On an odd case of an XP algorithm

for graphs of bounded clique-width

NeFAC
@9\& Uy 737

S

O

4; N

% £
14 \ASS

Petr Hlinény

Faculty of Informatics
Masaryk University, Brno, CZ

Based on joint work with
R. Ganian and J. Obdrzalek,
orig. presented at STACS 2011.




1 Introduction: What is it about?

Dynamic programming

Recursive computation of the whole solution from subproblems,
such that subsolutions are stored once and then reused. . .

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



1 Introduction: What is it about?

Dynamic programming

Recursive computation of the whole solution from subproblems,
such that subsolutions are stored once and then reused. ..

“Store and reuse” can be handled in various ways

— we are dealing with the static approach (tabulation).

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



1 Introduction: What is it about?

Dynamic programming

Recursive computation of the whole solution from subproblems,
such that subsolutions are stored once and then reused. ..

“Store and reuse” can be handled in various ways

— we are dealing with the static approach (tabulation).

Using tables

Determine, which subproblems are significant!

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



1 Introduction: What is it about?

Dynamic programming
Recursive computation of the whole solution from subproblems,
such that subsolutions are stored once and then reused. . .
“Store and reuse” can be handled in various ways

— we are dealing with the static approach (tabulation).

Using tables
Determine, which subproblems are significant!

— in the sense of giving a partition over all subproblems into
“same-behavior” classes (guar. to give the same outcome).

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



1 Introduction: What is it about?

Dynamic programming

Recursive computation of the whole solution from subproblems,
such that subsolutions are stored once and then reused. ..

“Store and reuse” can be handled in various ways

— we are dealing with the static approach (tabulation).

Using tables
Determine, which subproblems are significant!
— in the sense of giving a partition over all subproblems into
“same-behavior” classes (guar. to give the same outcome).
The big hidden problem

Assuming such reasonably described canonical classes;
(say, of annotated subproblems)

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



1 Introduction: What is it about?

Dynamic programming

Recursive computation of the whole solution from subproblems,
such that subsolutions are stored once and then reused. ..

“Store and reuse” can be handled in various ways

— we are dealing with the static approach (tabulation).

Using tables
Determine, which subproblems are significant!
— in the sense of giving a partition over all subproblems into
“same-behavior” classes (guar. to give the same outcome).
The big hidden problem

Assuming such reasonably described canonical classes;
(say, of annotated subproblems)

can one always process those throughout the recursion?

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



]—More Formally. ..

Inspiration — classical Myhill-Nerode

Finite automaton states <—-
right congruence classes on words (of a regular language).

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



More Formally. ..

Inspiration — classical Myhill-Nerode
Finite automaton states <—-
right congruence classes on words (of a regular language).
Abstract setting

e Recursive decomposition of the input, along a suit. join & oper.,

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



More Formally. ..

Inspiration — classical Myhill-Nerode
Finite automaton states <=
right congruence classes on words (of a regular language).
Abstract setting
e Recursive decomposition of the input, along a suit. join & oper.,

e hence a universe of annot. subproblems U/ = {(G, ), ...},
(say, ¢ represents a solution fragment)

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



More Formally. ..

Inspiration — classical Myhill-Nerode
Finite automaton states <=
right congruence classes on words (of a regular language).
Abstract setting
e Recursive decomposition of the input, along a suit. join & oper.,

e hence a universe of annot. subproblems U/ = {(G, ), ...},
(say, ¢ represents a solution fragment)

e and a property P — feasibility of a (sub)solution.

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



More Formally. ..

Inspiration — classical Myhill-Nerode
Finite automaton states <—-
right congruence classes on words (of a regular language).

Abstract setting
e Recursive decomposition of the input, along a suit. join & oper.,

e hence a universe of annot. subproblems U/ = {(G, ), ...},
(say, ¢ represents a solution fragment)

e and a property P — feasibility of a (sub)solution.

Canonical equivalence; metadefinition Abrahamson—Fellows
The canonical equivalence of P on the universe U is defined:
(G1, 1) =p (Ga,p2) if and only if, for all (H, ),
(G1,01)0(H, ) EP <= (G2, 02)R(H,0) FP.

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



]—Canonical Classes

Definition — cf. the canonical equivalence of P

A partition X of the univ. U is canonical if all X € X honor ~p.

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



]—Canonical Classes

Definition — cf. the canonical equivalence of P
A partition X of the univ. U is canonical if all X € X honor ~p.
— canonical classes X € X,

— these must refine the equiv. classes of ~p, but may be finer.

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



Canonical Classes

Definition — cf. the canonical equivalence of P
A partition X of the univ. U is canonical if all X € X honor ~p.
— canonical classes X € X,

— these must refine the equiv. classes of ~p, but may be finer.

Processing canonical classes

— By the definition, all we need to know about a solution of an
annot. subproblem, is the class X € X it belongs to!

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



Canonical Classes

Definition — cf. the canonical equivalence of P
A partition X of the univ. U is canonical if all X € X honor ~p.
— canonical classes X € X,

— these must refine the equiv. classes of ~p, but may be finer.

Processing canonical classes

— By the definition, all we need to know about a solution of an
annot. subproblem, is the class X € X it belongs to!

— Hence “store and reuse” representat. solutions of each X € X.
— immediate tabulation... Easy as that?

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



Canonical Classes

Definition — cf. the canonical equivalence of P
A partition X of the univ. U is canonical if all X € X honor ~p.
— canonical classes X € X,

— these must refine the equiv. classes of ~p, but may be finer.

Processing canonical classes

— By the definition, all we need to know about a solution of an
annot. subproblem, is the class X € X it belongs to!

— Hence “store and reuse” representat. solutions of each X € X.
— immediate tabulation... Easy as that?

Consistency with ® ? — stronger than just “honoring ~p"

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



Canonical Classes

Definition — cf. the canonical equivalence of P
A partition X of the univ. U is canonical if all X € X honor ~p.
— canonical classes X € X,

— these must refine the equiv. classes of ~p, but may be finer.

Processing canonical classes

— By the definition, all we need to know about a solution of an
annot. subproblem, is the class X € X it belongs to!

— Hence “store and reuse” representat. solutions of each X € X.
— immediate tabulation... Easy as that?

Consistency with ® ? — stronger than just “honoring ~p"

A canonical partition X is consistent with & if

— for all (GI;SO1> € Xl, (GQ,(,OQ) S XQ;
the part of (G1, 1) ® (Ga, ¢2) depends only on X, Xo.

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



]— Finite Index ~p

e As in Myhill-Nerode, there is a finite automaton which

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



Finite Index ~p

e As in Myhill-Nerode, there is a finite automaton which
— can be minimized, giving straight the equiv. classes of ~p,

— automatically consistent with ® !

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



Finite Index ~p

e As in Myhill-Nerode, there is a finite automaton which
— can be minimized, giving straight the equiv. classes of ~p,

— automatically consistent with ® !

e All this “hidden” in automaton formalism and O-notation, FPT.

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



Finite Index ~p

e As in Myhill-Nerode, there is a finite automaton which
— can be minimized, giving straight the equiv. classes of ~p,

— automatically consistent with ® !
e All this “hidden” in automaton formalism and O-notation, FPT.
Infinite Index ~p

e Infinite table size? No, just growing with the input size. ..

Hopefully polynomial table size — hoping for an XP algorithm.

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



Finite Index ~p

e As in Myhill-Nerode, there is a finite automaton which
— can be minimized, giving straight the equiv. classes of ~p,

— automatically consistent with ® !

e All this “hidden” in automaton formalism and O-notation, FPT.

Infinite Index ~p

e Infinite table size? No, just growing with the input size. ..

Hopefully polynomial table size — hoping for an XP algorithm.

e Table update (wrt. ®) has to be done in polytime. ..

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



Finite Index ~p

e As in Myhill-Nerode, there is a finite automaton which
— can be minimized, giving straight the equiv. classes of ~p,

— automatically consistent with ® !

e All this “hidden” in automaton formalism and O-notation, FPT.

Infinite Index ~p

e Infinite table size? No, just growing with the input size. ..

Hopefully polynomial table size — hoping for an XP algorithm.
e Table update (wrt. ®) has to be done in polytime. ..

e But what if A’ is inconsistent with @ (i.e., cannot do table update),
and we have no “better” canonical partition?

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



"2 The Odd Case: MinLOB

Minimum leaf outbranching in a digraph D:

Find an outbranching (directed spanning out-tree) in D,
minimizing the number of leaves.

P. Hlinény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



2 The Odd Case: MinLOB

Minimum leaf outbranching in a digraph D:

Find an outbranching (directed spanning out-tree) in D,
minimizing the number of leaves.

— Contains directed Hamiltonian path. .. (= one leaf)

P. Hlinény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



2 The Odd Case: MinLOB

Minimum leaf outbranching in a digraph D:

Find an outbranching (directed spanning out-tree) in D,
minimizing the number of leaves.

— Contains directed Hamiltonian path. .. (= one leaf)

Short overview of MinLOB  (not so much related to our talk)

e Polynomial on DAGs,

P. Hlinény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



2 The Odd Case: MinLOB

Minimum leaf outbranching in a digraph D:
Find an outbranching (directed spanning out-tree) in D,
minimizing the number of leaves.

— Contains directed Hamiltonian path. .. (= one leaf)

Short overview of MinLOB  (not so much related to our talk)
e Polynomial on DAGs,
e but NP-hard already for DFVS number 1.

P. Hlinény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



2 The Odd Case: MinLOB

Minimum leaf outbranching in a digraph D:
Find an outbranching (directed spanning out-tree) in D,
minimizing the number of leaves.

— Contains directed Hamiltonian path. .. (= one leaf)

Short overview of MinLOB  (not so much related to our talk)
e Polynomial on DAGs,
e but NP-hard already for DFVS number 1.

e Seems to resist nearly all useful parametrizations
(except by clique-width / rank-width).

P. Hlinény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



2 The Odd Case: MinLOB

Minimum leaf outbranching in a digraph D:
Find an outbranching (directed spanning out-tree) in D,
minimizing the number of leaves.

— Contains directed Hamiltonian path. .. (= one leaf)

Short overview of MinLOB  (not so much related to our talk)
e Polynomial on DAGs,
e but NP-hard already for DFVS number 1.
e Seems to resist nearly all useful parametrizations
(except by clique-width / rank-width).
e In MSO,, only one “JF" above MSO;.

Hence if an extension of Courcelle-Makowsky—Rotics is sought
(MSO; on graphs of bounded clique-width), then MinLOB
should be understood first. . .

P. Hlinény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



]—Cquue Decompositions and Width

How “tree-like” a graph is in some well-defined sense (the width)?

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



]—Cquue Decompositions and Width

How “tree-like” a graph is in some well-defined sense (the width)?

e Many definitions known,
e.g. tree-width, path-width, branch-width, DAG-width . ..

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



Clique Decompositions and Width

How “tree-like” a graph is in some well-defined sense (the width)?

e Many definitions known,
e.g. tree-width, path-width, branch-width, DAG-width . ..

Clique-width — Courcelle and Olariu
e Defined by operations on vertex—labelled (1,2, ..., k) graphs:

P. Hlinény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



Clique Decompositions and Width

How “tree-like” a graph is in some well-defined sense (the width)?

e Many definitions known,
e.g. tree-width, path-width, branch-width, DAG-width ...

Clique-width — Courcelle and Olariu
e Defined by operations on vertex—labelled (1,2, ..., k) graphs:
— create a new vertex with label 7,
— take the disjoint union of two labeled graphs,

— add all edges / arcs between vertices of label ¢ and label j,
— and relabel all vertices with label 7 to have label j.

P. Hlinény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



Clique Decompositions and Width

How “tree-like” a graph is in some well-defined sense (the width)?

e Many definitions known,
e.g. tree-width, path-width, branch-width, DAG-width ...

Clique-width — Courcelle and Olariu

e Defined by operations on vertex—labelled (1,2, ..., k) graphs:
— create a new vertex with label 7,
— take the disjoint union of two labeled graphs,
— add all edges / arcs between vertices of label ¢ and label j,
— and relabel all vertices with label 7 to have label j.

— Giving a rec. decomposition (parse tree) for clique-width.

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



Clique Decompositions and Width

How “tree-like” a graph is in some well-defined sense (the width)?

e Many definitions known,
e.g. tree-width, path-width, branch-width, DAG-width ...

Clique-width — Courcelle and Olariu

e Defined by operations on vertex—labelled (1,2, ..., k) graphs:

— create a new vertex with label 7,

— take the disjoint union of two labeled graphs,

— add all edges / arcs between vertices of label ¢ and label j,
— and relabel all vertices with label 7 to have label j.

— Giving a rec. decomposition (parse tree) for clique-width.

Labelled join @ for clique-width

e Working over vertex—labelled graphs, too. Non-symmetric!

P. Hlinény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



Clique Decompositions and Width

How “tree-like” a graph is in some well-defined sense (the width)?

e Many definitions known,
e.g. tree-width, path-width, branch-width, DAG-width ...

Clique-width — Courcelle and Olariu

e Defined by operations on vertex—labelled (1,2, ..., k) graphs:

— create a new vertex with label 7,

— take the disjoint union of two labeled graphs,

— add all edges / arcs between vertices of label ¢ and label j,
— and relabel all vertices with label 7 to have label j.

— Giving a rec. decomposition (parse tree) for clique-width.

Labelled join @ for clique-width

e Working over vertex—labelled graphs, too. Non-symmetric!
e An “across’ edge / arc depends only on the label of its end(s).

P. Hlinény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



]— MinLOB on Clique-width

Annotating the subproblems

What is a solution fragment?

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



]— MinLOB on Clique-width

Annotating the subproblems
What is a solution fragment?

— having an outforest; i.e., a collection of many out-trees in G,

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



]— MinLOB on Clique-width

Annotating the subproblems
What is a solution fragment?

— having an outforest; i.e., a collection of many out-trees in G,

— “capture” its roots, and the active leaves—not to stay leaves
(while the non-active ones contribute to the solution size);

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



MinLOB on Clique-width

Annotating the subproblems
What is a solution fragment?

— having an outforest; i.e., a collection of many out-trees in G,

— “capture” its roots, and the active leaves—not to stay leaves
(while the non-active ones contribute to the solution size);

*actually, any vertex may be active, and even multiple times.

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



MinLOB on Clique-width

Annotating the subproblems
What is a solution fragment?

— having an outforest; i.e., a collection of many out-trees in G,

— “capture” its roots, and the active leaves—not to stay leaves
(while the non-active ones contribute to the solution size);

*actually, any vertex may be active, and even multiple times.

Strong signature of an out-forest F' C G = for each tree of F;
— the root label, and the labels of all active vertices (a multiset).

APAYAY

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



MinLOB on Clique-width

Annotating the subproblems
What is a solution fragment?

— having an outforest; i.e., a collection of many out-trees in G,

— “capture” its roots, and the active leaves—not to stay leaves
(while the non-active ones contribute to the solution size);

*actually, any vertex may be active, and even multiple times.

Strong signature of an out-forest F' C G = for each tree of F;
— the root label, and the labels of all active vertices (a multiset).

APAYAY

Fact. Strong signatures give canonical classes for MinLOB.

G

So, what is wrong here?

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



MinLOB on Clique-width

Annotating the subproblems
What is a solution fragment?

— having an outforest; i.e., a collection of many out-trees in G,

— “capture” its roots, and the active leaves—not to stay leaves
(while the non-active ones contribute to the solution size);

*actually, any vertex may be active, and even multiple times.

Strong signature of an out-forest F' C G = for each tree of F;
— the root label, and the labels of all active vertices (a multiset).

APAYAY

Fact. Strong signatures give canonical classes for MinLOB.

G

So, what is wrong here? The table is exponentiall

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



"3 Poly. Canonical Partition for MinLOB

Recall: Exp. strong signature of an out-forest F* C G = for each tree of F
— the root label, and the labels of all active vertices (multiset).

WAPARPANY

How to “reduce” this strong signature?

Signature (reduced) of an out-forest F' C G = for each tree 7" of F;

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



"3 Poly. Canonical Partition for MinLOB

Recall: Exp. strong signature of an out-forest F* C G = for each tree of F
— the root label, and the labels of all active vertices (multiset).

WAPARPANY

How to “reduce” this strong signature?

Signature (reduced) of an out-forest F' C G = for each tree 7" of F;

— the root label, and only the set of active v. labels occur. in T,

.4;»\. i A.
— ie., of fixed size(!),

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



3 Poly. Canonical Partition for MinLOB

Recall: Exp. strong signature of an out-forest F* C G = for each tree of F
— the root label, and the labels of all active vertices (multiset).

WAPARPANY

How to “reduce” this strong signature?

Signature (reduced) of an out-forest F C G = for each tree 1" of F;

— the root label, and only the set of active v. labels occur. in T,

@ i A.
— ie., of fixed size(!),

— and, separately, the multiset of active v. labels over whole F'.

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



3 Poly. Canonical Partition for MinLOB

Recall: Exp. strong signature of an out-forest F' C G = for each tree of F;
— the root label, and the labels of all active vertices (multiset).

WAPARPANY

How to “reduce” this strong signature?

Signature (reduced) of an out-forest F C G = for each tree 1" of F;

— the root label, and only the set of active v. labels occur. in T,

— ie., 4& i Ao of fixed size(!),

— and, separately, the multiset of active v. labels over whole F'.

Theorem. Even (reduced) signatures give canonical classes for MinLOB.

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



]— Proof

Theorem. Even (red.) signatures give canonical classes for MinLOB.

e Assume same signatures and different strong signatures.

vy, JMM San Diego, 2013 On an odd case of an XP algorithm ...



Proof
Theorem. Even (red.) signatures give canonical classes for MinLOB.

e Assume same signatures and different strong signatures.

e Minim. the diff. to just to +1 same-label occurrences in two trees:

vy, JMM San Diego, 2013 On an odd case of an XP algorithm ...



Proof
Theorem. Even (red.) signatures give canonical classes for MinLOB.

e Assume same signatures and different strong signatures.
e Minim. the diff. to just to +1 same-label occurrences in two trees:

vy, JMM San Diego, 2013 On an odd case of an XP algorithm ...



Proof
Theorem. Even (red.) signatures give canonical classes for MinLOB.

e Assume same signatures and different strong signatures.
e Minim. the diff. to just to +1 same-label occurrences in two trees:

On an odd case of an XP algorithm ...



Proof
Theorem. Even (red.) signatures give canonical classes for MinLOB.

e Assume same signatures and different strong signatures.
e Minim. the diff. to just to +1 same-label occurrences in two trees:

On an odd case of an XP algorithm ...



Proof
Theorem. Even (red.) signatures give canonical classes for MinLOB.

e Assume same signatures and different strong signatures.

e Minim. the diff. to just to +1 same-label occurrences in two trees:

Hence the upper two fragments are canonically equivalent, indeed. a

On an odd case of an XP algorithm ...



]—Now, What is Wrong?

Fact. Reduced signature is inconsistent with the labelled join ® !

~MinLOB

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



]—Now, What is Wrong?

Fact. Reduced signature is inconsistent with the labelled join ® !

~MinLOB

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



]—Now, What is Wrong?

Fact. Reduced signature is inconsistent with the labelled join ® !

~MinLOB

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



]—Now, What is Wrong?

Fact. Reduced signature is inconsistent with the labelled join ® !

~MinLOB

On an odd case of an XP algorithm ...



Now, What is Wrong?

Fact. Reduced signature is inconsistent with the labelled join ® !

~MinLOB

Any resolution? Simply ignore this inconsistency in dyn. algorithm. ..

e Pretend like if active labels do “not disappear” from particular tree,
until all these labels are gone from the whole graph.

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



4 The XP Algorithm of Mystery

Tweaking the dynamic algorithm

e Active vertices — potentially active vertices:

— a notion bound to a particular recursive decomposition;
— roughly saying that a vertex has been active somewhere before,
and some other stays active with the same label.

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



4 The XP Algorithm of Mystery

Tweaking the dynamic algorithm

e Active vertices — potentially active vertices:

— a notion bound to a particular recursive decomposition;
— roughly saying that a vertex has been active somewhere before,
and some other stays active with the same label.

e Signature — weak signature tracing potentially active tree shapes:

— a notion suited right for dynamic processing on the decomp.

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



4 The XP Algorithm of Mystery

Tweaking the dynamic algorithm

e Active vertices — potentially active vertices:

— a notion bound to a particular recursive decomposition;
— roughly saying that a vertex has been active somewhere before,
and some other stays active with the same label.

e Signature — weak signature tracing potentially active tree shapes:

— a notion suited right for dynamic processing on the decomp.

Theorem. Ifa “singleton” weak signature is found on our decomposition,
then the whole graph really contains an out-branching
of the same number of leaves (constructively).

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



4 The XP Algorithm of Mystery

Tweaking the dynamic algorithm

e Active vertices — potentially active vertices:

— a notion bound to a particular recursive decomposition;
— roughly saying that a vertex has been active somewhere before,
and some other stays active with the same label.

e Signature — weak signature tracing potentially active tree shapes:

— a notion suited right for dynamic processing on the decomp.

Theorem. Ifa “singleton” weak signature is found on our decomposition,
N then the whole graph really contains an out-branching
. of the same number of leaves (constructively).

= There is an XP algorithm for the MinLOB problem on digraphs of
bounded clique-width, ...

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



4 The XP Algorithm of Mystery

Tweaking the dynamic algorithm

e Active vertices — potentially active vertices:

— a notion bound to a particular recursive decomposition;
— roughly saying that a vertex has been active somewhere before,
and some other stays active with the same label.

e Signature — weak signature tracing potentially active tree shapes:

— a notion suited right for dynamic processing on the decomp.

Theorem. Ifa “singleton” weak signature is found on our decomposition,
1 then the whole graph really contains an out-branching
. of the same number of leaves (constructively).

= There is an XP algorithm for the MinLOB problem on digraphs of
bounded clique-width, ... but it does not fit into the dynamic
iterative Myhill-Nerode-based scheme. Why?

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



]—Final Questions (and remarks)

How to formulate our main question?

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



Final Questions (and remarks)

How to formulate our main question?

Can always (even for unbounded index) Myhill-Nerode be turned
into a dynamic algorithm...? (by tabulation)

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



Final Questions (and remarks)

How to formulate our main question?

Can always (even for unbounded index) Myhill-Nerode be turned
into a dynamic algorithm...? (by tabulation)

Particularly for MinLOB, is there any nice canonical partition
consistent with ®? (polynomially bounded!)

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



Final Questions (and remarks)

How to formulate our main question?
Can always (even for unbounded index) Myhill-Nerode be turned
into a dynamic algorithm...? (by tabulation)

Particularly for MinLOB, is there any nice canonical partition
consistent with ®? (polynomially bounded!)

Even in finite-index case, one can create an inconsistent canonical
partition, but then this is “repaired” by automaton minimization.

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



Final Questions (and remarks)

How to formulate our main question?

Can always (even for unbounded index) Myhill-Nerode be turned
into a dynamic algorithm...? (by tabulation)

Particularly for MinLOB, is there any nice canonical partition
consistent with ®? (polynomially bounded!)

Even in finite-index case, one can create an inconsistent canonical
partition, but then this is “repaired” by automaton minimization.

In our XP case, what would be the effect of “state minimization”?

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



Final Questions (and remarks)

How to formulate our main question?
Can always (even for unbounded index) Myhill-Nerode be turned
into a dynamic algorithm...? (by tabulation)

Particularly for MinLOB, is there any nice canonical partition
consistent with ®? (polynomially bounded!)

Even in finite-index case, one can create an inconsistent canonical
partition, but then this is “repaired” by automaton minimization.

In our XP case, what would be the effect of “state minimization”?

So, which one is more likely to be true?

e One can always find an (asymptotically?) optimal canonical
partition consistent with .

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...



Final Questions (and remarks)

How to formulate our main question?
Can always (even for unbounded index) Myhill-Nerode be turned
into a dynamic algorithm...? (by tabulation)

Particularly for MinLOB, is there any nice canonical partition
consistent with ®? (polynomially bounded!)

Even in finite-index case, one can create an inconsistent canonical
partition, but then this is “repaired” by automaton minimization.

In our XP case, what would be the effect of “state minimization”?

So, which one is more likely to be true?

e One can always find an (asymptotically?) optimal canonical
partition consistent with .

e Or, there is something mysterious going on with Myhill-Nerode
for XP algorithms.

ény, JMM San Diego, 2013 On an odd case of an XP algorithm ...






	Introduction: What is it about?
	The Odd Case: MinLOB
	Poly. Canonical Partition for MinLOB
	The XP Algorithm of Mystery

