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Abstract

We prove that a cubic nonprojective graph cannot have a finite planar emu-
lator, unless it belongs to one of two very special cases (in which the answer
is open). This shows that Fellows’ planar emulator conjecture, disproved for
general graphs by Rieck and Yamashita in 2008, is nearly true on cubic graphs,
and might very well be true there definitely.
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1. Introduction

A graph G has a finite planar emulator H if H is a planar graph and there
is a graph homomorphism ϕ : V (H) → V (G) where ϕ is locally surjective, i.e.
for every vertex v ∈ V (H), the neighbours of v in H are mapped surjectively
onto the neighbours of ϕ(v) in G. We also say that such a G is planar-emulable.
If we insist on ϕ being locally bijective, we get H a planar cover.

The concept of planar emulators was proposed in 1985 by M. Fellows [6], and
it tightly relates (although of independent origin) to the better known planar
cover conjecture of Negami [11]. Fellows also raised the main question: What is
the class of graphs with finite planar emulators? Soon later he conjectured that
the class of planar-emulable graphs coincides with the class of graphs with finite
planar covers (conjectured to be the class of projective graphs by Negami [11]—
still open nowadays). This was later restated as follows:

Conjecture 1 (M. Fellows, falsified in 2008). A connected graph has a fi-
nite planar emulator if and only if it embeds in the projective plane.

For two decades, the research focus was nearly exclusively on Negami’s con-
jecture and no substantial new results on planar emulators had been presented
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until 2008, when emulators for two nonprojective graphs were given by Rieck
and Yamashita [13], effectively disproving Conjecture 1.

Planar-emulable nonprojective graphs. Following Rieck and Yamashita, Chi-
mani et al [2] constructed finite planar emulators of all the minor minimal
obstructions for the projective plane except those which have been shown non-
planar-emulable already by Fellows (the K3,5 and “two disjoint k-graphs” cases,
Section 2), and except K4,4 − e. The graph K4,4 − e is thus the only forbidden
minor for the projective plane where the existence of a finite planar emulator
remains open. Even though we do not have a definite replacement for falsified
Conjecture 1 yet, the results obtained so far [5, 2] suggest that, vaguely speak-
ing, up to some trivial operations there is only a finite family of nonprojective
planar-emulable graphs. A result like that would nicely correspond with the
current state-of-art [10] of Negami’s conjecture.

The aforementioned trivial operation(s) is the following one: A planar ex-
pansion of a graph G is a graph which results from G by repeatedly (i) adding
a planar graph P sharing one vertex with G, or by replacing (ii) an edge v1v2
or (iii) a cubic vertex with neighbours v1, v2, v3 by a connected planar graph P ,
such that P shares with G precisely the vertices v1, v2 (v1, v2, v3, respectively)
which lie on the outer face of P .

While characterization of planar-emulable graphs has proven itself to be
difficult in general, significant progress can be made in a special case. Negami’s
conjecture has been confirmed in the case of cubic graphs in [12], and the same
readily follows from [10]. Here we prove:

Theorem 2. If a cubic nonprojective graph H has a finite planar emulator,
then H is a planar expansion of one of two minimal cubic nonprojective graphs
shown in Figure 1.

A computerized search for possible counterexamples to Conjecture 1, carried
out so far [5], shows that a nonprojective planar-emulable graph G cannot be
cubic, unless G contains a minor isomorphic to E2, K4,5 − 4K2, or a member of
the so called “K7 − C4 family” (see [2] for the terminology). Our new “hand-
written” approach, Theorem 2, dismisses the former two possibilities completely
and strongly restricts the latter one.

2. Preliminaries

We consider standard terms of graph theory, and deal only with simple
finite graphs. A graph of all degrees equal 3 is called cubic. The following
definition turns out very useful: A graph G is said to contain two disjoint k-
graphs if there exist two vertex-disjoint subgraphs J1, J2 ⊆ G such that, for
i = 1, 2, the graph Ji is isomorphic to a subdivision of K4 or K2,3, the subgraph
G−V (Ji) is connected and adjacent to Ji, and contracting in G all the vertices
of V (G) \ V (Ji) into one results in a nonplanar graph.

We use some folklore known facts about planar-emulable graphs (also [2]):
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G1 G2

Figure 1: Two (out of six in total) cubic irreducible obstructions for the projective plane [7].
Although G1 and G2 result from splitting nonprojective graphs for which we have finite planar
emulators [2] (namely “relatives” of K7 −C4), it is still open whether G1 and G2 themselves
are planar-emulable.

Proposition 3 (Fellows, unpublished). Let G be a connected graph.

a) The class of planar-emulable graphs is closed under taking minors.

b) If G is projective and connected, then G has a finite planar emulator in form
of its finite planar cover.

c) If G contains two disjoint k-graphs or a K3,5-minor, then G is not planar-
emulable.

d) G is planar-emulable if, and only if, so is any planar expansion of G.

Using Glover and Huneke [7], one obtains the following starting point for
our proof of Theorem 2.

Proposition 4. Let G1, G2 be the graphs from Figure 1. If a cubic nonprojec-
tive graph H has a finite planar emulator, then H contains a subgraph G′ ⊆ H
being a subdivision of G ∈ {G1, G2}.

Proof. [7] characterized the cubic graphs with projective embedding by giving
a set I of six cubic graphs such that: if H is a cubic graph that does not embed
in the projective plane, then H contains a graph G ∈ I as a topological minor.

Let us point out that four out of the six graphs in I contain two disjoint
k-graphs, and so only the remaining two—G1 ∈ I and G2 ∈ I of Figure 1,
can potentially be planar-emulable. Hence the cubic graph H contains one of
G1, G2 as a topological minor. In other words, there is a subgraph G′ ⊆ H
being a subdivision of cubic G ∈ {G1, G2}. �

3. Planar and non-planar expansions

The purpose of this section is to classify and analyze the difference H −G′

where G′, H are from Proposition 4. In order to do so, we need to introduce
some basic technical concepts.

We call a bridge of G′ in H any connected component B of H − V (G′)
together will all the incident edges. In a degenerate case, B might consist
just of one edge from E(H) \ E(G′) with both ends in G′. We would like, for
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Figure 2: Illustration for Lemma 5. The trivial bridge on the left takes over the role of a
branch vertex of G in the subdivision, resulting in existence of a nontrivial bridge. The other
picture shows when the transitive closure of declared attachment becomes important.

simplicity, to speak about positions of bridges with respect to the underlying
cubic graph G: Such a bridge B connects to vertices u of G′ which subdivide
edges f of G—this is due to the cubic degree bound, and we (with neglectable
abuse of terminology) say that B attaches to this edge f in G itself.

A bridge B is nontrivial if B attaches to some (at least) two nonadjacent
edges of G, and B is trivial otherwise. For a trivial bridge B; either B attaches
to only one edge f in G and we say exclusively to f , or all the edges to which B
attaches in G have a vertex w in common (since G contains no triangles), and
we say that B attaches to this w.

We divide the rest of the analysis into two main cases; that either some
bridge of G′ in H is nontrivial or all such bridges are trivial. We moreover
assume that G′ ⊆ H being a subdivision of G is chosen in Proposition 4 such
that it has a nontrivial bridge if possible.

In the “all-trivial” case one more technical condition has to be observed:
Suppose B1, B2 are bridges such that B1 attaches to w and B2 attaches to an
edge f incident to w in G (perhaps B2 exclusively to f). On the path Pf which
replaces (subdivides) f in G′, suppose that B2 connects (i.e., is adjacent) to some
vertex which is closer to w on Pf than some other vertex which B1 connects
to. Then we declare that B2 attaches to w, too, and we make a transitive
closure of this declaration on whole G. This is well defined with respect to our
aforementioned assumption (that no G′ ⊆ H has a nontrivial bridge) because
of the following:

Lemma 5. Let G′ ⊆ H be a subdivision of G where G,H are cubic graphs.
Suppose that all bridges of G′ in H are trivial, and that a bridge B0 is declared
to attach to both w1 and w2, where w1w2 ∈ E(G). Then there is G′′ ⊆ H which
is isomorphic to a subdivision of G, too, and a nontrivial bridge of G′′ in H
exists.

Proof. We refer to an informal sketch in Figure 2. Let Pf be the path repre-
senting f = w1w2 in G′ ⊆ H. In the described situation, we call B0 a conflicting
bridge of G′ and assume, by minimality, that H −B0 has no conflicting bridge
of G′. By this assumption and the definition of declared attachment there exist
vertices u1, u2 ∈ V (Pf ) such that the following holds for i = 1, 2:
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Figure 3: Illustration for Lemma 6; three collections of trivial bridges that attach to a cubic
vertex u (with neighbours v1, v2, v3 in G). The first collection gives a planar expansion, while
the other two informally outline the “minimal” non-planar-expansion cases.

a) either ui = wi and B0 attaches to wi in the primary sense, i.e., that B0

attaches to at least two of the edges incident to wi, or

b) there is another bridge Bi connecting to ui such that Bi attaches, or is
declared to attach, to wi in G, and B0 connects the two components of
Pf − ui together.

Notice in b) that u1 6= u2 since H is cubic, and that B1 6= B2 and u1 is closer
to w1 on Pf than u2 since H −B0 has no conflicting bridge.

Let f ′
i = wiw

′
i and f ′′

i = wiw
′′
i be the edges of G distinct from f and Pf ′

i
, Pf ′′

i

be the corresponding paths in G′. Assume b) has happened for i = 1, and let A1

be the union of all the bridges except B0 which attach to f and which, moreover,
connect to a vertex on Pf between w1 and u1 (these include B1). Each bridge in
A1 is declared to attach to w1 by the definition. Since H−B0 has no conflicting
bridge, no vertex of A1 is adjacent to a vertex of Pf closer to w2 than u2. We
claim that X1 = A1 ∪ Pf ∪ Pf ′

1
∪ Pf ′′

1
contains internally disjoint paths from u1

to each of w′
1 and w′′

1 . Indeed, a cutvertex between u1 and w′
1, w

′′
1 in X1 would

certify that B1 is not declared to attach to w1, a contradiction.
The same about internally disjoint paths can be claimed for u2 and w′

2, w
′′
2 .

We can now define G′′ ⊆ H being isomorphic to a subdivision of G, such
that G′′ coincides with G′ everywhere on V (G) except that the branch vertices
w1, w2 ∈ V (G) are replaced with aforementioned u1, u2. Now, B0 makes a
nontrivial bridge of G′′. �

Lemma 6. Let G′ ⊆ H be a subdivision of G where G is a 2-connected cubic
nonplanar graph which does not contain two disjoint k-graphs. Suppose that all
bridges of G′ in H are trivial, and none of them is conflicting (cf. Lemma 5).
Then H does not contain two disjoint k-graphs if, and only if, H is a planar
expansion of G.

Proof. Assume H is a planar expansion of G, and yet H contains two disjoint
k-graphs. Let J1, J2 ⊆ H be these two “k-graphs” by the definition, and denote
by Li, i = 1, 2, the nonplanar graphs obtained by contracting all vertices of
V (H)\V (Ji) into one. Let L′

i be the corresponding minors of G′. Then each L′
i

is nonplanar as well since Li is its planar expansion. Consequently, Ji or other
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Figure 4: Another picture of the graph G1 from Proposition 4.

subdivision of K4 or K2,3 is contained in G′, and hence G′ and G contain two
disjoint k-graphs, a contradiction.

In the converse direction, assume that H is not a planar expansion of G. Let
Bv be the union of all trivial bridges of G′ in H that attach or are declared to
attach to a vertex v ∈ V (G). Let Bf be the union of all trivial bridges of G′ in
H that attach exclusively to an edge f ∈ E(G) and are not declared to attach
to either of its ends. Since H is not a planar expansion of G and no bridge is
conflicting, for at least one x ∈ V (G)∪E(G) the subgraph Hx = G′ ∪Bx is not
a planar expansion of G, too.

We start with the more interesting case x = u ∈ V (G). See an illustration
in Figure 3. Let G′

u ⊆ G′ denote the corresponding subdivision of G−u. Let C
be a 3-edge-cut in Hu which separates G′

u on one side and B′
u ⊃ V (Bu)∪{u} on

the other side. Then, by the definition, our graph Hu is not a planar expansion
of G′ iff B′

u is not planar with all the three connections to C on the outer face.
The latter is characterized by containment of a K2,3-subdivision J1 ⊆ B′

u with
the size-three part incident to C. Moreover, since G is cubic nonplanar, there
exists a K3,3-subdivision J0 ⊆ G′, and hence a K2,3-subdivision J2 ⊆ G′

u. Then
J1, J2 certify that Hu (and so H as well) contains two disjoint k-graphs.

For the case of x = f ∈ E(G) we proceed in a similar way with the change
that C is a 2-edge cut and B′

u is not planar with both connections to C on the
outer face. This even stronger condition again implies the existence of K2,3-
subdivisions J1 ⊆ B′

u and J2 ⊆ G′
u, and we finish in the same way. �

4. Analysis of nontrivial bridges

In view of Lemma 6, it remains to investigate what happens if G′ from Propo-
sition 4 has a nontrivial bridge in H. Originally we have done this case check
on a computer, but here we present a relatively easy handwritten approach. We
think it is worth the investigation since it discovers some beautiful symmetries
of the graphs G1, G2.
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Figure 5: Illustrating examples for the proof of Lemma 7: in each of the cases we see in bold
one of the “magic” 5-cycles of G1 forming a subdivision of K2,3 with attached dashed edge f .
The types of these cases are I, II, I from left to right.

Lemma 7. Let G′ ⊆ H be a subdivision of G1 (from Proposition 4) where H
is a cubic graph. If there exists a nontrivial bridge of G′ in H, then H contains
two disjoint k-graphs.

Proof. Without loss of generality we may assume that H results from G′

by adding a single nontrivial bridge, which is an edge f attached to edges
e1, e2 ∈ E(G1). To easily analyse the possible cases by hand, we use a “nice”
picture of the graph G1 in Figure 4. Note that the picture consists of 9 rim edges
(incident to the outer face) and 9 spoke edges. Another useful observation is
that each of the 9 incident pairs of spoke edges defines, together with three rim
edges, a magic 5-cycle in G1, such that its complement is a 7-vertex subdivision
of K2,3. Our aim is to show that each possible edge f attaches to two edges
incident with some of the magic 5-cycles in a way giving us another 7-vertex
subdivision of K2,3. Those two together then show that H contains two disjoint
k-graphs.

In the rest of this proof we analyze all possible attachments of the nontrivial
bridge f to edges e1, e2 ∈ E(G1). First, with respect to any one of the magic
5-cycles C, there exist essentially two possibilities (types) which always lead to
a desired subdivision of K2,3:

I. e1 ∈ E(C) and e2 6∈ E(C) is incident to one of the three remaining vertices
of C, or

II. e1, e2 6∈ E(C) are both incident to two nonadjacent vertices of C.

As for the position of f within G1, there are altogether at most 10 possibilities,
up to symmetry (see Figures 4 and 5). We group them as follows.

a) Both e1, e2 are rim edges, which includes three cases having 1, 2, and 3 other
rim edges between e1, e2 on the outer cycle. One can easily check from the
picture that the first two are of type I and the third is of type II.

b) e1 is a spoke edge, unique up to symmetry, and e2 is a rim edge. This
includes four cases based on the distance 1, 2, 3, and 4 of e2 from the rim
vertex of e1. The first two cases are (not exclusively) of type II while the
other are both of type I.
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Figure 6: Another picture of the graph G2 from Proposition 4.

c) Both e1, e2 are spoke edges, which makes three cases based on the distance
1, 2, and 4 of the rim vertices of e1, e2 on the rim cycle. While the first two
cases are of type I, the third is of type II.

In all the nonsymmetric cases we have thus found that H contains two disjoint
k-graphs. �

Lemma 8. Let G′ ⊆ H be a subdivision of G2 (Proposition 4) where H is a
cubic graph. If there exists a nontrivial bridge of G′ in H, then H contains two
disjoint k-graphs or a K3,5-minor.

Proof. We start as in Lemma 7, and give another “nice” picture of the graph
G2 in Figure 6. Note that the picture consists of 8 rim edges (incident to the
outer face), 8 spoke edges and 2 bar edges in the middle. Again, there are 8
magic 5-cycles, each formed by a pair of the spoke edges with a common bar
edge and corresponding two of the rim edges. The complement of each magic
cycle contains a 7-vertex subdivision of K2,3, too. We hence, whenever possible,
aim to use the same tools as in the proof of Lemma 7.

For the position of the bridge f within G2 there exist altogether at most 12
possibilities, up to symmetry. We group them as follows.

a) Both e1, e2 are rim edges, which includes three cases having 1, 2, and 3 other
rim edges between e1, e2 on the outer cycle.

b) e1 is a spoke edge, unique up to symmetry, and e2 is a rim edge. This includes
three cases based on the distance 1, 2, and 3 of e2 from the rim vertex of e1.

c) Both e1, e2 are spoke edges, making three distinct cases; where in one of
them e1, e2 have a common incident bar edge.

d) e1 is a bar edge; there exist three such cases having e2 as the other bar edge,
e2 as a rim edge, and e2 as a spoke edge not incident to e1.

Out of these 12 cases, six (two from each) of a), b), d) and all three of c) are
solved exactly as in Lemma 7: these cases are each of type I or type II with
respect to some magic 5-cycle in G2, finally giving two disjoint k-graphs in H.
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Figure 7: Illustrating examples for the proof of Lemma 8: we see in bold one of the “magic”
5-cycles of G2 forming a subdivision of K2,3 (left of type I, right of type II) with attached
dashed edge f .

Figure 8: More examples for the proof of Lemma 8: in each of the cases there is an independent
set of 5 hollow vertices, such that a K3,5-minor (with the large part on these hollow vertices)
results by contracting the three paths in bold.

Instead of boring repetition of the details we just give a short illustrating picture
in Figure 7.

In the three remaining cases we apply the following easy observation: in any
14-vertex triangle-free cubic graph, if there is an independent set of size 5 such
that its complement consists of three induced paths of length 2, no one of these
paths being part of a 4-cycle, then contracting the three paths makes a minor
isomorphic to K3,5. An application of this claim to our three cases in question
is depicted in Figure 8. �

Proof (of Theorem 2). Firstly, H cannot contain two disjoint k-graphs or
a K3,5-minor by Proposition 3 c). Hence, if G′ ⊆ H being a subdivision of
G ∈ {G1, G2} (cf. Proposition 4) could be chosen such that a nontrivial bridge
of G′ exists in H, then there would be a contradiction. Consequently, all bridges
of G′ in H are trivial and, by Lemma 5, they are not conflicting. Then H is a
planar expansion of G by Lemma 6. �

5. Conclusions

We identified two graphs G1, G2 (Figure 1), for which existence of finite
planar emulator now becomes extremely interesting. We would like to point out
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that similarity of these two graphs, seen also in the proofs of Lemmas 7 and 8,
suggests that if one has a finite planar emulator, so does the other one.

We suggest that the nicely symmetric structure of the “magic” cycles in
each of G1, G2, shown in Section 4 could be a strong starting point in a possible
proof that G1, G2 do not have finite planar emulators. We continue an intensive
research in this direction. Overall, we believe that providing an answer for any
of these two graphs G1, G2 would bring a better insight to the problem of planar
emulations not only for the cubic case, but also in general.
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