertex-minors [Oum] WQO induced subgraphs,

as subcl. of m-partite cographs

MSO1 model checking in FPT,
nonelem. [Courcelle, Makowsky, Rotics]

MSO1 model checking in ele-
mentary FPT, again by the prev.



page.16
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3 What is Tree-depth?3 What is Tree-depth?

[Nešeťril, Ossona de Mendez]

• Embedding a graph into the closure of a rooted forest of height d−1.

• Or, alternatively, catching the robber with d cops that cannot be

lifted back to the helicopter.

• Asympt. equivalent to not having long paths as subgraphs.
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the edges of G depend only on the two colours and distance in T .
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P. Hliněný, Graphs and Matroids – Maastricht, 2012 8 / 16 Shrubs: Can dense graphs be ”sparse”?

. . . and Shrub-depth?. . . and Shrub-depth?

G

T

• An (m-coloured) tree model T of height d,

where the modelled graph G is on the leaves of T , and

the edges of G depend only on the two colours and distance in T .

• [NEW] Shrub-depth of a class G is d ↔

for some fin. m, all graphs in G have m-col. tree model of height d.

• Exactly equivalent to interpretability in labelled trees of height d.



page.16
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. . . and Shrub-depth?. . . and Shrub-depth?

G

T

• An (m-coloured) tree model T of height d,

where the modelled graph G is on the leaves of T , and

the edges of G depend only on the two colours and distance in T .

• [NEW] Shrub-depth of a class G is d ↔

for some fin. m, all graphs in G have m-col. tree model of height d.

• Exactly equivalent to interpretability in labelled trees of height d.

• Asympt. equiv. to no long induced paths ??? NO, m-partite
cographs lie “between” these and bounded clique-width.
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size subtree T ′ ⊆ T such that T |= % ⇐⇒ T ′ |= %, for any MSO %.



page.16
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4 The “Shrubs MSO Theorem”4 The “Shrubs MSO Theorem”

Theorem [NEW]. For a given tree T of fixed height, there is a bounded-

size subtree T ′ ⊆ T such that T |= % ⇐⇒ T ′ |= %, for any MSO %.

The size

|T ′| ∼ 2
2 ..

q. rank(%)
}
fixed height

dep. elementarily on the quantifier rank of %, but not on T or partic. %.

Corollary. There is an elementary FPT algorithm for

• MSO2 model checking on graph classes of bounded tree-depth,

• MSO1 model checking on graph classes of bounded shrub-depth.

Corollary. For any hereditary graph class G, the following are equivalent:

• G has a simple MSO interpr. in the rooted label. trees of height d,

• G is of shrub-depth ≤ d.
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Inspired by very recent. . .

Theorem [Elberfeld, Grohe, and Tantau – LICS 2012].
The following are equivalent on hereditary (monotone) graph classes G:

• expressive powers of FO logic and MSO2 (MSO1) coincide on G,
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Shrubs; another consequenceShrubs; another consequence

Inspired by very recent. . .

Theorem [Elberfeld, Grohe, and Tantau – LICS 2012].
The following are equivalent on hereditary (monotone) graph classes G:

• expressive powers of FO logic and MSO2 (MSO1) coincide on G,

• G is of bounded tree-depth.

→ the backward dir. actually is a corollary of the previous Theorem

(yes, a nontrivial one, there is a catch. . . )

Moreover, and open question in [E-G-H]; →

Theorem [NEW]. On hereditary graph classes of bounded shrub-depth,
expressive powers of FO logic and MSO1 logic coincide.

Conjecture. The previous Theorem can be reversed.
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Some key “sparsity” concepts, as in [Nešeťril and Ossona de Mendez]:

• aforementioned tree-depth (and low td. colouring),

• shallow minors – contracting only pieces of bounded radius j.
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5 On Sparsity for Dense Graphs?5 On Sparsity for Dense Graphs?

Some key “sparsity” concepts, as in [Nešeťril and Ossona de Mendez]:

• aforementioned tree-depth (and low td. colouring),

• shallow minors – contracting only pieces of bounded radius j.

→ Minor resolution, of a graph class G;

G ⊆ G∇0 ⊆ G∇1 ⊆ G∇2 ⊆ · · · ⊆ G∇j ⊆ · · · ⊆ G∇∞

where G∇j gives all j-shallow minors, and G∇∞ is the full minor closure.

• G is somewhere dense ↔ ∃j: G∇j contains all graphs,

then “sparsity” ≡ nowhere dense.

Note. In many aspects a very robust notion, but

why the complement of a sparse class is not sparse?
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Proposal: Shallow interpretationProposal: Shallow interpretation

Note. Robustness on complements→
• cannot have subgraph-monotone classes,

• and cannot use classical graph distance (cf. “shallow”).



page.16
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Proposal: Shallow interpretationProposal: Shallow interpretation

Note. Robustness on complements→
• cannot have subgraph-monotone classes,

• and cannot use classical graph distance (cf. “shallow”).

SparsitySparsity New proposalNew proposal

implicitly subgraph-monotone hereditary (ind.), and labelled

shallow minor (or topological) shallow logical interpretation

* somewhere dense * * somewhere “logically dense” *
if

G∇j G∇∇ j
contains all graphs for some j <∞.
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• any FO formula η(x, y) over gr. G, with j quantifiers

→ interpreted gr.
(
V (G), {uv : G |= η(u, v)}

)
,

plus all its induced subgraphs.

FO resolution

G ⊆ G∇∇ 0 ⊆ G∇∇ 1 ⊆ G∇∇ 2 ⊆ . . . ⊆ G∇∇ j ⊆ . . . ⊆ G∇∇∞

• G is somewhere FO dense ↔ ∃j: G∇∇ j contains all graphs,

then “FO sparsity” ≡ nowhere FO dense.
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FO sparsity examplesFO sparsity examples

For better understanding. . .

Graph classGraph class FO resolution ∇∇ jFO resolution ∇∇ j

tree-depth ≤ d shrub-depth ≤ d

shrub-depth ≤ d shrub-depth ≤ d

bounded clique-width bounded clique-width

heredit. n-subdiv. of Kn, n ∈ N ???, but not all graphs

heredit. 1010-subd. of Kn, n ∈ N all graphs, for j > 1010 (dense)

somewhere dense and monotone all graphs, eventually

planar,
or nowhere dense

???,
are those nowhere FO dense?
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6 Conclusions6 Conclusions

• Giving new concepts of “depth” and “sparsity”;

related to traditional sparsity notions as

clique-width is related to tree-width.

• A finding recently sought is several works, e.g., by

– Elberfeld, Grohe, and Tantau [LICS 2012],

– Oum and Thilikos [personal communication].

• Many more tasks to do — ongoing research. . .

– more indication of “robustness” of nowhere FO density?

– say, locally bounded *** – what does mean “locally” here?

– low shrub-depth colouring – can this be more than just shallow
interpretation in bounded expansion classes?
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