Testing FO properties of dense structures

Petr Hliněný

Masaryk University, Brno, CZ

ACCOTA 2016, Los Cabos, Mexico
Based on joint works with J. Gajarskýt, D. Lokshtanov**, J. Obdržálek*, S. Ordyniak ${ }^{\ddagger}$, M.S. Ramanujan ${ }^{\ddagger}$, and S. Saurabh**.

* MU Brno, ${ }^{* *}$ Univ. Bergen, ${ }^{\dagger}$ TU Berlin, \ddagger TU Wien

First-order logic

Definition (FO)

Relational structure - a universe with relation(s), such as a graph;

First-order logic

Definition (FO)

Relational structure - a universe with relation(s), such as a graph; standard propositional logic + the relational predicate(s);

First-order logic

Definition (FO)

Relational structure - a universe with relation(s), such as a graph; standard propositional logic + the relational predicate(s); and quantification (\forall, \exists) over the elements of the universe.

- $\phi \equiv \forall x \exists y:(x \neq y) \wedge \operatorname{edge}(x, y)$?

First-order logic

Definition (FO)

Relational structure - a universe with relation(s), such as a graph; standard propositional logic + the relational predicate(s); and quantification (\forall, \exists) over the elements of the universe.

- $\phi \equiv \forall x \exists y:(x \neq y) \wedge \operatorname{edge}(x, y)$?

"There is no isolated vertex."

First-order logic

- $\psi(x, y) \equiv \forall z: z=x \vee z=y \vee \operatorname{edge}(x, z) \vee \operatorname{edge}(y, z)$?

First-order logic

$$
\vee \psi(x, y) \equiv \forall z: z=x \vee z=y \vee \operatorname{edge}(x, z) \vee \operatorname{edge}(y, z) \quad ?
$$

" $\{x, y\}$ is a dominating set."

First-order logic

$$
\vee \psi(x, y) \equiv \forall z: z=x \vee z=y \vee \operatorname{edge}(x, z) \vee \operatorname{edge}(y, z) \quad ?
$$

" $\{x, y\}$ is a dominating set."

Coloured FO logic

- $\phi \equiv \forall x, y:[(\operatorname{red}(x) \wedge \operatorname{red}(y)) \rightarrow \neg \operatorname{edge}(x, y)] \wedge$
$[(\operatorname{blue}(x) \wedge$ blue $(y)) \rightarrow \neg$ edge $(x, y)]$?

Coloured FO logic

- $\phi \equiv \forall x, y:[(\operatorname{red}(x) \wedge \operatorname{red}(y)) \rightarrow \neg \operatorname{edge}(x, y)] \wedge$ $[(\operatorname{blue}(x) \wedge$ blue $(y)) \rightarrow \neg \operatorname{edge}(x, y)]$?

"Given is a proper 2-colouring?"

Testing FO properties

FO model Checking
Input: Structure S and an FO sentence ϕ
Question: Does $S \models \phi$ hold?

Testing FO properties

FO model checking
Input: Structure S and an FO sentence ϕ
Question: Does $S \models \phi$ hold?

- $\phi \equiv \exists x, y: \psi(x, y)$, where

$$
\psi(x, y) \equiv \forall z: z=x \vee z=y \vee \operatorname{edge}(x, z) \vee \operatorname{edge}(x, y) ?
$$

Testing FO properties

FO model Checking
Input: Structure S and an FO sentence ϕ
Question: Does $S \models \phi$ hold?

- $\phi \equiv \exists x, y: \psi(x, y)$, where

$$
\psi(x, y) \equiv \forall z: z=x \vee z=y \vee \operatorname{edge}(x, z) \vee \operatorname{edge}(x, y) \quad ?
$$

"The input graph has a dominating set of size ≤ 2."

FO model checking

FO model Checking
Input: Structure S and an FO sentence ϕ
Question: Does $S \models \phi$ hold?

- Motivation: a fundamental problem

FO model checking

FO model Checking
Input: Structure S and an FO sentence ϕ
Question: Does $S \models \phi$ hold?

- Motivation: a fundamental problem
- Result: PSPACE-complete [Stockmeyer, Vardi] in general

FO model checking

FO model Checking
Input: Structure S and an FO sentence ϕ
Question: Does $S \models \phi$ hold?

- Motivation: a fundamental problem
- Result: PSPACE-complete [Stockmeyer, Vardi] in general
- Any fixed formula $\phi \rightsquigarrow$ trivial $O\left(n^{|\phi|}\right)$ algorithm.

FO model checking

FO MODEL CHECKING
Input: Structure S and an FO sentence ϕ
Question: Does $S \models \phi$ hold?

- Motivation: a fundamental problem
- Result: PSPACE-complete [Stockmeyer, Vardi] in general
- Any fixed formula $\phi \rightsquigarrow$ trivial $O\left(n^{|\phi|}\right)$ algorithm.
- Can we do even better (with fixed ϕ)? Better: $f(\phi) \cdot n^{O(1)}$ (FPT, fixed-parameter tractable).

FO model checking

FO model Checking
Input: Structure S and an FO sentence ϕ
Question: Does $S \models \phi$ hold?

- Motivation: a fundamental problem
- Result: PSPACE-complete [Stockmeyer, Vardi] in general
- Any fixed formula $\phi \rightsquigarrow$ trivial $O\left(n^{|\phi|}\right)$ algorithm.
- Can we do even better (with fixed ϕ)? Better: $f(\phi) \cdot n^{O(1)}$ (FPT, fixed-parameter tractable). Answer:
- In general - no, W-hard (cf. indep. or dominating set).
- For restricted graph classes - yes.

FO Model Checking of Sparse Graphs

FO on sparse graphs

The idea behind the results on FO model checking of sparse graphs: FO logic is local.

FO on sparse graphs

The idea behind the results on FO model checking of sparse graphs: FO logic is local.

Theorem (Gaifman locality theorem)
To evaluate a formula ϕ on G it is enough to:

1. Evaluate finitely many formulas on bounded neighbourhood of every vertex.
2. Combine the results of the first step together.

FO on sparse graphs

The idea behind the results on FO model checking of sparse graphs: FO logic is local.

Theorem (Gaifman locality theorem)
To evaluate a formula ϕ on G it is enough to:

1. Evaluate finitely many formulas on bounded neighbourhood of every vertex.
2. Combine the results of the first step together.

Neighbourhood in relational structures - in the Gaifman graph which has a clique for every tuple of each relation.

Beyond sparsity?

The story of FO model checking of sparse graphs has been very successful, indeed...

How to continue? Two basic options:

Beyond sparsity?

The story of FO model checking of sparse graphs has been very successful, indeed...

How to continue? Two basic options:

1. Consider other (dense) graph classes, e.g.

- L-interval graphs [Ganian et al., 2013]

Beyond sparsity?

The story of FO model checking of sparse graphs has been very successful, indeed...

How to continue? Two basic options:

1. Consider other (dense) graph classes, e.g.

- L-interval graphs [Ganian et al., 2013]

2. Consider other kinds of structures like

- posets [2014], lattices, finite groups, ...?

Interval graphs

Definition (INT)

Representation: a set \mathcal{I} of intervals on the real line.

Interval graphs

Definition (INT)

Representation: a set \mathcal{I} of intervals on the real line. The graph: $V(G)=\mathcal{I}$ and $E(G)=\{A B: A$ intersects $B\}$

Interval graphs

Definition (INT)

Representation: a set \mathcal{I} of intervals on the real line.
The graph: $V(G)=\mathcal{I}$ and $E(G)=\{A B: A$ intersects $B\}$

Definition (L-INT)
INT \& all interval lengths are from a fixed (finite) set $L \subseteq \mathbb{R}^{+}$.

FO model checking on L-INT graphs

Definition (L-INT)

INT \& all interval lengths are from a fixed (finite) set $L \subseteq \mathbb{R}^{+}$.

Why this particular case?

FO model checking on L-INT graphs

Definition (L-INT)

INT \& all interval lengths are from a fixed (finite) set $L \subseteq \mathbb{R}^{+}$.

Why this particular case?
An interesting case study, new techniques ("training muscles").

Theorem (Ganian, PH, Král', Obdržálek, Schwartz, Teska; ICALP 2013)
FO model checking on L-INT graphs is

1. FPT for any finite set $L \subseteq \mathbb{R}^{+}$,

FO model checking on L-INT graphs

Definition (L-INT)

INT \& all interval lengths are from a fixed (finite) set $L \subseteq \mathbb{R}^{+}$.

Why this particular case?
An interesting case study, new techniques ("training muscles").

Theorem (Ganian, PH, Král', Obdržálek, Schwartz, Teska; ICALP 2013)
FO model checking on L-INT graphs is

1. FPT for any finite set $L \subseteq \mathbb{R}^{+}$, and
2. W-hard for any $\varepsilon>0$ and $L=(1,1+\varepsilon)$.

Partially ordered sets - Posets

Definition (Poset)

Poset $\mathcal{P}=(P, \leq)$ is a set P together with relation \leq which is reflexive, antisymmetric and transitive.

FO logic on posets

(Posets are typically dense directed graphs.)

- $\phi \equiv \exists x \forall y:(x \geq y)$

FO logic on posets

(Posets are typically dense directed graphs.)

- $\phi \equiv \exists x \forall y:(x \geq y)$

"The poset has a maximum element."

Poset width

Definition

Width of a poset $=$ the size of its largest antichain.

FO model checking on posets

Poset FO model checking
Input: Poset \mathcal{P} and an FO sentence ϕ
Question: Does $\mathcal{P} \models \phi$ hold?

Without restrictions - PSPACE complete.

FO model checking on posets

Poset FO model checking
Input: Poset \mathcal{P} and an FO sentence ϕ
Question: Does $\mathcal{P} \models \phi$ hold?

Without restrictions - PSPACE complete.
Various restricted instances;
[Bova, Ganian and Szeider, 2014]

FO model checking on posets

Poset FO model checking
Input: Poset \mathcal{P} and an FO sentence ϕ
Question: Does $\mathcal{P} \models \phi$ hold?

Without restrictions - PSPACE complete.
Various restricted instances;
[Bova, Ganian and Szeider, 2014]

- Existential FO logic (\exists-FO), several parametrizations considered;

FO model checking on posets

Poset FO model Checking
Input: Poset \mathcal{P} and an FO sentence ϕ
Question: Does $\mathcal{P} \models \phi$ hold?

Without restrictions - PSPACE complete.
Various restricted instances;
[Bova, Ganian and Szeider, 2014]

- Existential FO logic (\exists-FO), several parametrizations considered;
- "all" variant are NP- or W-hard, except

FO model checking on posets

Poset FO model Checking
Input: Poset \mathcal{P} and an FO sentence ϕ
Question: Does $\mathcal{P} \models \phi$ hold?

Without restrictions - PSPACE complete.
Various restricted instances;
[Bova, Ganian and Szeider, 2014]

- Existential FO logic (\exists-FO), several parametrizations considered;
- "all" variant are NP- or W-hard, except
- the (2014) main result - about posets of bounded width.

FO model checking on posets of bounded width

```
Poset \(\exists\)-FO model checking Input: Poset \(\mathcal{P}\) of width \(w\), and an \(\exists\)-FO sentence \(\phi\) Question: Does \(\mathcal{P} \models \phi\) hold?
```

\exists-FO - no \forall quantifiers allowed

FO model checking on posets of bounded width

> Poset \exists-FO MODEL CHECKING
> Input: Poset \mathcal{P} of width w, and an \exists-FO sentence ϕ Question: Does $\mathcal{P} \models \phi$ hold?
\exists-FO - no \forall quantifiers allowed

Theorem (Bova, Ganian, Szeider; CSL-LICS 2014)
Poset \exists-FO model checking solvable in time $f(\phi) \cdot n^{g(w)}$

FO model checking on posets of bounded width

Poset \exists-FO model checking
Input: Poset \mathcal{P} of width w, and an \exists-FO sentence ϕ Question: Does $\mathcal{P} \models \phi$ hold?
\exists-FO - no \forall quantifiers allowed

Theorem (Bova, Ganian, Szeider; CSL-LICS 2014)
Poset \exists-FO model checking solvable in time $f(\phi) \cdot n^{g(w)}$

Theorem (Gajarský, PH, Obdržálek and Ordyniak; ISAAC 2014)
Poset \exists-FO model checking solvable in time $f(\phi, w) \cdot n^{2}$

Towards full FO on posets

Poset FO model checking
Input: Poset \mathcal{P} of width w, and an FO sentence ϕ
Question: Does $\mathcal{P} \models \phi$ hold?

Question
Is it possible to solve full FO model checking problem in time $f(\phi) \cdot n^{g(w)}$ or $f(\phi, w) \cdot n^{O(1)}$?

Towards full FO on posets

Poset FO model checking
Input: Poset \mathcal{P} of width w, and an FO sentence ϕ
Question: Does $\mathcal{P} \models \phi$ hold?

Question

Is it possible to solve full FO model checking problem in time $f(\phi) \cdot n^{g(w)}$ or $f(\phi, w) \cdot n^{O(1)}$?

Theorem (Gajarský, PH, Lokshtanov, Obdržálek, Ordyniak, Ramanujan, Saurabh; FOCS 2015)
(Full) FO model checking on posets of width at most w is solvable in time $f(\phi, w) \cdot n^{2}$.

Towards full FO on posets

Problems - we cannot use Gaifman locality theorem:

1. In a poset everything can be in a very small neighborhood of one vertex (e.g. maximum, minimum, ...).

Towards full FO on posets

Problems - we cannot use Gaifman locality theorem:

1. In a poset everything can be in a very small neighborhood of one vertex (e.g. maximum, minimum, ...).
2. On the other hand, Hasse diagram can be local, but

Towards full FO on posets

Problems - we cannot use Gaifman locality theorem:

1. In a poset everything can be in a very small neighborhood of one vertex (e.g. maximum, minimum, ...).
2. On the other hand, Hasse diagram can be local, but

- we lose too much information (transit. clos. not FO definable),

Towards full FO on posets

Problems - we cannot use Gaifman locality theorem:

1. In a poset everything can be in a very small neighborhood of one vertex (e.g. maximum, minimum, ...).
2. On the other hand, Hasse diagram can be local, but

- we lose too much information (transit. clos. not FO definable),
- regarding stronger MSO, we have that even posets of width 2 can have Hasse diagrams of unbounded clique-width.

Towards full FO on posets

Problems - we cannot use Gaifman locality theorem:

1. In a poset everything can be in a very small neighborhood of one vertex (e.g. maximum, minimum, ...).
2. On the other hand, Hasse diagram can be local, but

- we lose too much information (transit. clos. not FO definable),
- regarding stronger MSO, we have that even posets of width 2 can have Hasse diagrams of unbounded clique-width.

Tools we use:

- Hintikka games
- New version of locality

Hintikka games

Played on the structure and formula by two players:

- Existential player (Verifier) - plays \vee and \exists
- Universal player (Falsifier) - plays \wedge and \forall

Hintikka games

Played on the structure and formula by two players:

- Existential player (Verifier) - plays \vee and \exists
- Universal player (Falsifier) - plays \wedge and \forall

Theorem (folklore)
Given a structure \mathcal{S} and a formula ϕ, the existential player has a winning strategy in the game $\mathcal{G}(\mathcal{S}, \phi)$ if, and only if, $\mathcal{S} \models \phi$.

Main idea

For a poset \mathcal{P} and a formula ϕ, we compute the winner of Hintikka game $\mathcal{G}(\mathcal{P}, \phi)$.

Main idea

For a poset \mathcal{P} and a formula ϕ, we compute the winner of Hintikka game $\mathcal{G}(\mathcal{P}, \phi)$.

In fact, we show that it is enough to compute the winner on a subposet of constant size.

Main idea

For a poset \mathcal{P} and a formula ϕ, we compute the winner of Hintikka game $\mathcal{G}(\mathcal{P}, \phi)$.

In fact, we show that it is enough to compute the winner on a subposet of constant size.

For a poset \mathcal{P} and a formula ϕ construct a digraph D such that:

1. $V(D)$ is the set of elements of \mathcal{P}
2. every vertex of D has a bounded out-degree

Main idea

For a poset \mathcal{P} and a formula ϕ, we compute the winner of Hintikka game $\mathcal{G}(\mathcal{P}, \phi)$.

In fact, we show that it is enough to compute the winner on a subposet of constant size.

For a poset \mathcal{P} and a formula ϕ construct a digraph D such that:

1. $V(D)$ is the set of elements of \mathcal{P}
2. every vertex of D has a bounded out-degree
3. to determine whether $\mathcal{P} \models \phi$ we do

- take constant radius balls in D,
- look at subposet of \mathcal{P} induced by them, and
- check whether ϕ holds on these subposets.

Main idea

For a poset \mathcal{P} and a formula ϕ, we compute the winner of Hintikka game $\mathcal{G}(\mathcal{P}, \phi)$.

In fact, we show that it is enough to compute the winner on a subposet of constant size.

For a poset \mathcal{P} and a formula ϕ construct a digraph D such that:

1. $V(D)$ is the set of elements of \mathcal{P}
2. every vertex of D has a bounded out-degree
3. to determine whether $\mathcal{P} \models \phi$ we do

- take constant radius balls in D,
- look at subposet of \mathcal{P} induced by them, and
- check whether ϕ holds on these subposets.

Graph D is built inductively by the structure of $\phi \ldots$

The construction of D_{0}

(bounded-width) $\mathcal{P} \rightarrow D_{0} \rightarrow D_{1} \rightarrow \cdots \rightarrow D_{s}$

The construction of D_{0}

Iterating the construction

In D_{s-1} (think of D_{0}) we have:

- finitely many chains
- finitely many colours
- finitely many types of arrows (up, down, min, max)

Iterating the construction

In D_{s-1} (think of D_{0}) we have:

- finitely many chains
- finitely many colours
- finitely many types of arrows (up, down, min, max)
\Rightarrow bounded out-degree

Iterating the construction

In D_{s-1} (think of D_{0}) we have:

- finitely many chains
- finitely many colours
- finitely many types of arrows (up, down, min, max)
\Rightarrow bounded out-degree
$\Rightarrow k$-outneighbourhoods have bounded size

Iterating the construction

In D_{s-1} (think of D_{0}) we have:

- finitely many chains
- finitely many colours
- finitely many types of arrows (up, down, min, max)
\Rightarrow bounded out-degree
$\Rightarrow k$-outneighbourhoods have bounded size
\Rightarrow there are finitely many non-isomorphic k-outneighbourhoods

Iterating the construction

Two vertices have the same type if they have isomorphic k-outneighbourhoods.

Iterating the construction

Two vertices have the same type if they have isomorphic k-outneighbourhoods.

To get D_{s} from D_{s-1} we:

- Compute the type of each vertex in D_{s-1}.
- Use it as colour in the next round to construct D_{s} in the same way D_{0} was constructed.

Back to the problem

Recall. . .

Theorem
The existential player has a winning strategy in the Hintikka game $\mathcal{G}(\mathcal{P}, \phi)$ if, and only if, $\mathcal{P} \models \phi$.

Back to the problem

Recall...

Theorem
The existential player has a winning strategy in the Hintikka game $\mathcal{G}(\mathcal{P}, \phi)$ if, and only if, $\mathcal{P} \models \phi$.

Using D_{s}, we define local Hintikka game $\mathcal{G}_{r}(\mathcal{P}, \phi)$ and prove the following claim:

Theorem

The existential player has a winning strategy in the Hintikka game $\mathcal{G}(\mathcal{P}, \phi)$ if, and only if, she has a winning strategy in the local Hintikka game $\mathcal{G}_{r}(\mathcal{P}, \phi)$.

Back to the problem

Recall...

Theorem
The existential player has a winning strategy in the Hintikka game $\mathcal{G}(\mathcal{P}, \phi)$ if, and only if, $\mathcal{P} \models \phi$.

Using D_{s}, we define local Hintikka game $\mathcal{G}_{r}(\mathcal{P}, \phi)$ and prove the following claim:

Theorem

The existential player has a winning strategy in the Hintikka game $\mathcal{G}(\mathcal{P}, \phi)$ if, and only if, she has a winning strategy in the local Hintikka game $\mathcal{G}_{r}(\mathcal{P}, \phi)$.

Finally, the local game is played on posets of bounded size and the algorithm follows.

Revisiting interval graphs

For simplicity, we restrict to unit-interval graphs; i.e., $L=\{1\}$.

vertex representatives

We get a poset of width 2 encoding the given unit-interval graph.

Revisiting interval graphs

For simplicity, we restrict to unit-interval graphs; i.e., $L=\{1\}$.

interval ends
vertex representatives

We get a poset of width 2 encoding the given unit-interval graph.

Revisiting interval graphs

interval ends
vertex representatives

This can be generalized to bounded-nesting interval graphs:

Theorem
FO model checking on interval graphs, such that no w intervals form a "nesting chain", is solvable in time $f(\phi, w) \cdot n^{2}$.

Another approach - Interpretations

For a graph G and an FO formula $\psi(x, y)$, define a graph H :

$$
E(H)=\{u v: G \models \psi(u, v)\}
$$

Another approach - Interpretations

For a graph G and an FO formula $\psi(x, y)$, define a graph H :

$$
E(H)=\{u v: G \models \psi(u, v)\}
$$

- $\psi(x, y) \equiv \neg \operatorname{edge}(x, y)$

Another approach - Interpretations

For a graph G and an FO formula $\psi(x, y)$, define a graph H :

$$
E(H)=\{u v: G \models \psi(u, v)\}
$$

- $\psi(x, y) \equiv \neg \operatorname{edge}(x, y)$

"The complement of a graph."

Another approach - Interpretations

Consider classes \mathcal{K}, \mathcal{M} of relational structures, and a construction:

FO ϕ

$$
\begin{gathered}
\text { FO } \phi^{\prime} \\
(\text { edge }(x, y) \rightsquigarrow \psi(x, y))
\end{gathered}
$$

$$
H^{\prime} \cong G \in \mathcal{K}
$$

$$
\text { (with edges } \psi(u, v) \text {) }
$$

$$
H \in \mathcal{M}
$$

Another approach - Interpretations

Consider classes \mathcal{K}, \mathcal{M} of relational structures, and a construction:

FO ϕ

$$
\begin{gathered}
\text { FO } \phi^{\prime} \\
(\operatorname{edge}(x, y) \rightsquigarrow \psi(x, y))
\end{gathered}
$$

$$
H^{\prime} \cong G \in \mathcal{K}
$$

$$
\text { (with edges } \psi(u, v))
$$

$$
H \in \mathcal{M}
$$

Then I is called a simple FO interpretation between \mathcal{K}, \mathcal{M}.

Lemma

$$
G \models \phi \quad \text { iff } H \models \phi^{\prime}
$$

Another approach - Interpretations

- $\psi(x, y) \equiv x \neq y \wedge[\operatorname{edge}(x, y) \vee \exists z(\operatorname{edge}(x, z) \wedge \operatorname{edge}(z, y))]$

Another approach - Interpretations

- $\psi(x, y) \equiv x \neq y \wedge[\operatorname{edge}(x, y) \vee \exists z(\operatorname{edge}(x, z) \wedge \operatorname{edge}(z, y))]$

Another approach - Interpretations

- $\psi(x, y) \equiv x \neq y \wedge[\operatorname{edge}(x, y) \vee \exists z(\operatorname{edge}(x, z) \wedge \operatorname{edge}(z, y))]$

"The square of a graph."

Another approach - Interpretations

Wait, isn't the following trivial now?

- Assume a nowhere dense graph class \mathcal{M}, and

Another approach - Interpretations

Wait, isn't the following trivial now?

- Assume a nowhere dense graph class \mathcal{M}, and
- an FO interpretation $I: \mathcal{K} \rightarrow \mathcal{M}$, given by $\psi(x, y)$.
- Is now FO model checking on \mathcal{K} tractable, too?

Another approach - Interpretations

Wait, isn't the following trivial now?

- Assume a nowhere dense graph class \mathcal{M}, and
- an FO interpretation $I: \mathcal{K} \rightarrow \mathcal{M}$, given by $\psi(x, y)$.
- Is now FO model checking on \mathcal{K} tractable, too?

Unfortunately, not...

Another approach - Interpretations

So, what is the difficulty with FO interpretations?

- Deciding whether $H \models \phi^{\prime}$ is "easy" (e.g., nowhere dense), but

Another approach - Interpretations

So, what is the difficulty with FO interpretations?

- Deciding whether $H \models \phi^{\prime}$ is "easy" (e.g., nowhere dense), but
- how can we find suitable H, such that $H^{\prime} \cong G$?

Another approach - Interpretations

So, what is the difficulty with FO interpretations?

- Deciding whether $H \models \phi^{\prime}$ is "easy" (e.g., nowhere dense), but
- how can we find suitable H, such that $H^{\prime} \cong G$?

Theorem (Motwani and Sudan, 1994)
The problem to compute a "square root" of a graph is NP-hard.

FO interpretation in classes of bounded degree

Theorem (Gajarský, PH, Lokshtanov, Obdržálek, Ramanujan; LICS 2016)

Let \mathcal{D} be a graph class having an FO interpretation into a class of graphs of bounded degree. Then there exist an FPT algorithm for FO model checking on \mathcal{D}.

FO interpretation in classes of bounded degree

Theorem (Gajarský, PH, Lokshtanov, Obdržálek, Ramanujan; LICS 2016)

Let \mathcal{D} be a graph class having an FO interpretation into a class of graphs of bounded degree. Then there exist an FPT algorithm for FO model checking on \mathcal{D}.

In fact, the following is proved:
Theorem
Let \mathcal{D} be a graph class having an FO interpretation I into a class of graphs of bounded degree. Then there exists an FO interpretation J such that, for given $G \in \mathcal{D}$, we can efficiently compute H of bounded degree such that $H^{J} \cong G$.

Note that one cannot require $J=I \ldots$

FO interpretation in classes of bounded degree

Theorem
Let \mathcal{D} be a graph class having an FO interpretation I into a class of graphs of bounded degree. Then there exists an FO interpretation J such that, for given $G \in \mathcal{D}$, we can efficiently compute H of bounded degree such that $H^{J} \cong G$.

This result relies on a structural characterization of graph classes interpretable in classes of bounded degree graphs.

FO interpretation in classes of bounded degree

Theorem
Let \mathcal{D} be a graph class having an FO interpretation I into a class of graphs of bounded degree. Then there exists an FO interpretation J such that, for given $G \in \mathcal{D}$, we can efficiently compute H of bounded degree such that $H^{J} \cong G$.

This result relies on a structural characterization of graph classes interpretable in classes of bounded degree graphs.
"Bounded degree away from bounded neighbourhood diversity."

Intermezzo: Neighbourhood diversity

- For a graph G, we say that two vertices $u, v \in V(G)$ are twins if $N(u) \backslash v=N(v) \backslash u$ (true twins).
- The twin relation is an equivalence relation on $V(G)$.

Intermezzo: Neighbourhood diversity

- For a graph G, we say that two vertices $u, v \in V(G)$ are twins if $N(u) \backslash v=N(v) \backslash u$ (true twins).
- The twin relation is an equivalence relation on $V(G)$.
- Neighbourhood diversity of a graph G is the number k of equivalence classes of the twin relation.

Intermezzo: Neighbourhood diversity

- For a graph G, we say that two vertices $u, v \in V(G)$ are twins if $N(u) \backslash v=N(v) \backslash u$ (true twins).
- The twin relation is an equivalence relation on $V(G)$.
- Neighbourhood diversity of a graph G is the number k of equivalence classes of the twin relation.

FO interpretable in edgeless k-coloured graphs:

$$
\begin{gathered}
\psi(x, y) \equiv(\operatorname{Green}(x) \wedge \operatorname{Red}(y)) \vee(\operatorname{Red}(x) \wedge \operatorname{Blue}(y)) \vee(\operatorname{Blue}(x) \wedge \operatorname{Gray}(y)) \\
\vee(\operatorname{Red}(x) \wedge \operatorname{Red}(y)) \vee(\operatorname{Blue}(x) \wedge \operatorname{Blue}(y))
\end{gathered}
$$

Near-k-twin relation

We would like to formally capture the words
"bounded degree away from bounded neighbourhood diversity."

Definition

Two vertices $u, v \in V(G)$ are near- k-twins if $|N(u) \triangle N(v)| \leq k$, i.e. their neighborhoods differ in at most k vertices.

Near-k-twin relation

Definition

Two vertices $u, v \in V(G)$ are near- k-twins if $|N(u) \triangle N(v)| \leq k$, i.e. their neighborhoods differ in at most k vertices.

Example: a complete bipartite graph minus a matching - vertices from the same parts are near-2-twins

Near-k-twin relation

Definition

Two vertices $u, v \in V(G)$ are near- k-twins if $|N(u) \triangle N(v)| \leq k$, i.e. their neighborhoods differ in at most k vertices.

Example: a complete bipartite graph minus a matching - vertices from the same parts are near-2-twins
(Note that for $k=0$ we get false twins this time.)

Near-k-twin relation

Definition

Two vertices $u, v \in V(G)$ are near- k-twins if $|N(u) \triangle N(v)| \leq k$, i.e. their neighborhoods differ in at most k vertices.

Example: a complete bipartite graph minus a matching - vertices from the same parts are near-2-twins
(Note that for $k=0$ we get false twins this time.)
The near- k-twin relation is not always an equivalence!

- $k=1: a \sim c$ and $e \sim g$, this is an equivalence
- $k=2$: $a \sim c \sim e$ but $a \nsim e$, not an equivalence
- $k=4$: one equivalence class

Near-uniform graph classes

Definition

Graph class \mathcal{K} is near-uniform if there exist k_{0} and m such that for every $G \in \mathcal{K}$ there exists $k \leq k_{0}$ s.t. the near- k-twin relation is an equivalence on $V(G)$ with at most m classes.

Near-uniform graph classes

Definition

Graph class \mathcal{K} is near-uniform if there exist k_{0} and m such that for every $G \in \mathcal{K}$ there exists $k \leq k_{0}$ s.t. the near- k-twin relation is an equivalence on $V(G)$ with at most m classes.

Examples:

- graphs of degree at most $d \quad\left(k_{0}=2 d, m=1\right)$
- complements of graphs of degree at most $d \quad\left(k_{0}=2 d, m=1\right)$
- complete bipartite graphs minus a matching ($k_{0}=2, m=2$)

Near-uniform graph classes

Definition

Graph class \mathcal{K} is near-uniform if there exist k_{0} and m such that for every $G \in \mathcal{K}$ there exists $k \leq k_{0}$ s.t. the near- k-twin relation is an equivalence on $V(G)$ with at most m classes.

Examples:

- graphs of degree at most $d \quad\left(k_{0}=2 d, m=1\right)$
- complements of graphs of degree at most $d \quad\left(k_{0}=2 d, m=1\right)$
- complete bipartite graphs minus a matching ($k_{0}=2, m=2$)

Theorem

Let \mathcal{D} be a graph class having an FO interpretation into a class of graphs of bounded degree. Then \mathcal{D} is near-uniform.

Summarizing the algorithm

Input: $H \in \mathcal{D}$ (where \mathcal{D} is $\left(k_{0}, m\right)$-near-uniform), FO formula ϕ
Output: YES iff $H \models \phi$

Summarizing the algorithm

Input: $H \in \mathcal{D}$ (where \mathcal{D} is $\left(k_{0}, m\right)$-near-uniform), FO formula ϕ
Output: Yes iff $H \models \phi$

Algorithm

1. For $k=0, \ldots, k_{0}$ compute the near- k-twin relation ρ_{k} on $V(H)$ and check whether it is an equivalence.
(Guaranteed to succeed for some $0 \leq k \leq k_{0}$)

Summarizing the algorithm

Input: $H \in \mathcal{D}$ (where \mathcal{D} is $\left(k_{0}, m\right)$-near-uniform), FO formula ϕ
Output: YES iff $H \models \phi$

Algorithm

1. For $k=0, \ldots, k_{0}$ compute the near- k-twin relation ρ_{k} on $V(H)$ and check whether it is an equivalence. (Guaranteed to succeed for some $0 \leq k \leq k_{0}$)
2. Using ρ_{k}, compute a graph G of a bounded degree and a small formula $\psi(x, y)$ such that $H=I_{\psi}(G)$.
3. Compute ϕ^{\prime} from ϕ.

Summarizing the algorithm

Input: $H \in \mathcal{D}$ (where \mathcal{D} is $\left(k_{0}, m\right)$-near-uniform), FO formula ϕ
Output: YES iff $H \models \phi$

Algorithm

1. For $k=0, \ldots, k_{0}$ compute the near- k-twin relation ρ_{k} on $V(H)$ and check whether it is an equivalence. (Guaranteed to succeed for some $0 \leq k \leq k_{0}$)
2. Using ρ_{k}, compute a graph G of a bounded degree and a small formula $\psi(x, y)$ such that $H=I_{\psi}(G)$.
3. Compute ϕ^{\prime} from ϕ.
4. Use some known efficient model checking algorithm for graphs of bounded degree to determine whether $G \models \phi^{\prime}$.

Conclusions

1. For non-sparse classes, the complexity landscape of FO model checking is diverse and nontrivial.

Conclusions

1. For non-sparse classes, the complexity landscape of FO model checking is diverse and nontrivial.
2. Can the "Sparsity" theory of Nešetřil and Ossona de Mendez be generalized towards dense classes? (Nowhere-FO-dense?)

Conclusions

1. For non-sparse classes, the complexity landscape of FO model checking is diverse and nontrivial.
2. Can the "Sparsity" theory of Nešetřil and Ossona de Mendez be generalized towards dense classes? (Nowhere-FO-dense?)
3. Besides, some (perhaps easier) particular questions...

- Which (geometric) graph classes other than interval graphs can the Poset FO model checking result be applied to?

Conclusions

1. For non-sparse classes, the complexity landscape of FO model checking is diverse and nontrivial.
2. Can the "Sparsity" theory of Nešetřil and Ossona de Mendez be generalized towards dense classes? (Nowhere-FO-dense?)
3. Besides, some (perhaps easier) particular questions...

- Which (geometric) graph classes other than interval graphs can the Poset FO model checking result be applied to?
- How to structurally characterize graph classes which have an FO interpretation into, say, planar graphs?

Conclusions

1. For non-sparse classes, the complexity landscape of FO model checking is diverse and nontrivial.
2. Can the "Sparsity" theory of Nešetřil and Ossona de Mendez be generalized towards dense classes? (Nowhere-FO-dense?)
3. Besides, some (perhaps easier) particular questions...

- Which (geometric) graph classes other than interval graphs can the Poset FO model checking result be applied to?
- How to structurally characterize graph classes which have an FO interpretation into, say, planar graphs?
- Which graph classes are "robust" under FO interpretations? (cf. near-uniform, bounded shrub-depth, bounded clique-width)

Conclusions

1. For non-sparse classes, the complexity landscape of FO model checking is diverse and nontrivial.
2. Can the "Sparsity" theory of Nešetřil and Ossona de Mendez be generalized towards dense classes? (Nowhere-FO-dense?)
3. Besides, some (perhaps easier) particular questions...

- Which (geometric) graph classes other than interval graphs can the Poset FO model checking result be applied to?
- How to structurally characterize graph classes which have an FO interpretation into, say, planar graphs?
- Which graph classes are "robust" under FO interpretations? (cf. near-uniform, bounded shrub-depth, bounded clique-width)

Thank you for your attention!

