
Testing FO properties of dense structures

Petr Hliněný

Masaryk University, Brno, CZ

ACCOTA 2016, Los Cabos, Mexico

Based on joint works with J. Gajarský†, D. Lokshtanov∗∗, J. Obdržálek∗,
S. Ordyniak‡, M.S. Ramanujan‡, and S. Saurabh∗∗.

∗ MU Brno, ∗∗ Univ. Bergen, † TU Berlin, ‡ TU Wien

First-order logic

Definition (FO)

Relational structure - a universe with relation(s), such as a graph;

standard propositional logic + the relational predicate(s);
and quantification (∀,∃) over the elements of the universe.

I φ ≡ ∀x∃y : (x 6= y) ∧ edge(x , y) ?

“There is no isolated vertex.”

First-order logic

Definition (FO)

Relational structure - a universe with relation(s), such as a graph;
standard propositional logic + the relational predicate(s);

and quantification (∀,∃) over the elements of the universe.

I φ ≡ ∀x∃y : (x 6= y) ∧ edge(x , y) ?

“There is no isolated vertex.”

First-order logic

Definition (FO)

Relational structure - a universe with relation(s), such as a graph;
standard propositional logic + the relational predicate(s);
and quantification (∀, ∃) over the elements of the universe.

I φ ≡ ∀x∃y : (x 6= y) ∧ edge(x , y) ?

“There is no isolated vertex.”

First-order logic

Definition (FO)

Relational structure - a universe with relation(s), such as a graph;
standard propositional logic + the relational predicate(s);
and quantification (∀, ∃) over the elements of the universe.

I φ ≡ ∀x∃y : (x 6= y) ∧ edge(x , y) ?

“There is no isolated vertex.”

First-order logic

I ψ(x , y) ≡ ∀z : z = x ∨ z = y ∨ edge(x , z) ∨ edge(y , z) ?

“{x , y} is a dominating set.”

x

y

First-order logic

I ψ(x , y) ≡ ∀z : z = x ∨ z = y ∨ edge(x , z) ∨ edge(y , z) ?

“{x , y} is a dominating set.”

x

y

First-order logic

I ψ(x , y) ≡ ∀z : z = x ∨ z = y ∨ edge(x , z) ∨ edge(y , z) ?

“{x , y} is a dominating set.”

x

y

Coloured FO logic

I φ ≡ ∀x , y :
[
(red(x) ∧ red(y))→ ¬edge(x , y)

]
∧[

(blue(x) ∧ blue(y))→ ¬edge(x , y)
]

?

“Given is a proper 2-colouring?”

Coloured FO logic

I φ ≡ ∀x , y :
[
(red(x) ∧ red(y))→ ¬edge(x , y)

]
∧[

(blue(x) ∧ blue(y))→ ¬edge(x , y)
]

?

“Given is a proper 2-colouring?”

Testing FO properties

FO model checking
Input: Structure S and an FO sentence φ
Question: Does S |= φ hold?

I φ ≡ ∃x , y : ψ(x , y), where

ψ(x , y) ≡ ∀z : z = x ∨ z = y ∨ edge(x , z) ∨ edge(x , y) ?

“The input graph has a dominating set of size ≤ 2.”

Testing FO properties

FO model checking
Input: Structure S and an FO sentence φ
Question: Does S |= φ hold?

I φ ≡ ∃x , y : ψ(x , y), where

ψ(x , y) ≡ ∀z : z = x ∨ z = y ∨ edge(x , z) ∨ edge(x , y) ?

“The input graph has a dominating set of size ≤ 2.”

Testing FO properties

FO model checking
Input: Structure S and an FO sentence φ
Question: Does S |= φ hold?

I φ ≡ ∃x , y : ψ(x , y), where

ψ(x , y) ≡ ∀z : z = x ∨ z = y ∨ edge(x , z) ∨ edge(x , y) ?

“The input graph has a dominating set of size ≤ 2.”

FO model checking

FO model checking
Input: Structure S and an FO sentence φ
Question: Does S |= φ hold?

I Motivation: a fundamental problem

I Result: PSPACE-complete [Stockmeyer, Vardi] in general

I Any fixed formula φ trivial O(n|φ|) algorithm.

I Can we do even better (with fixed φ)?

Better: f (φ) · nO(1) (FPT, fixed-parameter tractable).

Answer:

I In general – no, W-hard (cf. indep. or dominating set).

I For restricted graph classes – yes.

FO model checking

FO model checking
Input: Structure S and an FO sentence φ
Question: Does S |= φ hold?

I Motivation: a fundamental problem

I Result: PSPACE-complete [Stockmeyer, Vardi] in general

I Any fixed formula φ trivial O(n|φ|) algorithm.

I Can we do even better (with fixed φ)?

Better: f (φ) · nO(1) (FPT, fixed-parameter tractable).

Answer:

I In general – no, W-hard (cf. indep. or dominating set).

I For restricted graph classes – yes.

FO model checking

FO model checking
Input: Structure S and an FO sentence φ
Question: Does S |= φ hold?

I Motivation: a fundamental problem

I Result: PSPACE-complete [Stockmeyer, Vardi] in general

I Any fixed formula φ trivial O(n|φ|) algorithm.

I Can we do even better (with fixed φ)?

Better: f (φ) · nO(1) (FPT, fixed-parameter tractable).

Answer:

I In general – no, W-hard (cf. indep. or dominating set).

I For restricted graph classes – yes.

FO model checking

FO model checking
Input: Structure S and an FO sentence φ
Question: Does S |= φ hold?

I Motivation: a fundamental problem

I Result: PSPACE-complete [Stockmeyer, Vardi] in general

I Any fixed formula φ trivial O(n|φ|) algorithm.

I Can we do even better (with fixed φ)?

Better: f (φ) · nO(1) (FPT, fixed-parameter tractable).

Answer:

I In general – no, W-hard (cf. indep. or dominating set).

I For restricted graph classes – yes.

FO model checking

FO model checking
Input: Structure S and an FO sentence φ
Question: Does S |= φ hold?

I Motivation: a fundamental problem

I Result: PSPACE-complete [Stockmeyer, Vardi] in general

I Any fixed formula φ trivial O(n|φ|) algorithm.

I Can we do even better (with fixed φ)?

Better: f (φ) · nO(1) (FPT, fixed-parameter tractable).

Answer:

I In general – no, W-hard (cf. indep. or dominating set).

I For restricted graph classes – yes.

FO Model Checking of Sparse Graphs

Bounded treedepth

Bounded treewidth

Excluding a minor

Excluding a
topological minor

Bounded expansion

Locally bounded
expansion

Nowhere dense

Outerplanar

Planar

Bounded genus

Bounded degree

Locally bounded
treewidth

Locally excluding
a minor

Forest

N
atu

ral p
aram

eter
S
tru

ctu
ral p

aram
eter

Star forests Path Forests I (Courcelle – MSO)

FO Model Checking of Sparse Graphs

Bounded treedepth

Bounded treewidth

Excluding a minor

Excluding a
topological minor

Bounded expansion

Locally bounded
expansion

Nowhere dense

Outerplanar

Planar

Bounded genus

Bounded degree

Locally bounded
treewidth

Locally excluding
a minor

Forest

N
atu

ral p
aram

eter
S
tru

ctu
ral p

aram
eter

Star forests Path Forests

I Seese (1995)

FO Model Checking of Sparse Graphs

Bounded treedepth

Bounded treewidth

Excluding a minor

Excluding a
topological minor

Bounded expansion

Locally bounded
expansion

Nowhere dense

Outerplanar

Planar

Bounded genus

Bounded degree

Locally bounded
treewidth

Locally excluding
a minor

Forest

N
atu

ral p
aram

eter
S
tru

ctu
ral p

aram
eter

Star forests Path Forests

I Seese (1995)

I Frick, Grohe (1999)

FO Model Checking of Sparse Graphs

Bounded treedepth

Bounded treewidth

Excluding a minor

Excluding a
topological minor

Bounded expansion

Locally bounded
expansion

Nowhere dense

Outerplanar

Planar

Bounded genus

Bounded degree

Locally bounded
treewidth

Locally excluding
a minor

Forest

N
atu

ral p
aram

eter
S
tru

ctu
ral p

aram
eter

Star forests Path Forests

I Seese (1995)

I Frick, Grohe (1999)

FO Model Checking of Sparse Graphs

Bounded treedepth

Bounded treewidth

Excluding a minor

Excluding a
topological minor

Bounded expansion

Locally bounded
expansion

Nowhere dense

Outerplanar

Planar

Bounded genus

Bounded degree

Locally bounded
treewidth

Locally excluding
a minor

Forest

N
atu

ral p
aram

eter
S
tru

ctu
ral p

aram
eter

Star forests Path Forests

I Seese (1995)

I Frick, Grohe (1999)

I Dawar, Grohe, Kreutzer
(2007)

FO Model Checking of Sparse Graphs

Bounded treedepth

Bounded treewidth

Excluding a minor

Excluding a
topological minor

Bounded expansion

Locally bounded
expansion

Nowhere dense

Outerplanar

Planar

Bounded genus

Bounded degree

Locally bounded
treewidth

Locally excluding
a minor

Forest

N
atu

ral p
aram

eter
S
tru

ctu
ral p

aram
eter

Star forests Path Forests

I Seese (1995)

I Frick, Grohe (1999)

I Dawar, Grohe, Kreutzer
(2007)

I Dvǒrák, Král’, Thomas
(2010)

FO Model Checking of Sparse Graphs

Bounded treedepth

Bounded treewidth

Excluding a minor

Excluding a
topological minor

Bounded expansion

Locally bounded
expansion

Nowhere dense

Outerplanar

Planar

Bounded genus

Bounded degree

Locally bounded
treewidth

Locally excluding
a minor

Forest

N
atu

ral p
aram

eter
S
tru

ctu
ral p

aram
eter

Star forests Path Forests

I Seese (1995)

I Frick, Grohe (1999)

I Dawar, Grohe, Kreutzer
(2007)

I Dvǒrák, Král’, Thomas
(2010)

FO Model Checking of Sparse Graphs

Bounded treedepth

Bounded treewidth

Excluding a minor

Excluding a
topological minor

Bounded expansion

Locally bounded
expansion

Nowhere dense

Outerplanar

Planar

Bounded genus

Bounded degree

Locally bounded
treewidth

Locally excluding
a minor

Forest

N
atu

ral p
aram

eter
S
tru

ctu
ral p

aram
eter

Star forests Path Forests

I Seese (1995)

I Frick, Grohe (1999)

I Dawar, Grohe, Kreutzer
(2007)

I Dvǒrák, Král’, Thomas
(2010)

I Grohe, Kreutzer, Siebertz
(2014)

FO on sparse graphs

The idea behind the results on FO model checking of sparse
graphs: FO logic is local.

Theorem (Gaifman locality theorem)

To evaluate a formula φ on G it is enough to:

1. Evaluate finitely many formulas on bounded neighbourhood of
every vertex.

2. Combine the results of the first step together.

Neighbourhood in relational structures – in the Gaifman graph
which has a clique for every tuple of each relation.

FO on sparse graphs

The idea behind the results on FO model checking of sparse
graphs: FO logic is local.

Theorem (Gaifman locality theorem)

To evaluate a formula φ on G it is enough to:

1. Evaluate finitely many formulas on bounded neighbourhood of
every vertex.

2. Combine the results of the first step together.

Neighbourhood in relational structures – in the Gaifman graph
which has a clique for every tuple of each relation.

FO on sparse graphs

The idea behind the results on FO model checking of sparse
graphs: FO logic is local.

Theorem (Gaifman locality theorem)

To evaluate a formula φ on G it is enough to:

1. Evaluate finitely many formulas on bounded neighbourhood of
every vertex.

2. Combine the results of the first step together.

Neighbourhood in relational structures – in the Gaifman graph
which has a clique for every tuple of each relation.

Beyond sparsity?

The story of FO model checking of sparse graphs has been very
successful, indeed. . .

How to continue? Two basic options:

1. Consider other (dense) graph classes, e.g.

I L-interval graphs [Ganian et al., 2013]

2. Consider other kinds of structures like

I posets [2014], lattices, finite groups, ...?

Beyond sparsity?

The story of FO model checking of sparse graphs has been very
successful, indeed. . .

How to continue? Two basic options:

1. Consider other (dense) graph classes, e.g.

I L-interval graphs [Ganian et al., 2013]

2. Consider other kinds of structures like

I posets [2014], lattices, finite groups, ...?

Beyond sparsity?

The story of FO model checking of sparse graphs has been very
successful, indeed. . .

How to continue? Two basic options:

1. Consider other (dense) graph classes, e.g.

I L-interval graphs [Ganian et al., 2013]

2. Consider other kinds of structures like

I posets [2014], lattices, finite groups, ...?

Interval graphs

Definition (INT)

Representation: a set I of intervals on the real line.

The graph: V (G) = I and E (G) = {AB : A intersects B}

Definition (L-INT)

INT & all interval lengths are from a fixed (finite) set L ⊆ R+.

Interval graphs

Definition (INT)

Representation: a set I of intervals on the real line.
The graph: V (G) = I and E (G) = {AB : A intersects B}

Definition (L-INT)

INT & all interval lengths are from a fixed (finite) set L ⊆ R+.

Interval graphs

Definition (INT)

Representation: a set I of intervals on the real line.
The graph: V (G) = I and E (G) = {AB : A intersects B}

Definition (L-INT)

INT & all interval lengths are from a fixed (finite) set L ⊆ R+.

FO model checking on L-INT graphs

Definition (L-INT)

INT & all interval lengths are from a fixed (finite) set L ⊆ R+.

Why this particular case?

FO model checking on L-INT graphs

Definition (L-INT)

INT & all interval lengths are from a fixed (finite) set L ⊆ R+.

Why this particular case?

An interesting case study, new techniques (“training muscles”).

Theorem (Ganian, PH, Král’, Obdržálek, Schwartz, Teska;
. ICALP 2013)

FO model checking on L-INT graphs is

1. FPT for any finite set L ⊆ R+,

and

2. W-hard for any ε > 0 and L = (1, 1 + ε).

FO model checking on L-INT graphs

Definition (L-INT)

INT & all interval lengths are from a fixed (finite) set L ⊆ R+.

Why this particular case?

An interesting case study, new techniques (“training muscles”).

Theorem (Ganian, PH, Král’, Obdržálek, Schwartz, Teska;
. ICALP 2013)

FO model checking on L-INT graphs is

1. FPT for any finite set L ⊆ R+, and

2. W-hard for any ε > 0 and L = (1, 1 + ε).

Partially ordered sets – Posets

Definition (Poset)

Poset P = (P,≤) is a set P together with relation ≤ which is
reflexive, antisymmetric and transitive.

FO logic on posets

(Posets are typically dense directed graphs.)

I φ ≡ ∃x∀y : (x ≥ y)

“The poset has a maximum element.”

FO logic on posets

(Posets are typically dense directed graphs.)

I φ ≡ ∃x∀y : (x ≥ y)

“The poset has a maximum element.”

Poset width

Definition

Width of a poset = the size of its largest antichain.

FO model checking on posets

Poset FO model checking
Input: Poset P and an FO sentence φ
Question: Does P |= φ hold?

Without restrictions – PSPACE complete.

Various restricted instances;

[Bova, Ganian and Szeider, 2014]

I Existential FO logic (∃-FO), several parametrizations
considered;

I “all” variant are NP- or W-hard, except

I the (2014) main result – about posets of bounded width.

FO model checking on posets

Poset FO model checking
Input: Poset P and an FO sentence φ
Question: Does P |= φ hold?

Without restrictions – PSPACE complete.

Various restricted instances;

[Bova, Ganian and Szeider, 2014]

I Existential FO logic (∃-FO), several parametrizations
considered;

I “all” variant are NP- or W-hard, except

I the (2014) main result – about posets of bounded width.

FO model checking on posets

Poset FO model checking
Input: Poset P and an FO sentence φ
Question: Does P |= φ hold?

Without restrictions – PSPACE complete.

Various restricted instances;

[Bova, Ganian and Szeider, 2014]

I Existential FO logic (∃-FO), several parametrizations
considered;

I “all” variant are NP- or W-hard, except

I the (2014) main result – about posets of bounded width.

FO model checking on posets

Poset FO model checking
Input: Poset P and an FO sentence φ
Question: Does P |= φ hold?

Without restrictions – PSPACE complete.

Various restricted instances;

[Bova, Ganian and Szeider, 2014]

I Existential FO logic (∃-FO), several parametrizations
considered;

I “all” variant are NP- or W-hard, except

I the (2014) main result – about posets of bounded width.

FO model checking on posets

Poset FO model checking
Input: Poset P and an FO sentence φ
Question: Does P |= φ hold?

Without restrictions – PSPACE complete.

Various restricted instances;

[Bova, Ganian and Szeider, 2014]

I Existential FO logic (∃-FO), several parametrizations
considered;

I “all” variant are NP- or W-hard, except

I the (2014) main result – about posets of bounded width.

FO model checking on posets of bounded width

Poset ∃-FO model checking
Input: Poset P of width w , and an ∃-FO sentence φ
Question: Does P |= φ hold?

∃-FO – no ∀ quantifiers allowed

Theorem (Bova, Ganian, Szeider; CSL-LICS 2014)

Poset ∃-FO model checking solvable in time f (φ) · ng(w)

Theorem (Gajarský, PH, Obdržálek and Ordyniak; ISAAC 2014)

Poset ∃-FO model checking solvable in time f (φ,w) · n2

FO model checking on posets of bounded width

Poset ∃-FO model checking
Input: Poset P of width w , and an ∃-FO sentence φ
Question: Does P |= φ hold?

∃-FO – no ∀ quantifiers allowed

Theorem (Bova, Ganian, Szeider; CSL-LICS 2014)

Poset ∃-FO model checking solvable in time f (φ) · ng(w)

Theorem (Gajarský, PH, Obdržálek and Ordyniak; ISAAC 2014)

Poset ∃-FO model checking solvable in time f (φ,w) · n2

FO model checking on posets of bounded width

Poset ∃-FO model checking
Input: Poset P of width w , and an ∃-FO sentence φ
Question: Does P |= φ hold?

∃-FO – no ∀ quantifiers allowed

Theorem (Bova, Ganian, Szeider; CSL-LICS 2014)

Poset ∃-FO model checking solvable in time f (φ) · ng(w)

Theorem (Gajarský, PH, Obdržálek and Ordyniak; ISAAC 2014)

Poset ∃-FO model checking solvable in time f (φ,w) · n2

Towards full FO on posets

Poset FO model checking
Input: Poset P of width w , and an FO sentence φ
Question: Does P |= φ hold?

Question

Is it possible to solve full FO model checking problem in time
f (φ) · ng(w) or f (φ,w) · nO(1)?

Theorem (Gajarský, PH, Lokshtanov, Obdržálek, Ordyniak,
. Ramanujan, Saurabh; FOCS 2015)

(Full) FO model checking on posets of width at most w is solvable
in time f (φ,w) · n2.

Towards full FO on posets

Poset FO model checking
Input: Poset P of width w , and an FO sentence φ
Question: Does P |= φ hold?

Question

Is it possible to solve full FO model checking problem in time
f (φ) · ng(w) or f (φ,w) · nO(1)?

Theorem (Gajarský, PH, Lokshtanov, Obdržálek, Ordyniak,
. Ramanujan, Saurabh; FOCS 2015)

(Full) FO model checking on posets of width at most w is solvable
in time f (φ,w) · n2.

Towards full FO on posets

Problems – we cannot use Gaifman locality theorem:

1. In a poset everything can be in a very small neighborhood of
one vertex (e.g. maximum, minimum, ...).

2. On the other hand, Hasse diagram can be local, but

I we lose too much information (transit. clos. not FO definable),

I regarding stronger MSO, we have that even posets of width 2
can have Hasse diagrams of unbounded clique-width.

Tools we use:

I Hintikka games

I New version of locality

Towards full FO on posets

Problems – we cannot use Gaifman locality theorem:

1. In a poset everything can be in a very small neighborhood of
one vertex (e.g. maximum, minimum, ...).

2. On the other hand, Hasse diagram can be local, but

I we lose too much information (transit. clos. not FO definable),

I regarding stronger MSO, we have that even posets of width 2
can have Hasse diagrams of unbounded clique-width.

Tools we use:

I Hintikka games

I New version of locality

Towards full FO on posets

Problems – we cannot use Gaifman locality theorem:

1. In a poset everything can be in a very small neighborhood of
one vertex (e.g. maximum, minimum, ...).

2. On the other hand, Hasse diagram can be local, but

I we lose too much information (transit. clos. not FO definable),

I regarding stronger MSO, we have that even posets of width 2
can have Hasse diagrams of unbounded clique-width.

Tools we use:

I Hintikka games

I New version of locality

Towards full FO on posets

Problems – we cannot use Gaifman locality theorem:

1. In a poset everything can be in a very small neighborhood of
one vertex (e.g. maximum, minimum, ...).

2. On the other hand, Hasse diagram can be local, but

I we lose too much information (transit. clos. not FO definable),

I regarding stronger MSO, we have that even posets of width 2
can have Hasse diagrams of unbounded clique-width.

Tools we use:

I Hintikka games

I New version of locality

Towards full FO on posets

Problems – we cannot use Gaifman locality theorem:

1. In a poset everything can be in a very small neighborhood of
one vertex (e.g. maximum, minimum, ...).

2. On the other hand, Hasse diagram can be local, but

I we lose too much information (transit. clos. not FO definable),

I regarding stronger MSO, we have that even posets of width 2
can have Hasse diagrams of unbounded clique-width.

Tools we use:

I Hintikka games

I New version of locality

Hintikka games

Played on the structure and formula by two players:

I Existential player (Verifier) – plays ∨ and ∃

I Universal player (Falsifier) – plays ∧ and ∀

Theorem (folklore)

Given a structure S and a formula φ, the existential player has a
winning strategy in the game G(S, φ) if, and only if, S |= φ.

Hintikka games

Played on the structure and formula by two players:

I Existential player (Verifier) – plays ∨ and ∃

I Universal player (Falsifier) – plays ∧ and ∀

Theorem (folklore)

Given a structure S and a formula φ, the existential player has a
winning strategy in the game G(S, φ) if, and only if, S |= φ.

Main idea

For a poset P and a formula φ, we compute the winner of Hintikka
game G(P, φ).

In fact, we show that it is enough to compute the winner on a
subposet of constant size.

For a poset P and a formula φ construct a digraph D such that:

1. V (D) is the set of elements of P

2. every vertex of D has a bounded out-degree

3. to determine whether P |= φ we do

I take constant radius balls in D,
I look at subposet of P induced by them, and
I check whether φ holds on these subposets.

Graph D is built inductively by the structure of φ. . .

Main idea

For a poset P and a formula φ, we compute the winner of Hintikka
game G(P, φ).

In fact, we show that it is enough to compute the winner on a
subposet of constant size.

For a poset P and a formula φ construct a digraph D such that:

1. V (D) is the set of elements of P

2. every vertex of D has a bounded out-degree

3. to determine whether P |= φ we do

I take constant radius balls in D,
I look at subposet of P induced by them, and
I check whether φ holds on these subposets.

Graph D is built inductively by the structure of φ. . .

Main idea

For a poset P and a formula φ, we compute the winner of Hintikka
game G(P, φ).

In fact, we show that it is enough to compute the winner on a
subposet of constant size.

For a poset P and a formula φ construct a digraph D such that:

1. V (D) is the set of elements of P

2. every vertex of D has a bounded out-degree

3. to determine whether P |= φ we do

I take constant radius balls in D,
I look at subposet of P induced by them, and
I check whether φ holds on these subposets.

Graph D is built inductively by the structure of φ. . .

Main idea

For a poset P and a formula φ, we compute the winner of Hintikka
game G(P, φ).

In fact, we show that it is enough to compute the winner on a
subposet of constant size.

For a poset P and a formula φ construct a digraph D such that:

1. V (D) is the set of elements of P

2. every vertex of D has a bounded out-degree

3. to determine whether P |= φ we do

I take constant radius balls in D,
I look at subposet of P induced by them, and
I check whether φ holds on these subposets.

Graph D is built inductively by the structure of φ. . .

Main idea

For a poset P and a formula φ, we compute the winner of Hintikka
game G(P, φ).

In fact, we show that it is enough to compute the winner on a
subposet of constant size.

For a poset P and a formula φ construct a digraph D such that:

1. V (D) is the set of elements of P

2. every vertex of D has a bounded out-degree

3. to determine whether P |= φ we do

I take constant radius balls in D,
I look at subposet of P induced by them, and
I check whether φ holds on these subposets.

Graph D is built inductively by the structure of φ. . .

The construction of D0

(bounded-width) P → D0 → D1 → · · · → Ds

p

The construction of D0

p p

The construction of D0

p p
‘up’

‘down’

The construction of D0

p p
‘up’

‘down’

The construction of D0

p p
‘up’

‘down’

The construction of D0

p p
‘up’

‘down’

The construction of D0

p p

‘min’

‘max’

‘up’

‘down’

Iterating the construction

In Ds−1 (think of D0) we have:

I finitely many chains

I finitely many colours

I finitely many types of arrows (up, down, min, max)

⇒ bounded out-degree

⇒ k-outneighbourhoods have bounded size

⇒ there are finitely many non-isomorphic k-outneighbourhoods

Iterating the construction

In Ds−1 (think of D0) we have:

I finitely many chains

I finitely many colours

I finitely many types of arrows (up, down, min, max)

⇒ bounded out-degree

⇒ k-outneighbourhoods have bounded size

⇒ there are finitely many non-isomorphic k-outneighbourhoods

Iterating the construction

In Ds−1 (think of D0) we have:

I finitely many chains

I finitely many colours

I finitely many types of arrows (up, down, min, max)

⇒ bounded out-degree

⇒ k-outneighbourhoods have bounded size

⇒ there are finitely many non-isomorphic k-outneighbourhoods

Iterating the construction

In Ds−1 (think of D0) we have:

I finitely many chains

I finitely many colours

I finitely many types of arrows (up, down, min, max)

⇒ bounded out-degree

⇒ k-outneighbourhoods have bounded size

⇒ there are finitely many non-isomorphic k-outneighbourhoods

Iterating the construction

Two vertices have the same type if they have isomorphic
k-outneighbourhoods.

To get Ds from Ds−1 we:

I Compute the type of each vertex in Ds−1.

I Use it as colour in the next round to construct Ds in the same
way D0 was constructed.

Iterating the construction

Two vertices have the same type if they have isomorphic
k-outneighbourhoods.

To get Ds from Ds−1 we:

I Compute the type of each vertex in Ds−1.

I Use it as colour in the next round to construct Ds in the same
way D0 was constructed.

Back to the problem

Recall. . .

Theorem

The existential player has a winning strategy in the Hintikka game
G(P, φ) if, and only if, P |= φ.

Using Ds , we define local Hintikka game Gr (P, φ) and prove the
following claim:

Theorem

The existential player has a winning strategy in the Hintikka game
G(P, φ) if, and only if, she has a winning strategy in the local
Hintikka game Gr (P, φ).

Finally, the local game is played on posets of bounded size and
the algorithm follows.

Back to the problem

Recall. . .

Theorem

The existential player has a winning strategy in the Hintikka game
G(P, φ) if, and only if, P |= φ.

Using Ds , we define local Hintikka game Gr (P, φ) and prove the
following claim:

Theorem

The existential player has a winning strategy in the Hintikka game
G(P, φ) if, and only if, she has a winning strategy in the local
Hintikka game Gr (P, φ).

Finally, the local game is played on posets of bounded size and
the algorithm follows.

Back to the problem

Recall. . .

Theorem

The existential player has a winning strategy in the Hintikka game
G(P, φ) if, and only if, P |= φ.

Using Ds , we define local Hintikka game Gr (P, φ) and prove the
following claim:

Theorem

The existential player has a winning strategy in the Hintikka game
G(P, φ) if, and only if, she has a winning strategy in the local
Hintikka game Gr (P, φ).

Finally, the local game is played on posets of bounded size and
the algorithm follows.

Revisiting interval graphs

For simplicity, we restrict to unit-interval graphs; i.e., L = {1}.

intervals

interval ends

vertex representatives

We get a poset of width 2 encoding the given unit-interval graph.

Revisiting interval graphs

For simplicity, we restrict to unit-interval graphs; i.e., L = {1}.

intervals

interval ends

vertex representatives

We get a poset of width 2 encoding the given unit-interval graph.

Revisiting interval graphs

intervals

interval ends

vertex representatives

This can be generalized to bounded-nesting interval graphs:

Theorem

FO model checking on interval graphs, such that no w intervals
form a “nesting chain”, is solvable in time f (φ,w) · n2.

Another approach – Interpretations

For a graph G and an FO formula ψ(x , y), define a graph H:

E (H) =
{

uv : G |= ψ(u, v)
}

I ψ(x , y) ≡ ¬edge(x , y)

“The complement of a graph.”

Another approach – Interpretations

For a graph G and an FO formula ψ(x , y), define a graph H:

E (H) =
{

uv : G |= ψ(u, v)
}

I ψ(x , y) ≡ ¬edge(x , y)

“The complement of a graph.”

Another approach – Interpretations

For a graph G and an FO formula ψ(x , y), define a graph H:

E (H) =
{

uv : G |= ψ(u, v)
}

I ψ(x , y) ≡ ¬edge(x , y)

“The complement of a graph.”

Another approach – Interpretations

Consider classes K,M of relational structures, and a construction:

over K : over M :

. .

FO φ

H I ∼= G ∈ K
(with edges ψ(u, v))

I
−−−−−→

I
←−−−−−

FO φI

(edge(x , y) ψ(x , y))

H ∈M

Then I is called a simple FO interpretation between K, M.

Lemma
G |= φ iff H |= φI

Another approach – Interpretations

Consider classes K,M of relational structures, and a construction:

over K : over M :

. .

FO φ

H I ∼= G ∈ K
(with edges ψ(u, v))

I
−−−−−→

I
←−−−−−

FO φI

(edge(x , y) ψ(x , y))

H ∈M

Then I is called a simple FO interpretation between K, M.

Lemma
G |= φ iff H |= φI

Another approach – Interpretations

I ψ(x , y) ≡ x 6= y ∧
[
edge(x , y)∨ ∃z(edge(x , z)∧ edge(z , y))

]

“The square of a graph.”

Another approach – Interpretations

I ψ(x , y) ≡ x 6= y ∧
[
edge(x , y)∨ ∃z(edge(x , z)∧ edge(z , y))

]

“The square of a graph.”

Another approach – Interpretations

I ψ(x , y) ≡ x 6= y ∧
[
edge(x , y)∨ ∃z(edge(x , z)∧ edge(z , y))

]

“The square of a graph.”

Another approach – Interpretations

FO φ

H I ∼= G ∈ K
(with edges ψ(u, v))

I
−−−−−→

I
←−−−−−

FO φI

(edge(x , y) ψ(x , y))

H ∈M

Wait, isn’t the following trivial now?

I Assume a nowhere dense graph class M, and

I an FO interpretation I : K →M, given by ψ(x , y).

I Is now FO model checking on K tractable, too?

Unfortunately, not. . .

Another approach – Interpretations

FO φ

H I ∼= G ∈ K
(with edges ψ(u, v))

I
−−−−−→

I
←−−−−−

FO φI

(edge(x , y) ψ(x , y))

H ∈M

Wait, isn’t the following trivial now?

I Assume a nowhere dense graph class M, and

I an FO interpretation I : K →M, given by ψ(x , y).

I Is now FO model checking on K tractable, too?

Unfortunately, not. . .

Another approach – Interpretations

FO φ

H I ∼= G ∈ K
(with edges ψ(u, v))

I
−−−−−→

I
←−−−−−

FO φI

(edge(x , y) ψ(x , y))

H ∈M

Wait, isn’t the following trivial now?

I Assume a nowhere dense graph class M, and

I an FO interpretation I : K →M, given by ψ(x , y).

I Is now FO model checking on K tractable, too?

Unfortunately, not. . .

Another approach – Interpretations

FO φ

H I ∼= G ∈ K
(with edges ψ(u, v))

I
−−−−−→

I
←−−−−−

FO φI

(edge(x , y) ψ(x , y))

H ∈M

So, what is the difficulty with FO interpretations?

I Deciding whether H |= φI is “easy” (e.g., nowhere dense), but

I how can we find suitable H, such that H I ∼= G ?

Theorem (Motwani and Sudan, 1994)

The problem to compute a “square root” of a graph is NP-hard.

Another approach – Interpretations

FO φ

H I ∼= G ∈ K
(with edges ψ(u, v))

I
−−−−−→

I
←−−−−−

FO φI

(edge(x , y) ψ(x , y))

H ∈M

So, what is the difficulty with FO interpretations?

I Deciding whether H |= φI is “easy” (e.g., nowhere dense), but

I how can we find suitable H, such that H I ∼= G ?

Theorem (Motwani and Sudan, 1994)

The problem to compute a “square root” of a graph is NP-hard.

Another approach – Interpretations

FO φ

H I ∼= G ∈ K
(with edges ψ(u, v))

I
−−−−−→

I
←−−−−−

FO φI

(edge(x , y) ψ(x , y))

H ∈M

So, what is the difficulty with FO interpretations?

I Deciding whether H |= φI is “easy” (e.g., nowhere dense), but

I how can we find suitable H, such that H I ∼= G ?

Theorem (Motwani and Sudan, 1994)

The problem to compute a “square root” of a graph is NP-hard.

FO interpretation in classes of bounded degree

Theorem (Gajarský, PH, Lokshtanov, Obdržálek, Ramanujan;
. LICS 2016)

Let D be a graph class having an FO interpretation into a class of
graphs of bounded degree. Then there exist an FPT algorithm for
FO model checking on D.

In fact, the following is proved:

Theorem

Let D be a graph class having an FO interpretation I into a class
of graphs of bounded degree. Then there exists an FO
interpretation J such that, for given G ∈ D, we can efficiently
compute H of bounded degree such that HJ ∼= G .

Note that one cannot require J = I . . .

FO interpretation in classes of bounded degree

Theorem (Gajarský, PH, Lokshtanov, Obdržálek, Ramanujan;
. LICS 2016)

Let D be a graph class having an FO interpretation into a class of
graphs of bounded degree. Then there exist an FPT algorithm for
FO model checking on D.

In fact, the following is proved:

Theorem

Let D be a graph class having an FO interpretation I into a class
of graphs of bounded degree. Then there exists an FO
interpretation J such that, for given G ∈ D, we can efficiently
compute H of bounded degree such that HJ ∼= G .

Note that one cannot require J = I . . .

FO interpretation in classes of bounded degree

Theorem

Let D be a graph class having an FO interpretation I into a class
of graphs of bounded degree. Then there exists an FO
interpretation J such that, for given G ∈ D, we can efficiently
compute H of bounded degree such that HJ ∼= G .

This result relies on a structural characterization of graph classes
interpretable in classes of bounded degree graphs.

“Bounded degree away from bounded neighbourhood diversity.”

FO interpretation in classes of bounded degree

Theorem

Let D be a graph class having an FO interpretation I into a class
of graphs of bounded degree. Then there exists an FO
interpretation J such that, for given G ∈ D, we can efficiently
compute H of bounded degree such that HJ ∼= G .

This result relies on a structural characterization of graph classes
interpretable in classes of bounded degree graphs.

“Bounded degree away from bounded neighbourhood diversity.”

Intermezzo: Neighbourhood diversity

I For a graph G , we say that two vertices u, v ∈ V (G) are twins
if N(u)\v = N(v)\u (true twins).

I The twin relation is an equivalence relation on V (G).

I Neighbourhood diversity of a graph G is the number k of
equivalence classes of the twin relation.

FO interpretable in edgeless k-coloured graphs:

ψ(x , y) ≡ (Green(x)∧Red(y))∨(Red(x)∧Blue(y))∨(Blue(x)∧Gray(y))

∨ (Red(x) ∧ Red(y)) ∨ (Blue(x) ∧ Blue(y))

Intermezzo: Neighbourhood diversity

I For a graph G , we say that two vertices u, v ∈ V (G) are twins
if N(u)\v = N(v)\u (true twins).

I The twin relation is an equivalence relation on V (G).

I Neighbourhood diversity of a graph G is the number k of
equivalence classes of the twin relation.

FO interpretable in edgeless k-coloured graphs:

ψ(x , y) ≡ (Green(x)∧Red(y))∨(Red(x)∧Blue(y))∨(Blue(x)∧Gray(y))

∨ (Red(x) ∧ Red(y)) ∨ (Blue(x) ∧ Blue(y))

Intermezzo: Neighbourhood diversity

I For a graph G , we say that two vertices u, v ∈ V (G) are twins
if N(u)\v = N(v)\u (true twins).

I The twin relation is an equivalence relation on V (G).

I Neighbourhood diversity of a graph G is the number k of
equivalence classes of the twin relation.

FO interpretable in edgeless k-coloured graphs:

ψ(x , y) ≡ (Green(x)∧Red(y))∨(Red(x)∧Blue(y))∨(Blue(x)∧Gray(y))

∨ (Red(x) ∧ Red(y)) ∨ (Blue(x) ∧ Blue(y))

Near-k-twin relation

We would like to formally capture the words

“bounded degree away from bounded neighbourhood diversity.”

Definition

Two vertices u, v ∈ V (G) are near-k-twins if |N(u)4N(v)| ≤ k ,
i.e. their neighborhoods differ in at most k vertices.

Near-k-twin relation

Definition

Two vertices u, v ∈ V (G) are near-k-twins if |N(u)4N(v)| ≤ k ,
i.e. their neighborhoods differ in at most k vertices.

Example: a complete bipartite graph minus a matching – vertices
from the same parts are near-2-twins

(Note that for k = 0 we get false twins this time.)

The near-k-twin relation is not always an equivalence!

a b c d e f g

I k = 1: a ∼ c and e ∼ g , this is an equivalence

I k = 2: a ∼ c ∼ e but a 6∼ e, not an equivalence

I k = 4: one equivalence class

Near-k-twin relation

Definition

Two vertices u, v ∈ V (G) are near-k-twins if |N(u)4N(v)| ≤ k ,
i.e. their neighborhoods differ in at most k vertices.

Example: a complete bipartite graph minus a matching – vertices
from the same parts are near-2-twins

(Note that for k = 0 we get false twins this time.)

The near-k-twin relation is not always an equivalence!

a b c d e f g

I k = 1: a ∼ c and e ∼ g , this is an equivalence

I k = 2: a ∼ c ∼ e but a 6∼ e, not an equivalence

I k = 4: one equivalence class

Near-k-twin relation

Definition

Two vertices u, v ∈ V (G) are near-k-twins if |N(u)4N(v)| ≤ k ,
i.e. their neighborhoods differ in at most k vertices.

Example: a complete bipartite graph minus a matching – vertices
from the same parts are near-2-twins

(Note that for k = 0 we get false twins this time.)

The near-k-twin relation is not always an equivalence!

a b c d e f g

I k = 1: a ∼ c and e ∼ g , this is an equivalence

I k = 2: a ∼ c ∼ e but a 6∼ e, not an equivalence

I k = 4: one equivalence class

Near-uniform graph classes

Definition

Graph class K is near-uniform if there exist k0 and m such that for
every G ∈ K there exists k ≤ k0 s.t. the near-k-twin relation is an
equivalence on V (G) with at most m classes.

Examples:

I graphs of degree at most d (k0 = 2d ,m = 1)

I complements of graphs of degree at most d (k0 = 2d ,m = 1)

I complete bipartite graphs minus a matching (k0 = 2,m = 2)

Theorem

Let D be a graph class having an FO interpretation into a class of
graphs of bounded degree. Then D is near-uniform.

Near-uniform graph classes

Definition

Graph class K is near-uniform if there exist k0 and m such that for
every G ∈ K there exists k ≤ k0 s.t. the near-k-twin relation is an
equivalence on V (G) with at most m classes.

Examples:

I graphs of degree at most d (k0 = 2d ,m = 1)

I complements of graphs of degree at most d (k0 = 2d ,m = 1)

I complete bipartite graphs minus a matching (k0 = 2,m = 2)

Theorem

Let D be a graph class having an FO interpretation into a class of
graphs of bounded degree. Then D is near-uniform.

Near-uniform graph classes

Definition

Graph class K is near-uniform if there exist k0 and m such that for
every G ∈ K there exists k ≤ k0 s.t. the near-k-twin relation is an
equivalence on V (G) with at most m classes.

Examples:

I graphs of degree at most d (k0 = 2d ,m = 1)

I complements of graphs of degree at most d (k0 = 2d ,m = 1)

I complete bipartite graphs minus a matching (k0 = 2,m = 2)

Theorem

Let D be a graph class having an FO interpretation into a class of
graphs of bounded degree. Then D is near-uniform.

Summarizing the algorithm

Input: H ∈ D (where D is (k0,m)-near-uniform), FO formula φ
Output: yes iff H |= φ

Algorithm

1. For k = 0, . . . , k0 compute the near-k-twin relation ρk on
V (H) and check whether it is an equivalence.
(Guaranteed to succeed for some 0 ≤ k ≤ k0)

2. Using ρk , compute a graph G of a bounded degree and a
small formula ψ(x , y) such that H = Iψ(G).

3. Compute φ′ from φ .

4. Use some known efficient model checking algorithm for graphs
of bounded degree to determine whether G |= φ′.

Summarizing the algorithm

Input: H ∈ D (where D is (k0,m)-near-uniform), FO formula φ
Output: yes iff H |= φ

Algorithm

1. For k = 0, . . . , k0 compute the near-k-twin relation ρk on
V (H) and check whether it is an equivalence.
(Guaranteed to succeed for some 0 ≤ k ≤ k0)

2. Using ρk , compute a graph G of a bounded degree and a
small formula ψ(x , y) such that H = Iψ(G).

3. Compute φ′ from φ .

4. Use some known efficient model checking algorithm for graphs
of bounded degree to determine whether G |= φ′.

Summarizing the algorithm

Input: H ∈ D (where D is (k0,m)-near-uniform), FO formula φ
Output: yes iff H |= φ

Algorithm

1. For k = 0, . . . , k0 compute the near-k-twin relation ρk on
V (H) and check whether it is an equivalence.
(Guaranteed to succeed for some 0 ≤ k ≤ k0)

2. Using ρk , compute a graph G of a bounded degree and a
small formula ψ(x , y) such that H = Iψ(G).

3. Compute φ′ from φ .

4. Use some known efficient model checking algorithm for graphs
of bounded degree to determine whether G |= φ′.

Summarizing the algorithm

Input: H ∈ D (where D is (k0,m)-near-uniform), FO formula φ
Output: yes iff H |= φ

Algorithm

1. For k = 0, . . . , k0 compute the near-k-twin relation ρk on
V (H) and check whether it is an equivalence.
(Guaranteed to succeed for some 0 ≤ k ≤ k0)

2. Using ρk , compute a graph G of a bounded degree and a
small formula ψ(x , y) such that H = Iψ(G).

3. Compute φ′ from φ .

4. Use some known efficient model checking algorithm for graphs
of bounded degree to determine whether G |= φ′.

Conclusions

1. For non-sparse classes, the complexity landscape of FO model
checking is diverse and nontrivial.

2. Can the “Sparsity” theory of Nešeťril and Ossona de Mendez
be generalized towards dense classes? (Nowhere-FO-dense?)

3. Besides, some (perhaps easier) particular questions. . .

I Which (geometric) graph classes other than interval graphs
can the Poset FO model checking result be applied to?

I How to structurally characterize graph classes which have an
FO interpretation into, say, planar graphs?

I Which graph classes are “robust” under FO interpretations?
(cf. near-uniform, bounded shrub-depth, bounded clique-width)

Thank you for your attention!

Conclusions

1. For non-sparse classes, the complexity landscape of FO model
checking is diverse and nontrivial.

2. Can the “Sparsity” theory of Nešeťril and Ossona de Mendez
be generalized towards dense classes? (Nowhere-FO-dense?)

3. Besides, some (perhaps easier) particular questions. . .

I Which (geometric) graph classes other than interval graphs
can the Poset FO model checking result be applied to?

I How to structurally characterize graph classes which have an
FO interpretation into, say, planar graphs?

I Which graph classes are “robust” under FO interpretations?
(cf. near-uniform, bounded shrub-depth, bounded clique-width)

Thank you for your attention!

Conclusions

1. For non-sparse classes, the complexity landscape of FO model
checking is diverse and nontrivial.

2. Can the “Sparsity” theory of Nešeťril and Ossona de Mendez
be generalized towards dense classes? (Nowhere-FO-dense?)

3. Besides, some (perhaps easier) particular questions. . .

I Which (geometric) graph classes other than interval graphs
can the Poset FO model checking result be applied to?

I How to structurally characterize graph classes which have an
FO interpretation into, say, planar graphs?

I Which graph classes are “robust” under FO interpretations?
(cf. near-uniform, bounded shrub-depth, bounded clique-width)

Thank you for your attention!

Conclusions

1. For non-sparse classes, the complexity landscape of FO model
checking is diverse and nontrivial.

2. Can the “Sparsity” theory of Nešeťril and Ossona de Mendez
be generalized towards dense classes? (Nowhere-FO-dense?)

3. Besides, some (perhaps easier) particular questions. . .

I Which (geometric) graph classes other than interval graphs
can the Poset FO model checking result be applied to?

I How to structurally characterize graph classes which have an
FO interpretation into, say, planar graphs?

I Which graph classes are “robust” under FO interpretations?
(cf. near-uniform, bounded shrub-depth, bounded clique-width)

Thank you for your attention!

Conclusions

1. For non-sparse classes, the complexity landscape of FO model
checking is diverse and nontrivial.

2. Can the “Sparsity” theory of Nešeťril and Ossona de Mendez
be generalized towards dense classes? (Nowhere-FO-dense?)

3. Besides, some (perhaps easier) particular questions. . .

I Which (geometric) graph classes other than interval graphs
can the Poset FO model checking result be applied to?

I How to structurally characterize graph classes which have an
FO interpretation into, say, planar graphs?

I Which graph classes are “robust” under FO interpretations?
(cf. near-uniform, bounded shrub-depth, bounded clique-width)

Thank you for your attention!

Conclusions

1. For non-sparse classes, the complexity landscape of FO model
checking is diverse and nontrivial.

2. Can the “Sparsity” theory of Nešeťril and Ossona de Mendez
be generalized towards dense classes? (Nowhere-FO-dense?)

3. Besides, some (perhaps easier) particular questions. . .

I Which (geometric) graph classes other than interval graphs
can the Poset FO model checking result be applied to?

I How to structurally characterize graph classes which have an
FO interpretation into, say, planar graphs?

I Which graph classes are “robust” under FO interpretations?
(cf. near-uniform, bounded shrub-depth, bounded clique-width)

Thank you for your attention!

