On an odd case of an XP algorithm for graphs of bounded clique-width

Petr Hliněný

Faculty of Informatics Masaryk University, Brno, CZ

Based on joint work with **R. Ganian and J. Obdržálek**, orig. presented at STACS 2011.

Dynamic programming

Recursive computation of the whole solution from subproblems, such that subsolutions are stored once and then reused...

Dynamic programming

Recursive computation of the whole solution from subproblems, such that subsolutions are stored once and then reused...

"Store and reuse" can be handled in various ways

- we are dealing with the static approach (*tabulation*).

Dynamic programming

Recursive computation of the whole solution from subproblems, such that subsolutions are stored once and then reused...

"Store and reuse" can be handled in various ways

- we are dealing with the static approach (*tabulation*).

Using tables

Determine, which subproblems are significant!

Dynamic programming

Recursive computation of the whole solution from subproblems, such that subsolutions are stored once and then reused...

"Store and reuse" can be handled in various ways

- we are dealing with the static approach (*tabulation*).

Using tables

Determine, which subproblems are significant!

- in the sense of giving a partition over all subproblems into "same-behavior" classes (guar. to give the same outcome).

Dynamic programming

Recursive computation of the whole solution from subproblems, such that subsolutions are stored once and then reused...

"Store and reuse" can be handled in various ways

- we are dealing with the static approach (*tabulation*).

Using tables

Determine, which subproblems are significant!

- in the sense of giving a partition over all subproblems into "same-behavior" classes (guar. to give the same outcome).

The big hidden problem

Assuming such reasonably described *canonical classes*;

(say, of annotated subproblems)

Dynamic programming

Recursive computation of the whole solution from subproblems, such that subsolutions are stored once and then reused...

"Store and reuse" can be handled in various ways

- we are dealing with the static approach (*tabulation*).

Using tables

Determine, which subproblems are significant!

- in the sense of giving a partition over all subproblems into "same-behavior" classes (guar. to give the same outcome).

The big hidden problem

Assuming such reasonably described canonical classes;

(say, of annotated subproblems)

can one always process those throughout the recursion?

Inspiration – classical Myhill–Nerode

Finite automaton states \iff

right congruence classes on words (of a regular language).

Inspiration – classical Myhill–Nerode

Finite automaton states ↔ *right congruence* classes on words (of a regular language).

Abstract setting

• Recursive decomposition of the input, along a suit. *join* \otimes oper.,

Inspiration – classical Myhill–Nerode Finite automaton states ↔ right congruence classes on words (of a regular language).

Abstract setting

- Recursive decomposition of the input, along a suit. *join* \otimes oper.,
- hence a universe of annot. subproblems $\mathcal{U} = \{(G, \varphi), \dots\}$, (say, ϕ represents a solution fragment)

 Inspiration – classical Myhill–Nerode

 Finite automaton states ↔

 right congruence classes on words (of a regular language).

Abstract setting

- Recursive decomposition of the input, along a suit. *join* \otimes oper.,
- hence a universe of annot. subproblems $\mathcal{U} = \{(G, \varphi), \dots\}$, (say, ϕ represents a solution fragment)
- and a *property* $\mathcal{P} \rightarrow$ feasibility of a (sub)solution.

 Inspiration – classical Myhill–Nerode

 Finite automaton states ↔

 right congruence classes on words (of a regular language).

Abstract setting

- Recursive decomposition of the input, along a suit. *join* \otimes oper.,
- hence a universe of annot. subproblems $\mathcal{U} = \{(G, \varphi), \dots\}$, (say, ϕ represents a solution fragment)
- and a *property* $\mathcal{P} \rightarrow$ feasibility of a (sub)solution.

Canonical equivalence; metadefinition Abrahamson–Fellows The canonical equivalence of \mathcal{P} on the universe \mathcal{U} is defined: $(G_1, \varphi_1) \approx_{\mathcal{P}} (G_2, \varphi_2)$ if and only if, for all (H, φ) , $(G_1, \varphi_1) \otimes (H, \varphi) \models \mathcal{P} \iff (G_2, \varphi_2) \otimes (H, \varphi) \models \mathcal{P}$.

Definition – cf. the canonical equivalence of \mathcal{P}

A partition \mathcal{X} of the univ. \mathcal{U} is *canonical* if all $X \in \mathcal{X}$ honor $\approx_{\mathcal{P}}$.

Definition – cf. the canonical equivalence of \mathcal{P}

A partition \mathcal{X} of the univ. \mathcal{U} is *canonical* if all $X \in \mathcal{X}$ honor $\approx_{\mathcal{P}}$.

 \rightarrow canonical classes $X \in \mathcal{X}$,

 \rightarrow these must refine the equiv. classes of $\approx_{\mathcal{P}}$, but may be finer.

Definition – cf. the canonical equivalence of \mathcal{P}

A partition \mathcal{X} of the univ. \mathcal{U} is *canonical* if all $X \in \mathcal{X}$ honor $\approx_{\mathcal{P}}$.

 \rightarrow canonical classes $X \in \mathcal{X}$,

 \rightarrow these must refine the equiv. classes of $\approx_{\mathcal{P}}$, but may be finer.

Processing canonical classes

- By the definition, all we need to know about a solution of an annot. subproblem, is the class $X \in \mathcal{X}$ it belongs to!

Definition – cf. the canonical equivalence of \mathcal{P}

A partition \mathcal{X} of the univ. \mathcal{U} is *canonical* if all $X \in \mathcal{X}$ honor $\approx_{\mathcal{P}}$.

 \rightarrow canonical classes $X \in \mathcal{X}$,

 \rightarrow these must refine the equiv. classes of $\approx_{\mathcal{P}}$, but may be finer.

Processing canonical classes

- By the definition, all we need to know about a solution of an annot. subproblem, is the class $X \in \mathcal{X}$ it belongs to!
- Hence "store and reuse" representat. solutions of each X ∈ X.
 → immediate tabulation... Easy as that?

Definition – cf. the canonical equivalence of \mathcal{P}

A partition \mathcal{X} of the univ. \mathcal{U} is *canonical* if all $X \in \mathcal{X}$ honor $\approx_{\mathcal{P}}$.

 \rightarrow canonical classes $X \in \mathcal{X}$,

 \rightarrow these must refine the equiv. classes of $\approx_{\mathcal{P}}$, but may be finer.

Processing canonical classes

- By the definition, all we need to know about a solution of an annot. subproblem, is the class $X \in \mathcal{X}$ it belongs to!
- Hence "store and reuse" representat. solutions of each X ∈ X.
 → immediate tabulation... Easy as that?

Consistency with \otimes **?** – stronger than just "honoring $\approx_{\mathcal{P}}$ "

Definition – cf. the canonical equivalence of \mathcal{P}

A partition \mathcal{X} of the univ. \mathcal{U} is *canonical* if all $X \in \mathcal{X}$ honor $\approx_{\mathcal{P}}$.

 \rightarrow canonical classes $X \in \mathcal{X}$,

 \rightarrow these must refine the equiv. classes of $\approx_{\mathcal{P}}$, but may be finer.

Processing canonical classes

- By the definition, all we need to know about a solution of an annot. subproblem, is the class $X \in \mathcal{X}$ it belongs to!
- Hence "store and reuse" representat. solutions of each X ∈ X.
 → immediate tabulation... Easy as that?

Consistency with \otimes **?** – stronger than just "honoring $\approx_{\mathcal{P}}$ "

A canonical partition ${\mathcal X}$ is *consistent with* \otimes if

- for all $(G_1, \varphi_1) \in X_1$, $(G_2, \varphi_2) \in X_2$; the part of $(G_1, \varphi_1) \otimes (G_2, \varphi_2)$ depends only on X_1, X_2 .

• As in Myhill–Nerode, there is a finite automaton which

- As in Myhill–Nerode, there is a finite automaton which
 - ightarrow can be minimized, giving straight the equiv. classes of $pprox_{\mathcal{P}}$,
 - \rightarrow automatically consistent with \otimes !

- As in Myhill–Nerode, there is a finite automaton which
 - ightarrow can be minimized, giving straight the equiv. classes of $pprox_{\mathcal{P}}$,
 - \rightarrow automatically consistent with \otimes !
- All this "hidden" in automaton formalism and O-notation, FPT.

- As in Myhill–Nerode, there is a finite automaton which
 - ightarrow can be minimized, giving straight the equiv. classes of $pprox_{\mathcal{P}}$,
 - \rightarrow automatically consistent with \otimes !
- All this "hidden" in automaton formalism and O-notation, FPT.

Infinite Index $\approx_{\mathcal{P}}$

Infinite table size? No, just growing with the input size...
 Hopefully *polynomial table size* → hoping for an XP algorithm.

- As in Myhill–Nerode, there is a finite automaton which
 - ightarrow can be minimized, giving straight the equiv. classes of $pprox_{\mathcal{P}}$,
 - \rightarrow automatically consistent with \otimes !
- All this "hidden" in automaton formalism and O-notation, FPT.

Infinite Index $\approx_{\mathcal{P}}$

- Infinite table size? No, just growing with the input size...
 Hopefully *polynomial table size* → hoping for an XP algorithm.
- Table update (wrt. ⊗) has to be done in polytime...

- As in Myhill–Nerode, there is a finite automaton which
 - ightarrow can be minimized, giving straight the equiv. classes of $pprox_{\mathcal{P}}$,
 - \rightarrow automatically consistent with \otimes !
- All this "hidden" in automaton formalism and \mathcal{O} -notation, FPT.

Infinite Index $\approx_{\mathcal{P}}$

- Infinite table size? No, just growing with the input size...
 Hopefully *polynomial table size* → hoping for an XP algorithm.
- Table update (wrt. ⊗) has to be done in polytime...
- But what if X is inconsistent with ⊗ (i.e., cannot do table update), and we have no "better" canonical partition?

Minimum leaf outbranching in a digraph *D*:

Find an *outbranching* (directed spanning out-tree) in D, minimizing the number of leaves.

Minimum leaf outbranching in a digraph *D*:

Find an *outbranching* (directed spanning out-tree) in D, minimizing the number of leaves.

Contains directed Hamiltonian path... (= one leaf)

Minimum leaf outbranching in a digraph *D*:

Find an *outbranching* (directed spanning out-tree) in D, minimizing the number of leaves.

Contains directed Hamiltonian path... (= one leaf)

Short overview of MinLOB (not so much related to our talk)

• Polynomial on DAGs,

Minimum leaf outbranching in a digraph *D*:

Find an *outbranching* (directed spanning out-tree) in D, minimizing the number of leaves.

- Contains directed Hamiltonian path...(= one leaf)

Short overview of MinLOB (not so much related to our talk)

- Polynomial on DAGs,
- but NP-hard already for DFVS number 1.

Minimum leaf outbranching in a digraph *D*:

Find an *outbranching* (directed spanning out-tree) in D, minimizing the number of leaves.

Contains directed Hamiltonian path... (= one leaf)

Short overview of MinLOB (not so much related to our talk)

- Polynomial on DAGs,
- but NP-hard already for DFVS number 1.
- Seems to resist nearly all useful parametrizations (except by *clique-width / rank-width*).

Minimum leaf outbranching in a digraph *D*:

Find an *outbranching* (directed spanning out-tree) in D, minimizing the number of leaves.

- Contains directed Hamiltonian path...(= one leaf)

Short overview of MinLOB (not so much related to our talk)

- Polynomial on DAGs,
- but NP-hard already for DFVS number 1.
- Seems to resist nearly all useful parametrizations (except by *clique-width / rank-width*).
- In MSO₂, only one "∃F" above MSO₁.
 Hence if an extension of Courcelle–Makowsky–Rotics is sought (MSO₁ on graphs of bounded clique-width), then MinLOB should be understood first...

How "tree-like" a graph is in some well-defined sense (the width)?

How "tree-like" a graph is in some well-defined sense (the width)?

- Many definitions known,
 - e.g. tree-width, path-width, branch-width, DAG-width ...

How "tree-like" a graph is in some well-defined sense (the width)?

• Many definitions known,

e.g. tree-width, path-width, branch-width, DAG-width ...

Clique-width – Courcelle and Olariu

• Defined by operations on vertex-labelled (1, 2, ..., k) graphs:

How "tree-like" a graph is in some well-defined sense (the width)?

• Many definitions known,

e.g. tree-width, path-width, branch-width, DAG-width . . .

Clique-width – Courcelle and Olariu

- Defined by operations on vertex-labelled (1, 2, ..., k) graphs:
 - create a new vertex with label i,
 - take the disjoint union of two labeled graphs,
 - add all edges / arcs between vertices of label i and label j,
 - and relabel all vertices with label i to have label j.

How "tree-like" a graph is in some well-defined sense (the width)?

• Many definitions known,

e.g. tree-width, path-width, branch-width, DAG-width ...

Clique-width – Courcelle and Olariu

- Defined by operations on vertex-labelled (1, 2, ..., k) graphs:
 - create a new vertex with label i,
 - take the disjoint union of two labeled graphs,
 - add all edges / arcs between vertices of label i and label j,
 - and relabel all vertices with label i to have label j.
- → Giving a rec. *decomposition* (parse tree) for clique-width.

How "tree-like" a graph is in some well-defined sense (the width)?

• Many definitions known,

e.g. tree-width, path-width, branch-width, DAG-width . . .

Clique-width – Courcelle and Olariu

- Defined by operations on vertex-labelled (1, 2, ..., k) graphs:
 - create a new vertex with label i,
 - take the disjoint union of two labeled graphs,
 - add all edges / arcs between vertices of label i and label j,
 - and relabel all vertices with label i to have label j.
- \rightarrow Giving a rec. *decomposition* (parse tree) for clique-width.

Labelled join \otimes for clique-width

• Working over vertex-labelled graphs, too. Non-symmetric!
Clique Decompositions and Width

How "tree-like" a graph is in some well-defined sense (the width)?

• Many definitions known,

e.g. tree-width, path-width, branch-width, DAG-width ...

Clique-width – Courcelle and Olariu

- Defined by operations on vertex-labelled (1, 2, ..., k) graphs:
 - create a new vertex with label i,
 - take the disjoint union of two labeled graphs,
 - add all edges / arcs between vertices of label i and label j,
 - and relabel all vertices with label i to have label j.
- \rightarrow Giving a rec. *decomposition* (parse tree) for clique-width.

Labelled join \otimes for clique-width

- Working over vertex-labelled graphs, too. Non-symmetric!
- An "across" edge / arc depends only on the label of its end(s).

Annotating the subproblems

What is a solution fragment?

Annotating the subproblems

What is a solution fragment?

- having an *outforest*; i.e., a collection of many *out-trees* in G,

Annotating the subproblems

What is a solution fragment?

- having an *outforest*; i.e., a collection of many *out-trees* in G,
- "capture" its roots, and the *active* leaves—not to stay leaves (while the non-active ones contribute to the solution size);

Annotating the subproblems

What is a solution fragment?

- having an *outforest*; i.e., a collection of many *out-trees* in G,
- "capture" its roots, and the *active* leaves—not to stay leaves (while the non-active ones contribute to the solution size);
 - * actually, any vertex may be active, and even multiple times.

Annotating the subproblems

What is a solution fragment?

- having an *outforest*; i.e., a collection of many *out-trees* in G,
- "capture" its roots, and the *active* leaves—not to stay leaves (while the non-active ones contribute to the solution size);
 * actually, any vertex may be active, and even multiple times.

Strong signature of an out-forest $F \subseteq G \equiv$ for each tree of F;

- the root label, and the labels of all active vertices (a multiset).

Annotating the subproblems

What is a solution fragment?

- having an *outforest*; i.e., a collection of many *out-trees* in G,
- "capture" its roots, and the *active* leaves—not to stay leaves (while the non-active ones contribute to the solution size);
 * actually, any vertex may be active, and even multiple times.

Strong signature of an out-forest $F \subseteq G \equiv$ for each tree of F;

- the root label, and the labels of all active vertices (a multiset).

Fact. Strong signatures give canonical classes for MinLOB. So, what is wrong here?

Annotating the subproblems

What is a solution fragment?

- having an *outforest*; i.e., a collection of many *out-trees* in G,
- "capture" its roots, and the *active* leaves—not to stay leaves (while the non-active ones contribute to the solution size);
 * actually, any vertex may be active, and even multiple times.

Strong signature of an out-forest $F \subseteq G \equiv$ for each tree of F;

- the root label, and the labels of all active vertices (a multiset).

Fact. Strong signatures give canonical classes for MinLOB. So, what is wrong here? The table is exponential!

Recall: Exp. *strong signature* of an out-forest $F \subseteq G$ = for each tree of F; – the root label, and the labels of all active vertices (multiset).

How to "reduce" this strong signature?

Signature (reduced) of an out-forest $F \subseteq G \equiv$ for each tree T of F;

Recall: Exp. *strong signature* of an out-forest $F \subseteq G$ = for each tree of F; – the root label, and the labels of all active vertices (multiset).

How to "reduce" this strong signature?

Signature (reduced) of an out-forest $F \subseteq G \equiv$ for each tree T of F;

- the root label, and only the set of active v. labels occur. in T,

Recall: Exp. *strong signature* of an out-forest $F \subseteq G$ = for each tree of F; – the root label, and the labels of all active vertices (multiset).

How to "reduce" this strong signature?

Signature (reduced) of an out-forest $F \subseteq G \equiv$ for each tree T of F;

- the root label, and only the set of active v. labels occur. in T,

- and, separately, the multiset of active v. labels over whole F.

Recall: Exp. *strong signature* of an out-forest $F \subseteq G$ = for each tree of F; – the root label, and the labels of all active vertices (multiset).

How to "reduce" this strong signature?

Signature (reduced) of an out-forest $F \subseteq G \equiv$ for each tree T of F;

- the root label, and only the set of active v. labels occur. in T,

- and, separately, the multiset of active v. labels over whole F.

Theorem. Even (red.) signatures give canonical classes for MinLOB.

• Assume same signatures and different strong signatures.

- Assume same signatures and different strong signatures.
- Minim. the diff. to just to ± 1 same-label occurrences in two trees:

- Assume same signatures and different strong signatures.
- Minim. the diff. to just to ± 1 same-label occurrences in two trees:

- Assume same signatures and different strong signatures.
- Minim. the diff. to just to ± 1 same-label occurrences in two trees:

- Assume same signatures and different strong signatures.
- Minim. the diff. to just to ± 1 same-label occurrences in two trees:

Theorem. Even (red.) signatures give canonical classes for MinLOB.

- Assume same signatures and different strong signatures.
- Minim. the diff. to just to ± 1 same-label occurrences in two trees:

Hence the upper two fragments are canonically equivalent, indeed.

Now, What is Wrong? Fact. Reduced signature is inconsistent with the labelled join \otimes ! \longrightarrow \longrightarrow \longrightarrow \simeq_{MinLOB}

Now, What is Wrong? Reduced signature is inconsistent with the labelled join \otimes ! Fact. $\simeq_{\rm MinLOB}$ \equiv

Any resolution? Simply ignore this inconsistency in dyn. algorithm...

Now, What is Wrong? Reduced signature is inconsistent with the labelled join \otimes ! Fact. $\simeq_{\rm MinLOB}$ \equiv

Any resolution? Simply ignore this inconsistency in dyn. algorithm...

• Pretend like if active labels do "not disappear" from particular tree, until all these labels are gone from the whole graph.

- Active vertices → potentially active vertices:
 - a notion bound to a particular recursive decomposition;
 - roughly saying that a vertex has been active somewhere before, and some other stays active with the same label.

- Active vertices → potentially active vertices:
 - a notion bound to a particular recursive decomposition;
 - roughly saying that a vertex has been active somewhere before, and some other stays active with the same label.
- Signature → *weak signature* tracing potentially active tree shapes:
 - a notion suited right for dynamic processing on the decomp.

- Active vertices → potentially active vertices:
 - a notion bound to a particular recursive decomposition;
 - roughly saying that a vertex has been active somewhere before, and some other stays active with the same label.
- Signature → *weak signature* tracing potentially active tree shapes:
 - a notion suited right for dynamic processing on the decomp.
- **Theorem.** If a "singleton" weak signature is found on our decomposition, then the whole graph really contains an out-branching of the same number of leaves (constructively).

- Active vertices → potentially active vertices:
 - a notion bound to a particular recursive decomposition;
 - roughly saying that a vertex has been active somewhere before, and some other stays active with the same label.
- Signature → weak signature tracing potentially active tree shapes:
 - a notion suited right for dynamic processing on the decomp.
- **Theorem.** If a "singleton" weak signature is found on our decomposition, then the whole graph really contains an out-branching of the same number of leaves (constructively).
- ⇒ There is an XP algorithm for the MinLOB problem on digraphs of bounded clique-width, ...

- Active vertices → potentially active vertices:
 - a notion bound to a particular recursive decomposition;
 - roughly saying that a vertex has been active somewhere before, and some other stays active with the same label.
- Signature → *weak signature* tracing potentially active tree shapes:
 - a notion suited right for dynamic processing on the decomp.
- **Theorem.** If a "singleton" weak signature is found on our decomposition, then the whole graph really contains an out-branching of the same number of leaves (constructively).
- ⇒ There is an XP algorithm for the MinLOB problem on digraphs of bounded clique-width, ... but it does not fit into the dynamic iterative Myhill–Nerode-based scheme. Why?

How to formulate our main question?

How to formulate our main question?

Can always (even for unbounded index) Myhill–Nerode be turned into a dynamic algorithm...? (by tabulation)

How to formulate our main question?

Can always (even for unbounded index) Myhill–Nerode be turned into a dynamic algorithm...? (by tabulation)

Particularly for MinLOB, is there any nice canonical partition consistent with ⊗? (polynomially bounded!)

How to formulate our main question?

Can always (even for unbounded index) Myhill–Nerode be turned into a dynamic algorithm...? (by tabulation)

Particularly for MinLOB, is there any nice canonical partition consistent with ⊗? (polynomially bounded!)

Even in finite-index case, one can create an inconsistent canonical partition, but then this is "repaired" by automaton minimization.

How to formulate our main question?

Can always (even for unbounded index) Myhill–Nerode be turned into a dynamic algorithm...? (by tabulation)

Particularly for MinLOB, is there any nice canonical partition consistent with ⊗? (polynomially bounded!)

Even in finite-index case, one can create an inconsistent canonical partition, but then this is "repaired" by automaton minimization.

In our XP case, what would be the effect of "state minimization"?

How to formulate our main question?

Can always (even for unbounded index) Myhill–Nerode be turned into a dynamic algorithm...? (by tabulation)

Particularly for MinLOB, is there any nice canonical partition consistent with ⊗? (polynomially bounded!)

Even in finite-index case, one can create an inconsistent canonical partition, but then this is "repaired" by automaton minimization.

In our XP case, what would be the effect of "state minimization"?

So, which one is more likely to be true?

• One can always find an (asymptotically?) optimal canonical partition consistent with ⊗.

How to formulate our main question?

Can always (even for unbounded index) Myhill–Nerode be turned into a dynamic algorithm...? (by tabulation)

Particularly for MinLOB, is there any nice canonical partition consistent with ⊗? (polynomially bounded!)

Even in finite-index case, one can create an inconsistent canonical partition, but then this is "repaired" by automaton minimization.

In our XP case, what would be the effect of "state minimization"?

So, which one is more likely to be true?

- One can always find an (asymptotically?) optimal canonical partition consistent with ⊗.
- Or, there is something mysterious going on with Myhill–Nerode for XP algorithms.

