Testing FO properties of dense structures

Petr Hliněný

Masaryk University, Brno, CZ

ACCOTA 2016, Los Cabos, Mexico

Based on joint works with J. Gajarský[†], D. Lokshtanov**, J. Obdržálek*, S. Ordyniak[‡], M.S. Ramanujan[‡], and S. Saurabh**.

* MU Brno, ** Univ. Bergen, [†] TU Berlin, [‡] TU Wien

Definition (FO)

Relational structure - a universe with relation(s), such as a graph;

Definition (FO)

Relational structure - a universe with relation(s), such as a *graph*; standard propositional logic + the relational predicate(s);

Definition (FO)

Relational structure - a universe with relation(s), such as a graph; standard propositional logic + the relational predicate(s); and quantification (\forall, \exists) over the elements of the universe.

$$\bullet \ \phi \ \equiv \ \forall x \exists y : (x \neq y) \land \mathsf{edge}(x, y) \ ?$$

Definition (FO)

Relational structure - a universe with relation(s), such as a graph; standard propositional logic + the relational predicate(s); and quantification (\forall, \exists) over the elements of the universe.

$$\bullet \ \phi \ \equiv \ \forall x \exists y : (x \neq y) \land \mathsf{edge}(x, y) \ ?$$

"There is no isolated vertex."

• $\psi(x,y) \equiv \forall z : z = x \lor z = y \lor \operatorname{edge}(x,z) \lor \operatorname{edge}(y,z)$?

$$\blacktriangleright \ \psi(x,y) \equiv \forall z : z = x \lor z = y \lor \mathsf{edge}(x,z) \lor \mathsf{edge}(y,z) ?$$

" $\{x, y\}$ is a dominating set."

$$\blacktriangleright \ \psi(x,y) \equiv \forall z : z = x \lor z = y \lor \mathsf{edge}(x,z) \lor \mathsf{edge}(y,z) ?$$

" $\{x, y\}$ is a dominating set."

Coloured FO logic

$$\phi \equiv \forall x, y : [(\operatorname{red}(x) \land \operatorname{red}(y)) \to \neg \operatorname{edge}(x, y)] \land \\ [(\operatorname{blue}(x) \land \operatorname{blue}(y)) \to \neg \operatorname{edge}(x, y)] ?$$

Coloured FO logic

$$\phi \equiv \forall x, y : [(\operatorname{red}(x) \land \operatorname{red}(y)) \to \neg \operatorname{edge}(x, y)] \land \\ [(\operatorname{blue}(x) \land \operatorname{blue}(y)) \to \neg \operatorname{edge}(x, y)] ?$$

"Given is a proper 2-colouring?"

Testing FO properties

Testing FO properties

►
$$\phi \equiv \exists x, y : \psi(x, y)$$
, where
 $\psi(x, y) \equiv \forall z : z = x \lor z = y \lor \operatorname{edge}(x, z) \lor \operatorname{edge}(x, y)$?

Testing FO properties

FO MODEL CHECKING **Input:** Structure *S* and an FO sentence ϕ **Question:** Does $S \models \phi$ hold?

►
$$\phi \equiv \exists x, y : \psi(x, y)$$
, where
 $\psi(x, y) \equiv \forall z : z = x \lor z = y \lor \operatorname{edge}(x, z) \lor \operatorname{edge}(x, y)$?

"The input graph has a dominating set of size \leq 2."

FO MODEL CHECKING **Input:** Structure *S* and an FO sentence ϕ **Question:** Does $S \models \phi$ hold?

Motivation: a fundamental problem

- Motivation: a fundamental problem
- Result: PSPACE-complete [Stockmeyer, Vardi] in general

- Motivation: a fundamental problem
- Result: PSPACE-complete [Stockmeyer, Vardi] in general
- Any *fixed* formula $\phi \rightsquigarrow$ trivial $O(n^{|\phi|})$ algorithm.

- Motivation: a fundamental problem
- Result: PSPACE-complete [Stockmeyer, Vardi] in general
- Any *fixed* formula $\phi \rightsquigarrow$ trivial $O(n^{|\phi|})$ algorithm.
- Can we do even better (with fixed φ)? Better: f(φ) ⋅ n^{O(1)} (FPT, fixed-parameter tractable).

- Motivation: a fundamental problem
- Result: PSPACE-complete [Stockmeyer, Vardi] in general
- Any *fixed* formula $\phi \rightsquigarrow$ trivial $O(n^{|\phi|})$ algorithm.
- Can we do even better (with fixed φ)? Better: f(φ) ⋅ n^{O(1)} (FPT, fixed-parameter tractable). Answer:
 - ▶ In general **no**, W-hard (cf. indep. or dominating set).
 - ► For restricted graph classes yes.

FO on sparse graphs

The idea behind the results on FO model checking of sparse graphs: FO logic is local.

FO on sparse graphs

The idea behind the results on FO model checking of sparse graphs: FO logic is local.

Theorem (Gaifman locality theorem)

To evaluate a formula ϕ on G it is enough to:

- 1. Evaluate finitely many formulas on bounded neighbourhood of every vertex.
- 2. Combine the results of the first step together.

FO on sparse graphs

The idea behind the results on FO model checking of sparse graphs: FO logic is local.

Theorem (Gaifman locality theorem)

To evaluate a formula ϕ on G it is enough to:

- 1. Evaluate finitely many formulas on bounded neighbourhood of every vertex.
- 2. Combine the results of the first step together.

Neighbourhood in relational structures – in the Gaifman graph which has a clique for every tuple of each relation.

Beyond sparsity?

The story of FO model checking of sparse graphs has been very successful, indeed...

How to continue? Two basic options:

Beyond sparsity?

The story of FO model checking of sparse graphs has been very successful, indeed...

How to continue? Two basic options:

- 1. Consider other (dense) graph classes, e.g.
 - L-interval graphs [Ganian et al., 2013]

Beyond sparsity?

The story of FO model checking of sparse graphs has been very successful, indeed...

How to continue? Two basic options:

- 1. Consider other (dense) graph classes, e.g.
 - L-interval graphs [Ganian et al., 2013]
- 2. Consider other kinds of structures like
 - posets [2014], lattices, finite groups, …?

Interval graphs

Definition (INT)

Representation: a set ${\mathcal I}$ of intervals on the real line.

Interval graphs

Definition (INT)

Representation: a set \mathcal{I} of intervals on the real line. The graph: $V(G) = \mathcal{I}$ and $E(G) = \{AB : A \text{ intersects } B\}$

Interval graphs

Definition (INT)

Representation: a set \mathcal{I} of intervals on the real line. The graph: $V(G) = \mathcal{I}$ and $E(G) = \{AB : A \text{ intersects } B\}$

Definition (*L*-INT) INT & all interval lengths are from a *fixed* (*finite*) set $L \subseteq \mathbb{R}^+$. FO model checking on L-INT graphs

Definition (L-INT)

INT & all interval lengths are from a *fixed (finite)* set $L \subseteq \mathbb{R}^+$.

Why this particular case?
FO model checking on L-INT graphs

Definition (L-INT)

INT & all interval lengths are from a *fixed (finite)* set $L \subseteq \mathbb{R}^+$.

Why this particular case?

An interesting case study, new techniques ("training muscles").

Theorem (Ganian, PH, Kráľ, Obdržálek, Schwartz, Teska; . ICALP 2013)

FO model checking on L-INT graphs is

1. FPT for any finite set $L \subseteq \mathbb{R}^+$,

FO model checking on L-INT graphs

Definition (L-INT)

INT & all interval lengths are from a *fixed (finite)* set $L \subseteq \mathbb{R}^+$.

Why this particular case?

An interesting case study, new techniques ("training muscles").

Theorem (Ganian, PH, Kráľ, Obdržálek, Schwartz, Teska; . ICALP 2013)

FO model checking on L-INT graphs is

- 1. FPT for any finite set $L \subseteq \mathbb{R}^+$, and
- 2. W-hard for any $\varepsilon > 0$ and $L = (1, 1 + \varepsilon)$.

Partially ordered sets - Posets

Definition (Poset)

Poset $\mathcal{P} = (P, \leq)$ is a set P together with relation \leq which is reflexive, antisymmetric and transitive.

FO logic on posets

(Posets are typically dense directed graphs.)

$$\bullet \ \phi \equiv \exists x \forall y : (x \ge y)$$

FO logic on posets

(Posets are typically dense directed graphs.)

$$\bullet \ \phi \equiv \exists x \forall y : (x \ge y)$$

"The poset has a maximum element."

Poset width

Definition

Width of a poset = the size of its largest antichain.

POSET FO MODEL CHECKING **Input:** Poset \mathcal{P} and an FO sentence ϕ **Question:** Does $\mathcal{P} \models \phi$ hold?

Without restrictions – PSPACE complete.

POSET FO MODEL CHECKING **Input:** Poset \mathcal{P} and an FO sentence ϕ **Question:** Does $\mathcal{P} \models \phi$ hold?

Without restrictions – PSPACE complete.

Various restricted instances;

[Bova, Ganian and Szeider, 2014]

POSET FO MODEL CHECKING **Input:** Poset \mathcal{P} and an FO sentence ϕ **Question:** Does $\mathcal{P} \models \phi$ hold?

Without restrictions – PSPACE complete.

Various restricted instances;

[Bova, Ganian and Szeider, 2014]

 Existential FO logic (∃-FO), several parametrizations considered;

POSET FO MODEL CHECKING **Input:** Poset \mathcal{P} and an FO sentence ϕ **Question:** Does $\mathcal{P} \models \phi$ hold?

Without restrictions – PSPACE complete.

Various restricted instances;

[Bova, Ganian and Szeider, 2014]

- Existential FO logic (∃-FO), several parametrizations considered;
- "all" variant are NP- or W-hard, except

POSET FO MODEL CHECKING **Input:** Poset \mathcal{P} and an FO sentence ϕ **Question:** Does $\mathcal{P} \models \phi$ hold?

Without restrictions – PSPACE complete.

Various restricted instances;

[Bova, Ganian and Szeider, 2014]

- Existential FO logic (∃-FO), several parametrizations considered;
- "all" variant are NP- or W-hard, except
- ▶ the (2014) main result about posets of bounded width.

FO model checking on posets of bounded width

POSET \exists -FO MODEL CHECKING Input: Poset \mathcal{P} of width w, and an \exists -FO sentence ϕ Question: Does $\mathcal{P} \models \phi$ hold?

∃-FO – **no** ∀ quantifiers allowed

FO model checking on posets of bounded width

POSET \exists -FO MODEL CHECKING Input: Poset \mathcal{P} of width w, and an \exists -FO sentence ϕ Question: Does $\mathcal{P} \models \phi$ hold?

 \exists -FO – **no** \forall quantifiers allowed

Theorem (Bova, Ganian, Szeider; CSL-LICS 2014) POSET \exists -FO MODEL CHECKING solvable in time $f(\phi) \cdot n^{g(w)}$ FO model checking on posets of bounded width

POSET \exists -FO MODEL CHECKING Input: Poset \mathcal{P} of width w, and an \exists -FO sentence ϕ Question: Does $\mathcal{P} \models \phi$ hold?

∃-FO – **no** ∀ quantifiers allowed

Theorem (Bova, Ganian, Szeider; CSL-LICS 2014) POSET \exists -FO MODEL CHECKING solvable in time $f(\phi) \cdot n^{g(w)}$

Theorem (Gajarský, PH, Obdržálek and Ordyniak; ISAAC 2014) POSET \exists -FO MODEL CHECKING solvable in time $f(\phi, w) \cdot n^2$

POSET FO MODEL CHECKING **Input:** Poset \mathcal{P} of width w, and an FO sentence ϕ **Question:** Does $\mathcal{P} \models \phi$ hold?

Question

Is it possible to solve **full** FO model checking problem in time $f(\phi) \cdot n^{g(w)}$ or $f(\phi, w) \cdot n^{O(1)}$?

POSET FO MODEL CHECKING **Input:** Poset \mathcal{P} of width w, and an FO sentence ϕ **Question:** Does $\mathcal{P} \models \phi$ hold?

Question

Is it possible to solve **full** FO model checking problem in time $f(\phi) \cdot n^{g(w)}$ or $f(\phi, w) \cdot n^{O(1)}$?

Theorem (Gajarský, PH, Lokshtanov, Obdržálek, Ordyniak, . Ramanujan, Saurabh; FOCS 2015)

(Full) FO model checking on posets of width at most w is solvable in time $f(\phi, w) \cdot n^2$.

Problems – we cannot use Gaifman locality theorem:

1. In a poset everything can be in a very small neighborhood of one vertex (e.g. maximum, minimum, ...).

Problems – we cannot use Gaifman locality theorem:

- 1. In a poset everything can be in a very small neighborhood of one vertex (e.g. maximum, minimum, ...).
- 2. On the other hand, Hasse diagram can be local, but

Problems – we cannot use Gaifman locality theorem:

- 1. In a poset everything can be in a very small neighborhood of one vertex (e.g. maximum, minimum, ...).
- 2. On the other hand, Hasse diagram can be local, but
 - ▶ we lose too much information (transit. clos. not FO definable),

Problems – we cannot use Gaifman locality theorem:

- 1. In a poset everything can be in a very small neighborhood of one vertex (e.g. maximum, minimum, ...).
- 2. On the other hand, Hasse diagram can be local, but
 - ▶ we lose too much information (transit. clos. not FO definable),
 - regarding stronger MSO, we have that even posets of width 2 can have Hasse diagrams of unbounded clique-width.

Problems – we cannot use Gaifman locality theorem:

- 1. In a poset everything can be in a very small neighborhood of one vertex (e.g. maximum, minimum, ...).
- 2. On the other hand, Hasse diagram can be local, but
 - ▶ we lose too much information (transit. clos. not FO definable),
 - regarding stronger MSO, we have that even posets of width 2 can have Hasse diagrams of unbounded clique-width.

Tools we use:

- Hintikka games
- New version of locality

Hintikka games

Played on the structure and formula by two players:

- Existential player (Verifier) plays \lor and \exists
- Universal player (Falsifier) plays \land and \forall

Hintikka games

Played on the structure and formula by two players:

- Existential player (Verifier) plays \lor and \exists
- Universal player (Falsifier) plays \land and \forall

Theorem (folklore)

Given a structure S and a formula ϕ , the existential player has a winning strategy in the game $\mathcal{G}(S, \phi)$ if, and only if, $S \models \phi$.

For a poset \mathcal{P} and a formula ϕ , we compute the winner of Hintikka game $\mathcal{G}(\mathcal{P}, \phi)$.

For a poset \mathcal{P} and a formula ϕ , we compute the winner of Hintikka game $\mathcal{G}(\mathcal{P}, \phi)$.

In fact, we show that it is enough to compute the winner on a **subposet of constant size**.

For a poset \mathcal{P} and a formula ϕ , we compute the winner of Hintikka game $\mathcal{G}(\mathcal{P}, \phi)$.

In fact, we show that it is enough to compute the winner on a **subposet of constant size**.

For a poset \mathcal{P} and a formula ϕ *construct a digraph D* such that:

- 1. V(D) is the set of elements of \mathcal{P}
- 2. every vertex of D has a bounded out-degree

For a poset \mathcal{P} and a formula ϕ , we compute the winner of Hintikka game $\mathcal{G}(\mathcal{P}, \phi)$.

In fact, we show that it is enough to compute the winner on a **subposet of constant size**.

For a poset \mathcal{P} and a formula ϕ *construct a digraph D* such that:

- 1. V(D) is the set of elements of \mathcal{P}
- 2. every vertex of D has a bounded out-degree
- 3. to determine whether $\mathcal{P} \models \phi$ we do
 - take constant radius balls in D,
 - \blacktriangleright look at subposet of ${\mathcal P}$ induced by them, and
 - check whether ϕ holds on these subposets.

For a poset \mathcal{P} and a formula ϕ , we compute the winner of Hintikka game $\mathcal{G}(\mathcal{P}, \phi)$.

In fact, we show that it is enough to compute the winner on a **subposet of constant size**.

For a poset \mathcal{P} and a formula ϕ *construct a digraph D* such that:

- 1. V(D) is the set of elements of \mathcal{P}
- 2. every vertex of D has a bounded out-degree
- 3. to determine whether $\mathcal{P} \models \phi$ we do
 - take constant radius balls in D,
 - \blacktriangleright look at subposet of ${\mathcal P}$ induced by them, and
 - check whether ϕ holds on these subposets.

Graph D is built inductively by the structure of ϕ ...

(bounded-width) $\mathcal{P} \rightarrow D_0 \rightarrow D_1 \rightarrow \cdots \rightarrow D_s$

Iterating the construction

In D_{s-1} (think of D_0) we have:

- finitely many chains
- finitely many colours
- finitely many types of arrows (up, down, min, max)
Iterating the construction

In D_{s-1} (think of D_0) we have:

- finitely many chains
- finitely many colours
- finitely many types of arrows (up, down, min, max)
- \Rightarrow bounded out-degree

Iterating the construction

In D_{s-1} (think of D_0) we have:

- finitely many chains
- finitely many colours
- finitely many types of arrows (up, down, min, max)
- \Rightarrow bounded out-degree
- \Rightarrow k-outneighbourhoods have bounded size

Iterating the construction

In D_{s-1} (think of D_0) we have:

- finitely many chains
- finitely many colours
- finitely many types of arrows (up, down, min, max)
- \Rightarrow bounded out-degree
- \Rightarrow k-outneighbourhoods have bounded size
- \Rightarrow there are finitely many non-isomorphic k-outneighbourhoods

Two vertices have the same type if they have isomorphic k-outneighbourhoods.

Two vertices have the same type if they have isomorphic k-outneighbourhoods.

To get D_s from D_{s-1} we:

- Compute the type of each vertex in D_{s-1} .
- ► Use it as colour in the next round to construct D_s in the same way D₀ was constructed.

Back to the problem

Recall. . .

Theorem

The existential player has a winning strategy in the Hintikka game $\mathcal{G}(\mathcal{P}, \phi)$ if, and only if, $\mathcal{P} \models \phi$.

Back to the problem

Recall. . .

Theorem

The existential player has a winning strategy in the Hintikka game $\mathcal{G}(\mathcal{P}, \phi)$ if, and only if, $\mathcal{P} \models \phi$.

Using D_s , we define *local Hintikka game* $\mathcal{G}_r(\mathcal{P}, \phi)$ and prove the following claim:

Theorem

The existential player has a winning strategy in the Hintikka game $\mathcal{G}(\mathcal{P}, \phi)$ if, and only if, she has a winning strategy in the **local** Hintikka game $\mathcal{G}_r(\mathcal{P}, \phi)$.

Back to the problem

Recall. . .

Theorem

The existential player has a winning strategy in the Hintikka game $\mathcal{G}(\mathcal{P}, \phi)$ if, and only if, $\mathcal{P} \models \phi$.

Using D_s , we define *local Hintikka game* $\mathcal{G}_r(\mathcal{P}, \phi)$ and prove the following claim:

Theorem

The existential player has a winning strategy in the Hintikka game $\mathcal{G}(\mathcal{P}, \phi)$ if, and only if, she has a winning strategy in the **local** Hintikka game $\mathcal{G}_r(\mathcal{P}, \phi)$.

Finally, the local game is played on posets of **bounded size** and the algorithm follows.

Revisiting interval graphs

For simplicity, we restrict to unit-interval graphs; i.e., $L = \{1\}$.

We get a poset of width 2 encoding the given unit-interval graph.

Revisiting interval graphs

For simplicity, we restrict to unit-interval graphs; i.e., $L = \{1\}$.

We get a poset of width 2 encoding the given unit-interval graph.

Revisiting interval graphs

This can be generalized to bounded-nesting interval graphs:

Theorem

FO model checking on interval graphs, such that no w intervals form a "nesting chain", is solvable in time $f(\phi, w) \cdot n^2$.

For a graph G and an FO formula $\psi(x, y)$, define a graph H:

$$E(H) = \{uv : G \models \psi(u, v)\}$$

For a graph G and an FO formula $\psi(x, y)$, define a graph H:

$$E(H) = \{uv : G \models \psi(u, v)\}$$

•
$$\psi(x,y) \equiv \neg edge(x,y)$$

For a graph G and an FO formula $\psi(x, y)$, define a graph H:

$$E(H) = \big\{ uv : G \models \psi(u, v) \big\}$$

•
$$\psi(x,y) \equiv \neg edge(x,y)$$

"The complement of a graph."

Consider classes \mathcal{K} , \mathcal{M} of relational structures, and a construction:

Consider classes \mathcal{K} , \mathcal{M} of relational structures, and a construction:

Then I is called a simple FO interpretation between \mathcal{K} , \mathcal{M} .

Lemma

$$G \models \phi$$
 iff $H \models \phi'$

$$\blacktriangleright \ \psi(x,y) \equiv x \neq y \land \left[\mathsf{edge}(x,y) \lor \exists z (\mathsf{edge}(x,z) \land \mathsf{edge}(z,y)) \right]$$

$$\blacktriangleright \ \psi(x,y) \equiv x \neq y \land \left[\mathsf{edge}(x,y) \lor \exists z (\mathsf{edge}(x,z) \land \mathsf{edge}(z,y)) \right]$$

$$\bullet \ \psi(x,y) \equiv x \neq y \land \big[\mathsf{edge}(x,y) \lor \exists z (\mathsf{edge}(x,z) \land \mathsf{edge}(z,y)) \big]$$

"The square of a graph."

$$\begin{array}{cccc} \mathsf{FO} \ \phi & \stackrel{I}{\longrightarrow} & \mathsf{FO} \ \phi' \\ H' \cong G \in \mathcal{K} & \\ (\mathsf{with edges} \ \psi(u, v) \) & \longleftarrow & H \in \mathcal{M} \end{array}$$

Wait, isn't the following trivial now?

• Assume a nowhere dense graph class \mathcal{M} , and

$$\begin{array}{cccc} \mathsf{FO} \ \phi & \stackrel{I}{\longrightarrow} & \mathsf{FO} \ \phi' \\ & \stackrel{I}{\longrightarrow} & (\mathsf{edge}(x,y) \rightsquigarrow \psi(x,y)) \\ H^I \cong G \in \mathcal{K} & \\ (\text{with edges } \psi(u,v) \) & \longleftarrow & H \in \mathcal{M} \end{array}$$

Wait, isn't the following trivial now?

- Assume a nowhere dense graph class \mathcal{M} , and
- ▶ an FO interpretation $I : \mathcal{K} \to \mathcal{M}$, given by $\psi(x, y)$.
- ▶ Is now FO model checking on *K* tractable, too?

$$\begin{array}{cccc} \mathsf{FO} & \phi & & I & \mathsf{FO} & \phi' \\ & & & & & \\ H' \cong G \in \mathcal{K} & & I \\ (\text{with edges } \psi(u, v) \,) & \longleftarrow & & H \in \mathcal{M} \end{array}$$

Wait, isn't the following trivial now?

- ► Assume a nowhere dense graph class *M*, and
- ▶ an FO interpretation $I : \mathcal{K} \to \mathcal{M}$, given by $\psi(x, y)$.
- ▶ Is now FO model checking on *K* tractable, too?

Unfortunately, not. . .

$$\begin{array}{cccc} \mathsf{FO} \ \phi & \stackrel{I}{\longrightarrow} & \mathsf{FO} \ \phi' \\ H' \cong G \in \mathcal{K} & I \\ (\text{with edges } \psi(u, v)) & \longleftarrow & H \in \mathcal{M} \end{array}$$

So, what is the difficulty with FO interpretations?

• Deciding whether $H \models \phi^{I}$ is "easy" (e.g., nowhere dense), but

$$\begin{array}{cccc} \mathsf{FO} \ \phi & \stackrel{I}{\longrightarrow} & \mathsf{FO} \ \phi' \\ H^{I} \cong G \in \mathcal{K} & \\ (\mathsf{with \ edges \ } \psi(u,v) \) & \longleftarrow & H \in \mathcal{M} \end{array}$$

So, what is the difficulty with FO interpretations?

- Deciding whether $H \models \phi^{I}$ is "easy" (e.g., nowhere dense), but
- how can we find suitable *H*, such that $H^{I} \cong G$?

$$\begin{array}{cccc} \mathsf{FO} \ \phi & \stackrel{I}{\longrightarrow} & \mathsf{FO} \ \phi' \\ H^{I} \cong G \in \mathcal{K} & \\ (\mathsf{with \ edges \ } \psi(u,v) \) & \longleftarrow & H \in \mathcal{M} \end{array}$$

So, what is the difficulty with FO interpretations?

- Deciding whether $H \models \phi^{I}$ is "easy" (e.g., nowhere dense), but
- how can we find suitable *H*, such that $H^{I} \cong G$?

Theorem (Motwani and Sudan, 1994)

The problem to compute a "square root" of a graph is NP-hard.

Theorem (Gajarský, PH, Lokshtanov, Obdržálek, Ramanujan; . LICS 2016)

Let \mathcal{D} be a graph class having an FO interpretation into a class of graphs of bounded degree. Then there exist an FPT algorithm for FO model checking on \mathcal{D} .

Theorem (Gajarský, PH, Lokshtanov, Obdržálek, Ramanujan; . LICS 2016)

Let \mathcal{D} be a graph class having an FO interpretation into a class of graphs of bounded degree. Then there exist an FPT algorithm for FO model checking on \mathcal{D} .

In fact, the following is proved:

Theorem

Let \mathcal{D} be a graph class having an FO interpretation I into a class of graphs of bounded degree. Then there exists an FO interpretation J such that, for given $G \in \mathcal{D}$, we can efficiently compute H of bounded degree such that $H^{J} \cong G$.

Note that one cannot require J = I...

Theorem

Let \mathcal{D} be a graph class having an FO interpretation I into a class of graphs of bounded degree. Then there exists an FO interpretation J such that, for given $G \in \mathcal{D}$, we can efficiently compute H of bounded degree such that $H^{J} \cong G$.

This result relies on a structural characterization of graph classes interpretable in classes of bounded degree graphs.

Theorem

Let \mathcal{D} be a graph class having an FO interpretation I into a class of graphs of bounded degree. Then there exists an FO interpretation J such that, for given $G \in \mathcal{D}$, we can efficiently compute H of bounded degree such that $H^{J} \cong G$.

This result relies on a structural characterization of graph classes interpretable in classes of bounded degree graphs.

"Bounded degree away from bounded neighbourhood diversity."

Intermezzo: Neighbourhood diversity

- For a graph G, we say that two vertices u, v ∈ V(G) are twins if N(u)\v = N(v)\u (true twins).
- The twin relation is an *equivalence* relation on V(G).

Intermezzo: Neighbourhood diversity

- For a graph G, we say that two vertices u, v ∈ V(G) are twins if N(u)\v = N(v)\u (true twins).
- ▶ The twin relation is an *equivalence* relation on V(G).
- ► Neighbourhood diversity of a graph *G* is the number *k* of equivalence classes of the twin relation.

Intermezzo: Neighbourhood diversity

- For a graph G, we say that two vertices u, v ∈ V(G) are twins if N(u)\v = N(v)\u (true twins).
- ▶ The twin relation is an *equivalence* relation on V(G).
- ► Neighbourhood diversity of a graph *G* is the number *k* of equivalence classes of the twin relation.

FO interpretable in edgeless k-coloured graphs:

 $\psi(x, y) \equiv (Green(x) \land Red(y)) \lor (Red(x) \land Blue(y)) \lor (Blue(x) \land Gray(y))$ $\lor (Red(x) \land Red(y)) \lor (Blue(x) \land Blue(y))$

We would like to formally capture the words

"bounded degree away from bounded neighbourhood diversity."

Definition

Two vertices $u, v \in V(G)$ are *near-k-twins* if $|N(u) \triangle N(v)| \le k$, i.e. their neighborhoods differ in at most k vertices.

Near-k-twin relation

Definition

Two vertices $u, v \in V(G)$ are *near-k-twins* if $|N(u) \triangle N(v)| \le k$, i.e. their neighborhoods differ in at most k vertices.

Example: a complete bipartite graph minus a matching – vertices from the same parts are near-2-twins

Near-k-twin relation

Definition

Two vertices $u, v \in V(G)$ are *near-k-twins* if $|N(u) \triangle N(v)| \le k$, i.e. their neighborhoods differ in at most k vertices.

Example: a complete bipartite graph minus a matching – vertices from the same parts are near-2-twins

(Note that for k = 0 we get false twins this time.)

Near-k-twin relation

Definition

Two vertices $u, v \in V(G)$ are *near-k-twins* if $|N(u) \triangle N(v)| \le k$, i.e. their neighborhoods differ in at most k vertices.

Example: a complete bipartite graph minus a matching – vertices from the same parts are near-2-twins

(Note that for k = 0 we get false twins this time.)

The near-k-twin relation is **not** always an equivalence!

• k = 1: $a \sim c$ and $e \sim g$, this is an equivalence

- k = 2: $a \sim c \sim e$ but $a \not\sim e$, **not** an equivalence
- k = 4: one equivalence class
Near-uniform graph classes

Definition

Graph class \mathcal{K} is *near-uniform* if there exist k_0 and m such that for every $G \in \mathcal{K}$ there exists $k \leq k_0$ s.t. the near-k-twin relation is an equivalence on V(G) with at most m classes.

Near-uniform graph classes

Definition

Graph class \mathcal{K} is *near-uniform* if there exist k_0 and m such that for every $G \in \mathcal{K}$ there exists $k \leq k_0$ s.t. the near-k-twin relation is an equivalence on V(G) with at most m classes.

Examples:

- graphs of degree at most d $(k_0 = 2d, m = 1)$
- complements of graphs of degree at most d $(k_0 = 2d, m = 1)$
- complete bipartite graphs minus a matching $(k_0 = 2, m = 2)$

Near-uniform graph classes

Definition

Graph class \mathcal{K} is *near-uniform* if there exist k_0 and m such that for every $G \in \mathcal{K}$ there exists $k \leq k_0$ s.t. the near-k-twin relation is an equivalence on V(G) with at most m classes.

Examples:

- graphs of degree at most d $(k_0 = 2d, m = 1)$
- complements of graphs of degree at most d $(k_0 = 2d, m = 1)$
- complete bipartite graphs minus a matching $(k_0 = 2, m = 2)$

Theorem

Let \mathcal{D} be a graph class having an FO interpretation into a class of graphs of bounded degree. Then \mathcal{D} is near-uniform.

Input: $H \in \mathcal{D}$ (where \mathcal{D} is (k_0, m) -near-uniform), FO formula ϕ **Output:** YES iff $H \models \phi$

Input: $H \in \mathcal{D}$ (where \mathcal{D} is (k_0, m) -near-uniform), FO formula ϕ **Output:** YES iff $H \models \phi$

Algorithm

1. For $k = 0, ..., k_0$ compute the near-k-twin relation ρ_k on V(H) and check whether it is an equivalence. (Guaranteed to succeed for some $0 \le k \le k_0$)

Input: $H \in \mathcal{D}$ (where \mathcal{D} is (k_0, m) -near-uniform), FO formula ϕ **Output:** YES iff $H \models \phi$

Algorithm

- 1. For $k = 0, ..., k_0$ compute the near-k-twin relation ρ_k on V(H) and check whether it is an equivalence. (Guaranteed to succeed for some $0 \le k \le k_0$)
- 2. Using ρ_k , compute a graph G of a bounded degree and a small formula $\psi(x, y)$ such that $H = I_{\psi}(G)$.
- 3. Compute ϕ' from ϕ .

Input: $H \in \mathcal{D}$ (where \mathcal{D} is (k_0, m) -near-uniform), FO formula ϕ **Output:** YES iff $H \models \phi$

Algorithm

- 1. For $k = 0, ..., k_0$ compute the near-k-twin relation ρ_k on V(H) and check whether it is an equivalence. (Guaranteed to succeed for some $0 \le k \le k_0$)
- 2. Using ρ_k , compute a graph G of a bounded degree and a small formula $\psi(x, y)$ such that $H = I_{\psi}(G)$.
- 3. Compute ϕ' from ϕ .
- 4. Use some known efficient model checking algorithm for graphs of bounded degree to determine whether $G \models \phi'$.

1. For non-sparse classes, the complexity landscape of FO model checking is diverse and nontrivial.

- 1. For non-sparse classes, the complexity landscape of FO model checking is diverse and nontrivial.
- 2. Can the "Sparsity" theory of Nešetřil and Ossona de Mendez be generalized towards dense classes? (Nowhere-FO-dense?)

- 1. For non-sparse classes, the complexity landscape of FO model checking is diverse and nontrivial.
- 2. Can the "Sparsity" theory of Nešetřil and Ossona de Mendez be generalized towards dense classes? (Nowhere-FO-dense?)
- 3. Besides, some (perhaps easier) particular questions...
 - Which (geometric) graph classes other than interval graphs can the Poset FO model checking result be applied to?

- 1. For non-sparse classes, the complexity landscape of FO model checking is diverse and nontrivial.
- 2. Can the "Sparsity" theory of Nešetřil and Ossona de Mendez be generalized towards dense classes? (Nowhere-FO-dense?)
- 3. Besides, some (perhaps easier) particular questions...
 - Which (geometric) graph classes other than interval graphs can the Poset FO model checking result be applied to?
 - How to structurally characterize graph classes which have an FO interpretation into, say, planar graphs?

- 1. For non-sparse classes, the complexity landscape of FO model checking is diverse and nontrivial.
- 2. Can the "Sparsity" theory of Nešetřil and Ossona de Mendez be generalized towards dense classes? (Nowhere-FO-dense?)
- 3. Besides, some (perhaps easier) particular questions...
 - Which (geometric) graph classes other than interval graphs can the Poset FO model checking result be applied to?
 - How to structurally characterize graph classes which have an FO interpretation into, say, planar graphs?
 - Which graph classes are "robust" under FO interpretations? (cf. near-uniform, bounded shrub-depth, bounded clique-width)

- 1. For non-sparse classes, the complexity landscape of FO model checking is diverse and nontrivial.
- 2. Can the "Sparsity" theory of Nešetřil and Ossona de Mendez be generalized towards dense classes? (Nowhere-FO-dense?)
- 3. Besides, some (perhaps easier) particular questions...
 - Which (geometric) graph classes other than interval graphs can the Poset FO model checking result be applied to?
 - How to structurally characterize graph classes which have an FO interpretation into, say, planar graphs?
 - Which graph classes are "robust" under FO interpretations? (cf. near-uniform, bounded shrub-depth, bounded clique-width)

Thank you for your attention!