Can dense graphs be "sparse"?

Petr Hliněný

Faculty of Informatics Masaryk University, Brno, CZ

Can dense graphs be "sparse"?

Petr Hliněný

Faculty of Informatics Masaryk University, Brno, CZ

Presenting results obtained with J. Gajarský [MSc. thesis, and arXiv], and with R. Ganian, J. Nešetřil, J. Obdržálek, P. Ossona de Mendez, R. Ramadurai [MFCS 12].

What is tree-likeness good for?

• Having graphs "structurally nice";

- Having graphs "structurally nice";
 - extending easy properties of trees,
 - using the tree structure in proofs, etc...

- Having graphs "structurally nice";
 - extending easy properties of trees,
 - using the tree structure in proofs, etc...
- Solving algorithmic problems;

- Having graphs "structurally nice";
 - extending easy properties of trees,
 - using the tree structure in proofs, etc...
- Solving algorithmic problems;
 - e.g., running DP algorithms on decompositions,
 - and proving algorithmic metatheorems.

Tree-likeness

- two basic kinds on undirected graphs...

Tree-likeness

- two basic kinds on undirected graphs...

Tree-width

 \sim branch-width

 \sim rank-width

Tree-likeness

- two basic kinds on undirected graphs...

Tree-width

 \sim branch-width

Clique-width

 \sim rank-width

bounded \rightarrow only "few" edges

bounded (cw. 2) even on cliques, nearly-closed on complement

Tree-likeness - two basic kinds on undirected graphs... **Tree-width Clique-width** \sim rank-width \sim branch-width bounded \rightarrow only "few" edges bounded (cw. 2) even on cliques, nearly-closed on complement subgraph-*monotone*

(generally on minors)

hereditary – induced subgr. (gen. on vertex-minors)

Tree-likeness - two basic kinds on undirected graphs... **Tree-width Clique-width** \sim rank-width \sim branch-width bounded \rightarrow only "few" edges bounded (cw. 2) even on cliques, nearly-closed on complement *hereditary* – induced subgr. subgraph-*monotone*

(generally on minors)

related to graph MSO₂ logic

(gen. on vertex-minors)

related to graph MSO₁ logic

- Some even nicer structural properties;
 - Ding's WQO theorem (for graphs with no long paths),

- Some even nicer structural properties;
 - Ding's WQO theorem (for graphs with no long paths),
 - low tree-width decomp. [Devos, Oporowski, Sanders, Reed, Seymour, Vertigan]
 vs. low tree-depth colouring [Nešetřil and Ossona de Mendez].

- Some even nicer structural properties;
 - Ding's WQO theorem (for graphs with no long paths),
 - low tree-width decomp. [Devos, Oporowski, Sanders, Reed, Seymour, Vertigan]
 vs. low tree-depth colouring [Nešetřil and Ossona de Mendez].
- And some algorithmic applications;

- Some even nicer structural properties;
 - Ding's WQO theorem (for graphs with no long paths),
 - low tree-width decomp. [Devos, Oporowski, Sanders, Reed, Seymour, Vertigan]
 vs. low tree-depth colouring [Nešetřil and Ossona de Mendez].
- And some algorithmic applications;
 - testing FO properties in FPT on *bounded expansion* classes [Dvořák, Král', Thomas], and

- Some even nicer structural properties;
 - Ding's WQO theorem (for graphs with no long paths),
 - low tree-width decomp. [Devos, Oporowski, Sanders, Reed, Seymour, Vertigan]
 vs. low tree-depth colouring [Nešetřil and Ossona de Mendez].
- And some algorithmic applications;
 - testing FO properties in FPT on *bounded expansion* classes [Dvořák, Král', Thomas], and
 - [NEW] kernelization for *MSO model checking* on trees of bd.
 height → elementary FPT algorithm (faster than Courcelle).

of the first, tree-width, kind:

of the first, tree-width, kind:

Tree-width

any tree in the decomp.

Tree-depth only shrubs (bd. height)

of the first, tree-width, kind:

Tree-width

any tree in the decomp.

rel. to recursiv. low connectivity

Tree-depth

only shrubs (bd. height)

cont. no long paths as subgraphs

of the first, tree-width, kind:

Tree-width

any tree in the decomp.

Tree-depth

only shrubs (bd. height)

rel. to recursiv. low connectivity

WQO minors [Robertson, Seymour] (generalizable to all graphs) cont. no long paths as subgraphs

WQO induced subgraphs [Ding] (gen. *m*-partite cographs [NEW])

of the first, tree-width, kind:

Tree-width

any tree in the decomp.

rel. to recursiv. low connectivity

WQO minors [Robertson, Seymour] (generalizable to all graphs)

 MSO_2 model checking in FPT, but nonelementary in ϕ [Courcelle]

Tree-depth

only shrubs (bd. height)

cont. no long paths as subgraphs

WQO induced subgraphs [Ding] (gen. *m*-partite cographs [NEW])

 MSO_2 model checking in *elementary* FPT wrt. ϕ [NEW], by the previous kernelization

extending, e.g., [Lampis 2010] with vertex cover

What does this mean for clique-width?

What does this mean for clique-width?

Clique-width

??? -depth ???

interpretation in any lab. trees

What does this mean for clique-width?

Clique-width

??? -depth ???

"tree model" of bounded height

interpretation in any lab. trees

What does this mean for clique-width?

Clique-width

interpretation in any lab. trees

??? -depth ??? "tree model" of bounded height ↓ Shrub-depth [NEW]

3 What is Tree-depth?

[Nešetřil, Ossona de Mendez]

3 What is Tree-depth?

[Nešetřil, Ossona de Mendez]

- Embedding a graph into the *closure of a rooted forest* of height d-1.
- Or, alternatively, catching the robber with *d* cops that cannot be lifted back to the helicopter.

3 What is Tree-depth?

[Nešetřil, Ossona de Mendez]

- Embedding a graph into the *closure of a rooted forest* of height d-1.
- Or, alternatively, catching the robber with *d* cops that cannot be lifted back to the helicopter.
- Asympt. equivalent to not having long paths as subgraphs.

... and Shrub-depth?

... and Shrub-depth?

 An (*m*-coloured) tree model T of height d, where the modelled graph G is on the leaves of T, and the edges of G depend only on the two colours and distance in T.

- An (m-coloured) tree model T of height d, where the modelled graph G is on the leaves of T, and the edges of G depend only on the two colours and distance in T.
- [NEW] Shrub-depth of a class \mathcal{G} is $d \leftrightarrow$

for some fin. m, all graphs in \mathcal{G} have m-col. tree model of height d.

- An (m-coloured) tree model T of height d, where the modelled graph G is on the leaves of T, and the edges of G depend only on the two colours and distance in T.
- [NEW] Shrub-depth of a class \mathcal{G} is $d \leftrightarrow$

for some fin. m, all graphs in \mathcal{G} have m-col. tree model of height d.

• Exactly equivalent to *interpretability* in labelled trees of height d.

- An (m-coloured) tree model T of height d, where the modelled graph G is on the leaves of T, and the edges of G depend only on the two colours and distance in T.
- [NEW] Shrub-depth of a class \mathcal{G} is $d \leftrightarrow$

for some fin. m, all graphs in \mathcal{G} have m-col. tree model of height d.

- Exactly equivalent to *interpretability* in labelled trees of height d.
- Asympt. equiv. to no long induced paths ???

- An (m-coloured) tree model T of height d, where the modelled graph G is on the leaves of T, and the edges of G depend only on the two colours and distance in T.
- [NEW] Shrub-depth of a class \mathcal{G} is $d \leftrightarrow$

for some fin. m, all graphs in \mathcal{G} have m-col. tree model of height d.

- Exactly equivalent to *interpretability* in labelled trees of height d.
- Asympt. equiv. to no long induced paths ??? NO, *m*-partite cographs lie "between" these and bounded clique-width.

Theorem [NEW]. For a given tree T of fixed height, there is a boundedsize subtree $T' \subseteq T$ such that $T \models \varrho \iff T' \models \varrho$, for any MSO ϱ .

Theorem [NEW]. For a given tree T of fixed height, there is a boundedsize subtree $T' \subseteq T$ such that $T \models \varrho \iff T' \models \varrho$, for any MSO ϱ .

The size $|T'| \sim 2^{2^{\int_{\alpha} rank(\varrho)}}$ fixed height

dep. elementarily on the quantifier rank of ρ , but not on T or partic. ρ .

Theorem [NEW]. For a given tree T of fixed height, there is a boundedsize subtree $T' \subseteq T$ such that $T \models \rho \iff T' \models \rho$, for any MSO ρ .

The size $|T'| \sim 2^{2^{\int_{\alpha} rank(\varrho)}}$ fixed height

dep. elementarily on the quantifier rank of ρ , but not on T or partic. ρ .

Corollary. There is an *elementary FPT* algorithm for

• MSO₂ model checking on graph classes of bounded tree-depth,

Theorem [NEW]. For a given tree T of fixed height, there is a boundedsize subtree $T' \subseteq T$ such that $T \models \rho \iff T' \models \rho$, for any MSO ρ .

The size $|T'| \sim 2^{2^{\int_{\alpha} rank(\varrho)}}$ fixed height

dep. elementarily on the quantifier rank of ρ , but not on T or partic. ρ .

Corollary. There is an *elementary FPT* algorithm for

- MSO₂ model checking on graph classes of bounded tree-depth,
- MSO₁ model checking on graph classes of bounded shrub-depth.

Theorem [NEW]. For a given tree T of fixed height, there is a boundedsize subtree $T' \subseteq T$ such that $T \models \rho \iff T' \models \rho$, for any MSO ρ .

The size $|T'| \sim 2^{2^{\int \frac{q \cdot rank(\varrho)}{2}}} fixed height$

dep. elementarily on the quantifier rank of ρ , but not on T or partic. ρ .

Corollary. There is an *elementary FPT* algorithm for

- MSO₂ model checking on graph classes of bounded tree-depth,
- MSO₁ model checking on graph classes of bounded shrub-depth.

Corollary. For any hereditary graph class \mathcal{G} , the following are equivalent:

• 9 has a *simple MSO interpr*. in the rooted label. trees of height d,

Theorem [NEW]. For a given tree T of fixed height, there is a boundedsize subtree $T' \subseteq T$ such that $T \models \varrho \iff T' \models \varrho$, for any MSO ϱ .

The size $|T'| \sim 2^{2^{\cdot \frac{g \cdot rank(g)}{2}}} fixed height$

dep. elementarily on the quantifier rank of ρ , but not on T or partic. ρ .

Corollary. There is an *elementary FPT* algorithm for

- MSO₂ model checking on graph classes of bounded tree-depth,
- MSO₁ model checking on graph classes of bounded shrub-depth.

Corollary. For any hereditary graph class \mathcal{G} , the following are equivalent:

- G has a *simple MSO interpr.* in the rooted label. trees of height d,
- \mathcal{G} is of shrub-depth $\leq d$.

Inspired by very recent...

Theorem [Elberfeld, Grohe, and Tantau – LICS 2012]. The following are equivalent on hereditary (monotone) graph classes \mathcal{G} :

• expressive powers of FO logic and MSO₂ (MSO₁) coincide on G,

Inspired by very recent...

Theorem [Elberfeld, Grohe, and Tantau – LICS 2012]. The following are equivalent on hereditary (monotone) graph classes \mathcal{G} :

- expressive powers of FO logic and MSO₂ (MSO₁) coincide on G,
- G is of bounded tree-depth.

Inspired by very recent...

Theorem [Elberfeld, Grohe, and Tantau – LICS 2012]. The following are equivalent on hereditary (monotone) graph classes \mathcal{G} :

- expressive powers of FO logic and MSO₂ (MSO₁) coincide on G,
- G is of bounded tree-depth.

 \rightarrow the backward dir. actually is a corollary of the previous Theorem (yes, a nontrivial one, there is a catch...)

Inspired by very recent...

Theorem [Elberfeld, Grohe, and Tantau – LICS 2012]. The following are equivalent on hereditary (monotone) graph classes \mathcal{G} :

- expressive powers of FO logic and MSO₂ (MSO₁) coincide on G,
- G is of bounded tree-depth.

 \rightarrow the backward dir. actually is a corollary of the previous Theorem (yes, a nontrivial one, there is a catch...)

Moreover, and open question in [E-G-H]; \rightarrow

Inspired by very recent...

Theorem [Elberfeld, Grohe, and Tantau – LICS 2012]. The following are equivalent on hereditary (monotone) graph classes \mathcal{G} :

- expressive powers of FO logic and MSO₂ (MSO₁) coincide on G,
- G is of bounded tree-depth.

 \rightarrow the backward dir. actually is a corollary of the previous Theorem (yes, a nontrivial one, there is a catch...)

Moreover, and open question in [E-G-H]; \rightarrow

Theorem [NEW]. On hereditary graph classes of bounded shrub-depth, expressive powers of *FO logic and MSO*₁ *logic coincide*.

Conjecture. The previous Theorem can be reversed.

Some key "sparsity" concepts, as in [Nešetřil and Ossona de Mendez]:

- aforementioned *tree-depth* (and low td. colouring),
- *shallow minors* contracting only pieces of bounded radius *j*.

Some key "sparsity" concepts, as in [Nešetřil and Ossona de Mendez]:

- aforementioned *tree-depth* (and low td. colouring),
- *shallow minors* contracting only pieces of bounded radius *j*.
- \rightarrow **Minor resolution**, of a graph class \mathcal{G} ;

 $\mathfrak{G} \subseteq \mathfrak{G} \nabla 0 \subseteq \mathfrak{G} \nabla 1 \subseteq \mathfrak{G} \nabla 2 \subseteq \cdots \subseteq \mathfrak{G} \nabla j \subseteq \cdots \subseteq \mathfrak{G} \nabla \infty$

where $\Im \nabla j$ gives all *j*-shallow minors, and $\Im \nabla \infty$ is the full minor closure.

Some key "sparsity" concepts, as in [Nešetřil and Ossona de Mendez]:

- aforementioned *tree-depth* (and low td. colouring),
- *shallow minors* contracting only pieces of bounded radius *j*.
- \rightarrow **Minor resolution**, of a graph class \mathcal{G} ;

 $\mathfrak{G} \subseteq \mathfrak{G} \nabla 0 \subseteq \mathfrak{G} \nabla 1 \subseteq \mathfrak{G} \nabla 2 \subseteq \cdots \subseteq \mathfrak{G} \nabla j \subseteq \cdots \subseteq \mathfrak{G} \nabla \infty$

where $\Im \nabla j$ gives all *j*-shallow minors, and $\Im \nabla \infty$ is the full minor closure.

 G is somewhere dense ↔ ∃j: G∇j contains all graphs, then "sparsity" ≡ nowhere dense.

Note. In many aspects a very robust notion, but

Some key "sparsity" concepts, as in [Nešetřil and Ossona de Mendez]:

- aforementioned *tree-depth* (and low td. colouring),
- *shallow minors* contracting only pieces of bounded radius *j*.
- \rightarrow **Minor resolution**, of a graph class \mathcal{G} ;

 $\mathfrak{G} \subseteq \mathfrak{G} \nabla 0 \subseteq \mathfrak{G} \nabla 1 \subseteq \mathfrak{G} \nabla 2 \subseteq \cdots \subseteq \mathfrak{G} \nabla j \subseteq \cdots \subseteq \mathfrak{G} \nabla \infty$

where $\Im \nabla j$ gives all *j*-shallow minors, and $\Im \nabla \infty$ is the full minor closure.

 G is somewhere dense ↔ ∃j: G∇j contains all graphs, then "sparsity" ≡ nowhere dense.

Note. In many aspects a very robust notion, but why the *complement* of a sparse class is not sparse?

Note. Robustness on complements \rightarrow

- cannot have subgraph-monotone classes,
- and cannot use classical graph distance (cf. "shallow").

Note. Robustness on complements \rightarrow

- cannot have subgraph-monotone classes,
- and cannot use classical graph distance (cf. "shallow").

Sparsity New proposal

implicitly subgraph-monotone

hereditary (ind.), and labelled

Note. Robustness on complements \rightarrow

- cannot have subgraph-monotone classes,
- and cannot use classical graph distance (cf. "shallow").

Note. Robustness on complements \rightarrow

- cannot have subgraph-monotone classes,
- and cannot use classical graph distance (cf. "shallow").

Shallow interpretation \sim *hereditary simple j-FO* interpretation:

Shallow interpretation \sim *hereditary simple j-FO* interpretation:

- any FO formula $\eta(x, y)$ over gr. G, with j quantifiers
- \rightarrow interpreted gr. $(V(G), \{uv : G \models \eta(u, v)\}),$

plus all its induced subgraphs.

Shallow interpretation \sim *hereditary simple j-FO* interpretation:

• any FO formula $\eta(x, y)$ over gr. G, with j quantifiers

 \rightarrow interpreted gr. $(V(G), \{uv : G \models \eta(u, v)\}),$

plus all its induced subgraphs.

FO resolution

 $9 \subseteq 9 \bigtriangledown 0 \subseteq 9 \lor 1 \subseteq 9 \lor 2 \subseteq \ldots \subseteq 9 \lor j \subseteq \ldots \subseteq 9 \lor \infty$

Shallow interpretation \sim *hereditary simple j-FO* interpretation:

• any FO formula $\eta(x, y)$ over gr. G, with j quantifiers \rightarrow interpreted gr. $(V(G), \{uv : G \models \eta(u, v)\}),$

plus all its induced subgraphs.

FO resolution

 $9 \subseteq 9 \ \overline{\forall} 0 \subseteq 9 \ \overline{\forall} 1 \subseteq 9 \ \overline{\forall} 2 \subseteq \ldots \subseteq 9 \ \overline{\forall} j \subseteq \ldots \subseteq 9 \ \overline{\forall} \infty$

9 is somewhere FO dense ↔ ∃j: 9 ∀ j contains all graphs,
then "FO sparsity" ≡ nowhere FO dense.

FO sparsity examples

For better understanding...

Graph class

 $\mathsf{tree-depth} \leq d$

 $\mathsf{shrub-depth} \leq d$

shrub-depth $\leq d$ shrub-depth $\leq d$

FO resolution $\forall j$

FO sparsity examples

For better understanding...

Graph class

 $\mathsf{tree-depth} \leq d$

shrub-depth $\leq d$

bounded clique-width

shrub-depth $\leq d$ shrub-depth $\leq d$ bounded clique-width

FO resolution ∇i

FO sparsity examples

For better understanding...

Graph class

 $\mathsf{tree-depth} \leq d$

shrub-depth $\leq d$

bounded clique-width

heredit. *n*-subdiv. of K_n , $n \in \mathbb{N}$

shrub-depth $\leq d$ shrub-depth $\leq d$ bounded clique-width ???, but not all graphs

FO resolution ∇i

FO sparsity examples	
For better understanding	
Graph class	FO resolution ∇j
$tree-depth \leq d$	$shrub-depth \leq d$
$shrub-depth \leq d$	$shrub-depth \leq d$
bounded clique-width	bounded clique-width
heredit. n -subdiv. of K_n , $n\in\mathbb{N}$???, but not all graphs
heredit. 10^{10} -subd. of K_n , $n \in \mathbb{N}$	all graphs, for $j > 10^{10}$ (dense)

FO sparsity examples	
For better understanding	
Graph class	FO resolution ∇j
$tree-depth \leq d$	$shrub-depth \leq d$
$shrub-depth \leq d$	$shrub-depth \leq d$
bounded clique-width	bounded clique-width
heredit. <i>n</i> -subdiv. of K_n , $n \in \mathbb{N}$???, but not all graphs
heredit. 10^{10} -subd. of K_n , $n \in \mathbb{N}$	all graphs, for $j > 10^{10}$ (dense)
somewhere dense and monotone	all graphs, eventually

FO sparsity examples For better understanding	
Graph class	FO resolution ∇j
$tree-depth \leq d$	$shrub-depth \leq d$
$shrub-depth \leq d$	$shrub-depth \leq d$
bounded clique-width	bounded clique-width
heredit. <i>n</i> -subdiv. of K_n , $n \in \mathbb{N}$???, but not all graphs
heredit. 10^{10} -subd. of K_n , $n \in \mathbb{N}$ somewhere dense and monotone	all graphs, for $j > 10^{10}$ (dense) all graphs, eventually
planar, or nowhere dense	??? , are those nowhere FO dense?

6 Conclusions

• Giving new concepts of "depth" and "sparsity";

related to traditional sparsity notions as clique-width is related to tree-width.

6 Conclusions

- Giving new concepts of "depth" and "sparsity"; related to traditional sparsity notions as clique-width is related to tree-width.
- A finding recently sought is several works, e.g., by
 - Elberfeld, Grohe, and Tantau [LICS 2012],
 - Oum and Thilikos [personal communication].

6 Conclusions

- Giving new concepts of "depth" and "sparsity"; related to traditional sparsity notions as clique-width is related to tree-width.
- A finding recently sought is several works, e.g., by
 - Elberfeld, Grohe, and Tantau [LICS 2012],
 - Oum and Thilikos [personal communication].
- Many more tasks to do ongoing research...
6 Conclusions

- **Giving new concepts** of "depth" and "sparsity"; related to traditional sparsity notions as clique-width is related to tree-width.
- A finding recently sought is several works, e.g., by
 - Elberfeld, Grohe, and Tantau [LICS 2012],
 - Oum and Thilikos [personal communication].
- Many more tasks to do ongoing research...
 - more indication of "robustness" of nowhere FO density?

6 Conclusions

- **Giving new concepts** of "depth" and "sparsity"; related to traditional sparsity notions as clique-width is related to tree-width.
- A finding recently sought is several works, e.g., by
 - Elberfeld, Grohe, and Tantau [LICS 2012],
 - Oum and Thilikos [personal communication].
- Many more tasks to do ongoing research...
 - more indication of "robustness" of nowhere FO density?
 - say, *locally bounded* *** what does mean "locally" here?

6 Conclusions

- Giving new concepts of "depth" and "sparsity"; related to traditional sparsity notions as clique-width is related to tree-width.
- A finding recently sought is several works, e.g., by
 - Elberfeld, Grohe, and Tantau [LICS 2012],
 - Oum and Thilikos [personal communication].
- Many more tasks to do ongoing research...
 - more indication of "robustness" of nowhere FO density?
 - say, *locally bounded* *** what does mean "locally" here?
 - low shrub-depth colouring can this be more than just shallow interpretation in bounded expansion classes?

