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First-order logic

Definition (FO)

Relational structure - a universe with relation(s), such as a graph;

standard propositional logic + the relational predicate(s);
and quantification (∀,∃) over the elements of the universe.

I φ ≡ ∀x∃y : (x 6= y) ∧ edge(x , y) ?

“There is no isolated vertex.”
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I ψ(x , y) ≡ ∀z : z = x ∨ z = y ∨ edge(x , z) ∨ edge(y , z) ?

“{x , y} is a dominating set.”

x

y



First-order logic

I ψ(x , y) ≡ ∀z : z = x ∨ z = y ∨ edge(x , z) ∨ edge(y , z) ?

“{x , y} is a dominating set.”

x

y



First-order logic

I ψ(x , y) ≡ ∀z : z = x ∨ z = y ∨ edge(x , z) ∨ edge(y , z) ?

“{x , y} is a dominating set.”

x

y



Coloured FO logic

I φ ≡ ∀x , y :
[
(red(x) ∧ red(y))→ ¬edge(x , y)

]
∧[

(blue(x) ∧ blue(y))→ ¬edge(x , y)
]

?

“Given is a proper 2-colouring?”
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FO model checking
Input: Structure S and an FO sentence φ
Question: Does S |= φ hold?
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FO model checking
Input: Structure S and an FO sentence φ
Question: Does S |= φ hold?

I Motivation: a fundamental problem

I Result: PSPACE-complete [Stockmeyer, Vardi] in general

I Any fixed formula φ  trivial O(n|φ|) algorithm.

I Can we do even better (with fixed φ)?

Better: f (φ) · nO(1) (FPT, fixed-parameter tractable).

Answer:

I In general – no, W-hard (cf. indep. or dominating set).

I For restricted graph classes – yes.
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FO on sparse graphs

The idea behind the results on FO model checking of sparse
graphs: FO logic is local.

Theorem (Gaifman locality theorem)

To evaluate a formula φ on G it is enough to:

1. Evaluate finitely many formulas on bounded neighbourhood of
every vertex.

2. Combine the results of the first step together.

Neighbourhood in relational structures – in the Gaifman graph
which has a clique for every tuple of each relation.
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Beyond sparsity?

The story of FO model checking of sparse graphs has been very
successful, indeed. . .

How to continue? Two basic options:

1. Consider other (dense) graph classes, e.g.

I L-interval graphs [Ganian et al., 2013]

2. Consider other kinds of structures like

I posets [2014], lattices, finite groups, ...?
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Definition (INT)

Representation: a set I of intervals on the real line.

The graph: V (G ) = I and E (G ) = {AB : A intersects B}

Definition (L-INT)

INT & all interval lengths are from a fixed (finite) set L ⊆ R+.
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An interesting case study, new techniques (“training muscles”).

Theorem (Ganian, PH, Král’, Obdržálek, Schwartz, Teska;
. ICALP 2013)

FO model checking on L-INT graphs is

1. FPT for any finite set L ⊆ R+,

and

2. W-hard for any ε > 0 and L = (1, 1 + ε).
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Partially ordered sets – Posets

Definition (Poset)

Poset P = (P,≤) is a set P together with relation ≤ which is
reflexive, antisymmetric and transitive.



FO logic on posets

(Posets are typically dense directed graphs.)

I φ ≡ ∃x∀y : (x ≥ y)

“The poset has a maximum element.”
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Poset width

Definition

Width of a poset = the size of its largest antichain.



FO model checking on posets

Poset FO model checking
Input: Poset P and an FO sentence φ
Question: Does P |= φ hold?

Without restrictions – PSPACE complete.

Various restricted instances;

[Bova, Ganian and Szeider, 2014]

I Existential FO logic (∃-FO), several parametrizations
considered;

I “all” variant are NP- or W-hard, except

I the (2014) main result – about posets of bounded width.
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Poset ∃-FO model checking
Input: Poset P of width w , and an ∃-FO sentence φ
Question: Does P |= φ hold?

∃-FO – no ∀ quantifiers allowed

Theorem (Bova, Ganian, Szeider; CSL-LICS 2014)

Poset ∃-FO model checking solvable in time f (φ) · ng(w)

Theorem (Gajarský, PH, Obdržálek and Ordyniak; ISAAC 2014)

Poset ∃-FO model checking solvable in time f (φ,w) · n2
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Towards full FO on posets

Poset FO model checking
Input: Poset P of width w , and an FO sentence φ
Question: Does P |= φ hold?

Question

Is it possible to solve full FO model checking problem in time
f (φ) · ng(w) or f (φ,w) · nO(1)?

Theorem (Gajarský, PH, Lokshtanov, Obdržálek, Ordyniak,
. Ramanujan, Saurabh; FOCS 2015)

(Full) FO model checking on posets of width at most w is solvable
in time f (φ,w) · n2.
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Towards full FO on posets

Problems – we cannot use Gaifman locality theorem:

1. In a poset everything can be in a very small neighborhood of
one vertex (e.g. maximum, minimum, ...).

2. On the other hand, Hasse diagram can be local, but

I we lose too much information (transit. clos. not FO definable),

I regarding stronger MSO, we have that even posets of width 2
can have Hasse diagrams of unbounded clique-width.

Tools we use:

I Hintikka games

I New version of locality
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Hintikka games

Played on the structure and formula by two players:

I Existential player (Verifier) – plays ∨ and ∃

I Universal player (Falsifier) – plays ∧ and ∀

Theorem (folklore)

Given a structure S and a formula φ, the existential player has a
winning strategy in the game G(S, φ) if, and only if, S |= φ.
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Main idea

For a poset P and a formula φ, we compute the winner of Hintikka
game G(P, φ).

In fact, we show that it is enough to compute the winner on a
subposet of constant size.

For a poset P and a formula φ construct a digraph D such that:

1. V (D) is the set of elements of P

2. every vertex of D has a bounded out-degree

3. to determine whether P |= φ we do

I take constant radius balls in D,
I look at subposet of P induced by them, and
I check whether φ holds on these subposets.

Graph D is built inductively by the structure of φ. . .
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The construction of D0

(bounded-width) P → D0 → D1 → · · · → Ds
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Iterating the construction

In Ds−1 (think of D0) we have:

I finitely many chains

I finitely many colours

I finitely many types of arrows (up, down, min, max)

⇒ bounded out-degree

⇒ k-outneighbourhoods have bounded size

⇒ there are finitely many non-isomorphic k-outneighbourhoods
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Back to the problem

Recall. . .

Theorem

The existential player has a winning strategy in the Hintikka game
G(P, φ) if, and only if, P |= φ.

Using Ds , we define local Hintikka game Gr (P, φ) and prove the
following claim:
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The existential player has a winning strategy in the Hintikka game
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Finally, the local game is played on posets of bounded size and
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Revisiting interval graphs

intervals

interval ends

vertex representatives

This can be generalized to bounded-nesting interval graphs:

Theorem

FO model checking on interval graphs, such that no w intervals
form a “nesting chain”, is solvable in time f (φ,w) · n2.



Another approach – Interpretations

For a graph G and an FO formula ψ(x , y), define a graph H:

E (H) =
{

uv : G |= ψ(u, v)
}

I ψ(x , y) ≡ ¬edge(x , y)

“The complement of a graph.”
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( edge(x , y) ψ(x , y) )

H ∈M

Then I is called a simple FO interpretation between K, M.

Lemma
G |= φ iff H |= φI
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I ψ(x , y) ≡ x 6= y ∧
[
edge(x , y)∨ ∃z(edge(x , z)∧ edge(z , y))

]

“The square of a graph.”
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Wait, isn’t the following trivial now?

I Assume a nowhere dense graph class M, and

I an FO interpretation I : K →M, given by ψ(x , y).

I Is now FO model checking on K tractable, too?
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So, what is the difficulty with FO interpretations?

I Deciding whether H |= φI is “easy” (e.g., nowhere dense), but

I how can we find suitable H, such that H I ∼= G ?

Theorem (Motwani and Sudan, 1994)

The problem to compute a “square root” of a graph is NP-hard.
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FO interpretation in classes of bounded degree

Theorem (Gajarský, PH, Lokshtanov, Obdržálek, Ramanujan;
. LICS 2016)

Let D be a graph class having an FO interpretation into a class of
graphs of bounded degree. Then there exist an FPT algorithm for
FO model checking on D.

In fact, the following is proved:

Theorem

Let D be a graph class having an FO interpretation I into a class
of graphs of bounded degree. Then there exists an FO
interpretation J such that, for given G ∈ D, we can efficiently
compute H of bounded degree such that HJ ∼= G .

Note that one cannot require J = I . . .
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Intermezzo: Neighbourhood diversity

I For a graph G , we say that two vertices u, v ∈ V (G ) are twins
if N(u)\v = N(v)\u (true twins).

I The twin relation is an equivalence relation on V (G ).

I Neighbourhood diversity of a graph G is the number k of
equivalence classes of the twin relation.

FO interpretable in edgeless k-coloured graphs:

ψ(x , y) ≡ (Green(x)∧Red(y))∨(Red(x)∧Blue(y))∨(Blue(x)∧Gray(y))

∨ (Red(x) ∧ Red(y)) ∨ (Blue(x) ∧ Blue(y))
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Near-k-twin relation

We would like to formally capture the words

“bounded degree away from bounded neighbourhood diversity.”

Definition

Two vertices u, v ∈ V (G ) are near-k-twins if |N(u)4N(v)| ≤ k ,
i.e. their neighborhoods differ in at most k vertices.
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Two vertices u, v ∈ V (G ) are near-k-twins if |N(u)4N(v)| ≤ k ,
i.e. their neighborhoods differ in at most k vertices.

Example: a complete bipartite graph minus a matching – vertices
from the same parts are near-2-twins

(Note that for k = 0 we get false twins this time.)

The near-k-twin relation is not always an equivalence!

a b c d e f g

I k = 1: a ∼ c and e ∼ g , this is an equivalence

I k = 2: a ∼ c ∼ e but a 6∼ e, not an equivalence

I k = 4: one equivalence class
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Near-uniform graph classes

Definition

Graph class K is near-uniform if there exist k0 and m such that for
every G ∈ K there exists k ≤ k0 s.t. the near-k-twin relation is an
equivalence on V (G ) with at most m classes.

Examples:

I graphs of degree at most d (k0 = 2d ,m = 1)

I complements of graphs of degree at most d (k0 = 2d ,m = 1)

I complete bipartite graphs minus a matching (k0 = 2,m = 2)

Theorem

Let D be a graph class having an FO interpretation into a class of
graphs of bounded degree. Then D is near-uniform.
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Summarizing the algorithm

Input: H ∈ D (where D is (k0,m)-near-uniform), FO formula φ
Output: yes iff H |= φ

Algorithm

1. For k = 0, . . . , k0 compute the near-k-twin relation ρk on
V (H) and check whether it is an equivalence.
(Guaranteed to succeed for some 0 ≤ k ≤ k0)

2. Using ρk , compute a graph G of a bounded degree and a
small formula ψ(x , y) such that H = Iψ(G ).

3. Compute φ′ from φ .

4. Use some known efficient model checking algorithm for graphs
of bounded degree to determine whether G |= φ′.
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Conclusions

1. For non-sparse classes, the complexity landscape of FO model
checking is diverse and nontrivial.

2. Can the “Sparsity” theory of Nešeťril and Ossona de Mendez
be generalized towards dense classes? (Nowhere-FO-dense?)

3. Besides, some (perhaps easier) particular questions. . .

I Which (geometric) graph classes other than interval graphs
can the Poset FO model checking result be applied to?

I How to structurally characterize graph classes which have an
FO interpretation into, say, planar graphs?

I Which graph classes are “robust” under FO interpretations?
(cf. near-uniform, bounded shrub-depth, bounded clique-width)
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