
page.14

P. Hliněný, JMM San Diego, 2013 1 / 14 On an odd case of an XP algorithm . . .

On an odd case of an XP algorithmOn an odd case of an XP algorithm

for graphs of bounded clique-widthfor graphs of bounded clique-width

Petr HliněnýPetr Hliněný

Faculty of Informatics
Masaryk University, Brno, CZ

Based on joint work with

R. Ganian and J. Obdržálek,

orig. presented at STACS 2011.

page.14

P. Hliněný, JMM San Diego, 2013 2 / 14 On an odd case of an XP algorithm . . .

1 Introduction: What is it about?1 Introduction: What is it about?

Dynamic programming

Recursive computation of the whole solution from subproblems,
such that subsolutions are stored once and then reused. . .

page.14

P. Hliněný, JMM San Diego, 2013 2 / 14 On an odd case of an XP algorithm . . .

1 Introduction: What is it about?1 Introduction: What is it about?

Dynamic programming

Recursive computation of the whole solution from subproblems,
such that subsolutions are stored once and then reused. . .

“Store and reuse” can be handled in various ways

– we are dealing with the static approach (tabulation).

page.14

P. Hliněný, JMM San Diego, 2013 2 / 14 On an odd case of an XP algorithm . . .

1 Introduction: What is it about?1 Introduction: What is it about?

Dynamic programming

Recursive computation of the whole solution from subproblems,
such that subsolutions are stored once and then reused. . .

“Store and reuse” can be handled in various ways

– we are dealing with the static approach (tabulation).

Using tables

Determine, which subproblems are significant!

page.14

P. Hliněný, JMM San Diego, 2013 2 / 14 On an odd case of an XP algorithm . . .

1 Introduction: What is it about?1 Introduction: What is it about?

Dynamic programming

Recursive computation of the whole solution from subproblems,
such that subsolutions are stored once and then reused. . .

“Store and reuse” can be handled in various ways

– we are dealing with the static approach (tabulation).

Using tables

Determine, which subproblems are significant!

– in the sense of giving a partition over all subproblems into
“same-behavior” classes (guar. to give the same outcome).

page.14

P. Hliněný, JMM San Diego, 2013 2 / 14 On an odd case of an XP algorithm . . .

1 Introduction: What is it about?1 Introduction: What is it about?

Dynamic programming

Recursive computation of the whole solution from subproblems,
such that subsolutions are stored once and then reused. . .

“Store and reuse” can be handled in various ways

– we are dealing with the static approach (tabulation).

Using tables

Determine, which subproblems are significant!

– in the sense of giving a partition over all subproblems into
“same-behavior” classes (guar. to give the same outcome).

The big hidden problem

Assuming such reasonably described canonical classes;
(say, of annotated subproblems)

page.14

P. Hliněný, JMM San Diego, 2013 2 / 14 On an odd case of an XP algorithm . . .

1 Introduction: What is it about?1 Introduction: What is it about?

Dynamic programming

Recursive computation of the whole solution from subproblems,
such that subsolutions are stored once and then reused. . .

“Store and reuse” can be handled in various ways

– we are dealing with the static approach (tabulation).

Using tables

Determine, which subproblems are significant!

– in the sense of giving a partition over all subproblems into
“same-behavior” classes (guar. to give the same outcome).

The big hidden problem

Assuming such reasonably described canonical classes;
(say, of annotated subproblems)

can one always process those throughout the recursion?

page.14

P. Hliněný, JMM San Diego, 2013 3 / 14 On an odd case of an XP algorithm . . .

More Formally. . .More Formally. . .

Inspiration – classical Myhill–Nerode

Finite automaton states ⇐⇒
right congruence classes on words (of a regular language).

page.14

P. Hliněný, JMM San Diego, 2013 3 / 14 On an odd case of an XP algorithm . . .

More Formally. . .More Formally. . .

Inspiration – classical Myhill–Nerode

Finite automaton states ⇐⇒
right congruence classes on words (of a regular language).

Abstract setting

• Recursive decomposition of the input, along a suit. join⊗ oper.,

page.14

P. Hliněný, JMM San Diego, 2013 3 / 14 On an odd case of an XP algorithm . . .

More Formally. . .More Formally. . .

Inspiration – classical Myhill–Nerode

Finite automaton states ⇐⇒
right congruence classes on words (of a regular language).

Abstract setting

• Recursive decomposition of the input, along a suit. join⊗ oper.,

• hence a universe of annot. subproblems U = {(G,ϕ), . . . },
(say, φ represents a solution fragment)

page.14

P. Hliněný, JMM San Diego, 2013 3 / 14 On an odd case of an XP algorithm . . .

More Formally. . .More Formally. . .

Inspiration – classical Myhill–Nerode

Finite automaton states ⇐⇒
right congruence classes on words (of a regular language).

Abstract setting

• Recursive decomposition of the input, along a suit. join⊗ oper.,

• hence a universe of annot. subproblems U = {(G,ϕ), . . . },
(say, φ represents a solution fragment)

• and a property P → feasibility of a (sub)solution.

page.14

P. Hliněný, JMM San Diego, 2013 3 / 14 On an odd case of an XP algorithm . . .

More Formally. . .More Formally. . .

Inspiration – classical Myhill–Nerode

Finite automaton states ⇐⇒
right congruence classes on words (of a regular language).

Abstract setting

• Recursive decomposition of the input, along a suit. join⊗ oper.,

• hence a universe of annot. subproblems U = {(G,ϕ), . . . },
(say, φ represents a solution fragment)

• and a property P → feasibility of a (sub)solution.

Canonical equivalence; metadefinition Abrahamson–Fellows

The canonical equivalence of P on the universe U is defined:

(G1, ϕ1) ≈P (G2, ϕ2) if and only if, for all (H,ϕ),

(G1, ϕ1)⊗(H,ϕ) |= P ⇐⇒ (G2, ϕ2)⊗(H,ϕ) |= P .

page.14

P. Hliněný, JMM San Diego, 2013 4 / 14 On an odd case of an XP algorithm . . .

Canonical ClassesCanonical Classes

Definition – cf. the canonical equivalence of P
A partition X of the univ. U is canonical if all X ∈ X honor ≈P .

page.14

P. Hliněný, JMM San Diego, 2013 4 / 14 On an odd case of an XP algorithm . . .

Canonical ClassesCanonical Classes

Definition – cf. the canonical equivalence of P
A partition X of the univ. U is canonical if all X ∈ X honor ≈P .

→ canonical classes X ∈ X ,

→ these must refine the equiv. classes of ≈P , but may be finer.

page.14

P. Hliněný, JMM San Diego, 2013 4 / 14 On an odd case of an XP algorithm . . .

Canonical ClassesCanonical Classes

Definition – cf. the canonical equivalence of P
A partition X of the univ. U is canonical if all X ∈ X honor ≈P .

→ canonical classes X ∈ X ,

→ these must refine the equiv. classes of ≈P , but may be finer.

Processing canonical classes

– By the definition, all we need to know about a solution of an
annot. subproblem, is the class X ∈ X it belongs to!

page.14

P. Hliněný, JMM San Diego, 2013 4 / 14 On an odd case of an XP algorithm . . .

Canonical ClassesCanonical Classes

Definition – cf. the canonical equivalence of P
A partition X of the univ. U is canonical if all X ∈ X honor ≈P .

→ canonical classes X ∈ X ,

→ these must refine the equiv. classes of ≈P , but may be finer.

Processing canonical classes

– By the definition, all we need to know about a solution of an
annot. subproblem, is the class X ∈ X it belongs to!

– Hence “store and reuse” representat. solutions of each X ∈ X .

→ immediate tabulation. . . Easy as that?

page.14

P. Hliněný, JMM San Diego, 2013 4 / 14 On an odd case of an XP algorithm . . .

Canonical ClassesCanonical Classes

Definition – cf. the canonical equivalence of P
A partition X of the univ. U is canonical if all X ∈ X honor ≈P .

→ canonical classes X ∈ X ,

→ these must refine the equiv. classes of ≈P , but may be finer.

Processing canonical classes

– By the definition, all we need to know about a solution of an
annot. subproblem, is the class X ∈ X it belongs to!

– Hence “store and reuse” representat. solutions of each X ∈ X .

→ immediate tabulation. . . Easy as that?

Consistency with ⊗ ? – stronger than just “honoring ≈P”

page.14

P. Hliněný, JMM San Diego, 2013 4 / 14 On an odd case of an XP algorithm . . .

Canonical ClassesCanonical Classes

Definition – cf. the canonical equivalence of P
A partition X of the univ. U is canonical if all X ∈ X honor ≈P .

→ canonical classes X ∈ X ,

→ these must refine the equiv. classes of ≈P , but may be finer.

Processing canonical classes

– By the definition, all we need to know about a solution of an
annot. subproblem, is the class X ∈ X it belongs to!

– Hence “store and reuse” representat. solutions of each X ∈ X .

→ immediate tabulation. . . Easy as that?

Consistency with ⊗ ? – stronger than just “honoring ≈P”

A canonical partition X is consistent with ⊗ if

– for all (G1, ϕ1) ∈ X1, (G2, ϕ2) ∈ X2;
the part of (G1, ϕ1)⊗ (G2, ϕ2) depends only on X1, X2.

page.14

P. Hliněný, JMM San Diego, 2013 5 / 14 On an odd case of an XP algorithm . . .

Finite Index ≈PFinite Index ≈P
• As in Myhill–Nerode, there is a finite automaton which

page.14

P. Hliněný, JMM San Diego, 2013 5 / 14 On an odd case of an XP algorithm . . .

Finite Index ≈PFinite Index ≈P
• As in Myhill–Nerode, there is a finite automaton which

→ can be minimized, giving straight the equiv. classes of ≈P ,

→ automatically consistent with ⊗ !

page.14

P. Hliněný, JMM San Diego, 2013 5 / 14 On an odd case of an XP algorithm . . .

Finite Index ≈PFinite Index ≈P
• As in Myhill–Nerode, there is a finite automaton which

→ can be minimized, giving straight the equiv. classes of ≈P ,

→ automatically consistent with ⊗ !

• All this “hidden” in automaton formalism and O-notation, FPT.

page.14

P. Hliněný, JMM San Diego, 2013 5 / 14 On an odd case of an XP algorithm . . .

Finite Index ≈PFinite Index ≈P
• As in Myhill–Nerode, there is a finite automaton which

→ can be minimized, giving straight the equiv. classes of ≈P ,

→ automatically consistent with ⊗ !

• All this “hidden” in automaton formalism and O-notation, FPT.

Infinite Index ≈P

• Infinite table size? No, just growing with the input size. . .

Hopefully polynomial table size → hoping for an XP algorithm.

page.14

P. Hliněný, JMM San Diego, 2013 5 / 14 On an odd case of an XP algorithm . . .

Finite Index ≈PFinite Index ≈P
• As in Myhill–Nerode, there is a finite automaton which

→ can be minimized, giving straight the equiv. classes of ≈P ,

→ automatically consistent with ⊗ !

• All this “hidden” in automaton formalism and O-notation, FPT.

Infinite Index ≈P

• Infinite table size? No, just growing with the input size. . .

Hopefully polynomial table size → hoping for an XP algorithm.

• Table update (wrt. ⊗) has to be done in polytime. . .

page.14

P. Hliněný, JMM San Diego, 2013 5 / 14 On an odd case of an XP algorithm . . .

Finite Index ≈PFinite Index ≈P
• As in Myhill–Nerode, there is a finite automaton which

→ can be minimized, giving straight the equiv. classes of ≈P ,

→ automatically consistent with ⊗ !

• All this “hidden” in automaton formalism and O-notation, FPT.

Infinite Index ≈P

• Infinite table size? No, just growing with the input size. . .

Hopefully polynomial table size → hoping for an XP algorithm.

• Table update (wrt. ⊗) has to be done in polytime. . .

• But what if X is inconsistent with ⊗ (i.e., cannot do table update),
and we have no “better” canonical partition?

page.14

P. Hliněný, JMM San Diego, 2013 6 / 14 On an odd case of an XP algorithm . . .

2 The Odd Case: MinLOB2 The Odd Case: MinLOB

Minimum leaf outbranching in a digraph D:

Find an outbranching (directed spanning out-tree) in D,
minimizing the number of leaves.

page.14

P. Hliněný, JMM San Diego, 2013 6 / 14 On an odd case of an XP algorithm . . .

2 The Odd Case: MinLOB2 The Odd Case: MinLOB

Minimum leaf outbranching in a digraph D:

Find an outbranching (directed spanning out-tree) in D,
minimizing the number of leaves.

– Contains directed Hamiltonian path. . . (= one leaf)

page.14

P. Hliněný, JMM San Diego, 2013 6 / 14 On an odd case of an XP algorithm . . .

2 The Odd Case: MinLOB2 The Odd Case: MinLOB

Minimum leaf outbranching in a digraph D:

Find an outbranching (directed spanning out-tree) in D,
minimizing the number of leaves.

– Contains directed Hamiltonian path. . . (= one leaf)

Short overview of MinLOB (not so much related to our talk)

• Polynomial on DAGs,

page.14

P. Hliněný, JMM San Diego, 2013 6 / 14 On an odd case of an XP algorithm . . .

2 The Odd Case: MinLOB2 The Odd Case: MinLOB

Minimum leaf outbranching in a digraph D:

Find an outbranching (directed spanning out-tree) in D,
minimizing the number of leaves.

– Contains directed Hamiltonian path. . . (= one leaf)

Short overview of MinLOB (not so much related to our talk)

• Polynomial on DAGs,

• but NP-hard already for DFVS number 1.

page.14

P. Hliněný, JMM San Diego, 2013 6 / 14 On an odd case of an XP algorithm . . .

2 The Odd Case: MinLOB2 The Odd Case: MinLOB

Minimum leaf outbranching in a digraph D:

Find an outbranching (directed spanning out-tree) in D,
minimizing the number of leaves.

– Contains directed Hamiltonian path. . . (= one leaf)

Short overview of MinLOB (not so much related to our talk)

• Polynomial on DAGs,

• but NP-hard already for DFVS number 1.

• Seems to resist nearly all useful parametrizations
(except by clique-width / rank-width).

page.14

P. Hliněný, JMM San Diego, 2013 6 / 14 On an odd case of an XP algorithm . . .

2 The Odd Case: MinLOB2 The Odd Case: MinLOB

Minimum leaf outbranching in a digraph D:

Find an outbranching (directed spanning out-tree) in D,
minimizing the number of leaves.

– Contains directed Hamiltonian path. . . (= one leaf)

Short overview of MinLOB (not so much related to our talk)

• Polynomial on DAGs,

• but NP-hard already for DFVS number 1.

• Seems to resist nearly all useful parametrizations
(except by clique-width / rank-width).

• In MSO2, only one “∃F” above MSO1.

Hence if an extension of Courcelle–Makowsky–Rotics is sought
(MSO1 on graphs of bounded clique-width), then MinLOB
should be understood first. . .

page.14

P. Hliněný, JMM San Diego, 2013 7 / 14 On an odd case of an XP algorithm . . .

Clique Decompositions and WidthClique Decompositions and Width

How “tree-like” a graph is in some well-defined sense (the width)?

page.14

P. Hliněný, JMM San Diego, 2013 7 / 14 On an odd case of an XP algorithm . . .

Clique Decompositions and WidthClique Decompositions and Width

How “tree-like” a graph is in some well-defined sense (the width)?

• Many definitions known,
e.g. tree-width, path-width, branch-width, DAG-width . . .

page.14

P. Hliněný, JMM San Diego, 2013 7 / 14 On an odd case of an XP algorithm . . .

Clique Decompositions and WidthClique Decompositions and Width

How “tree-like” a graph is in some well-defined sense (the width)?

• Many definitions known,
e.g. tree-width, path-width, branch-width, DAG-width . . .

Clique-width – Courcelle and Olariu

• Defined by operations on vertex–labelled (1, 2, . . . , k) graphs:

page.14

P. Hliněný, JMM San Diego, 2013 7 / 14 On an odd case of an XP algorithm . . .

Clique Decompositions and WidthClique Decompositions and Width

How “tree-like” a graph is in some well-defined sense (the width)?

• Many definitions known,
e.g. tree-width, path-width, branch-width, DAG-width . . .

Clique-width – Courcelle and Olariu

• Defined by operations on vertex–labelled (1, 2, . . . , k) graphs:

– create a new vertex with label i,
– take the disjoint union of two labeled graphs,
– add all edges / arcs between vertices of label i and label j,
– and relabel all vertices with label i to have label j.

page.14

P. Hliněný, JMM San Diego, 2013 7 / 14 On an odd case of an XP algorithm . . .

Clique Decompositions and WidthClique Decompositions and Width

How “tree-like” a graph is in some well-defined sense (the width)?

• Many definitions known,
e.g. tree-width, path-width, branch-width, DAG-width . . .

Clique-width – Courcelle and Olariu

• Defined by operations on vertex–labelled (1, 2, . . . , k) graphs:

– create a new vertex with label i,
– take the disjoint union of two labeled graphs,
– add all edges / arcs between vertices of label i and label j,
– and relabel all vertices with label i to have label j.

→ Giving a rec. decomposition (parse tree) for clique-width.

page.14

P. Hliněný, JMM San Diego, 2013 7 / 14 On an odd case of an XP algorithm . . .

Clique Decompositions and WidthClique Decompositions and Width

How “tree-like” a graph is in some well-defined sense (the width)?

• Many definitions known,
e.g. tree-width, path-width, branch-width, DAG-width . . .

Clique-width – Courcelle and Olariu

• Defined by operations on vertex–labelled (1, 2, . . . , k) graphs:

– create a new vertex with label i,
– take the disjoint union of two labeled graphs,
– add all edges / arcs between vertices of label i and label j,
– and relabel all vertices with label i to have label j.

→ Giving a rec. decomposition (parse tree) for clique-width.

Labelled join ⊗ for clique-width

• Working over vertex–labelled graphs, too. Non-symmetric!

page.14

P. Hliněný, JMM San Diego, 2013 7 / 14 On an odd case of an XP algorithm . . .

Clique Decompositions and WidthClique Decompositions and Width

How “tree-like” a graph is in some well-defined sense (the width)?

• Many definitions known,
e.g. tree-width, path-width, branch-width, DAG-width . . .

Clique-width – Courcelle and Olariu

• Defined by operations on vertex–labelled (1, 2, . . . , k) graphs:

– create a new vertex with label i,
– take the disjoint union of two labeled graphs,
– add all edges / arcs between vertices of label i and label j,
– and relabel all vertices with label i to have label j.

→ Giving a rec. decomposition (parse tree) for clique-width.

Labelled join ⊗ for clique-width

• Working over vertex–labelled graphs, too. Non-symmetric!

• An “across” edge / arc depends only on the label of its end(s).

page.14

P. Hliněný, JMM San Diego, 2013 8 / 14 On an odd case of an XP algorithm . . .

MinLOB on Clique-widthMinLOB on Clique-width

Annotating the subproblems

What is a solution fragment?

page.14

P. Hliněný, JMM San Diego, 2013 8 / 14 On an odd case of an XP algorithm . . .

MinLOB on Clique-widthMinLOB on Clique-width

Annotating the subproblems

What is a solution fragment?

– having an outforest; i.e., a collection of many out-trees in G,

page.14

P. Hliněný, JMM San Diego, 2013 8 / 14 On an odd case of an XP algorithm . . .

MinLOB on Clique-widthMinLOB on Clique-width

Annotating the subproblems

What is a solution fragment?

– having an outforest; i.e., a collection of many out-trees in G,

– “capture” its roots, and the active leaves—not to stay leaves
(while the non-active ones contribute to the solution size);

page.14

P. Hliněný, JMM San Diego, 2013 8 / 14 On an odd case of an XP algorithm . . .

MinLOB on Clique-widthMinLOB on Clique-width

Annotating the subproblems

What is a solution fragment?

– having an outforest; i.e., a collection of many out-trees in G,

– “capture” its roots, and the active leaves—not to stay leaves
(while the non-active ones contribute to the solution size);
∗ actually, any vertex may be active, and even multiple times.

page.14

P. Hliněný, JMM San Diego, 2013 8 / 14 On an odd case of an XP algorithm . . .

MinLOB on Clique-widthMinLOB on Clique-width

Annotating the subproblems

What is a solution fragment?

– having an outforest; i.e., a collection of many out-trees in G,

– “capture” its roots, and the active leaves—not to stay leaves
(while the non-active ones contribute to the solution size);
∗ actually, any vertex may be active, and even multiple times.

Strong signature of an out-forest F ⊆ G ≡ for each tree of F ;

– the root label, and the labels of all active vertices (a multiset).

G

F

page.14

P. Hliněný, JMM San Diego, 2013 8 / 14 On an odd case of an XP algorithm . . .

MinLOB on Clique-widthMinLOB on Clique-width

Annotating the subproblems

What is a solution fragment?

– having an outforest; i.e., a collection of many out-trees in G,

– “capture” its roots, and the active leaves—not to stay leaves
(while the non-active ones contribute to the solution size);
∗ actually, any vertex may be active, and even multiple times.

Strong signature of an out-forest F ⊆ G ≡ for each tree of F ;

– the root label, and the labels of all active vertices (a multiset).

G

F

Fact. Strong signatures give canonical classes for MinLOB.

So, what is wrong here?

page.14

P. Hliněný, JMM San Diego, 2013 8 / 14 On an odd case of an XP algorithm . . .

MinLOB on Clique-widthMinLOB on Clique-width

Annotating the subproblems

What is a solution fragment?

– having an outforest; i.e., a collection of many out-trees in G,

– “capture” its roots, and the active leaves—not to stay leaves
(while the non-active ones contribute to the solution size);
∗ actually, any vertex may be active, and even multiple times.

Strong signature of an out-forest F ⊆ G ≡ for each tree of F ;

– the root label, and the labels of all active vertices (a multiset).

G

F

Fact. Strong signatures give canonical classes for MinLOB.

So, what is wrong here? The table is exponential!

page.14

P. Hliněný, JMM San Diego, 2013 9 / 14 On an odd case of an XP algorithm . . .

3 Poly. Canonical Partition for MinLOB3 Poly. Canonical Partition for MinLOB

Recall: Exp. strong signature of an out-forest F ⊆ G = for each tree of F ;
– the root label, and the labels of all active vertices (multiset).

F

How to “reduce” this strong signature?

Signature (reduced) of an out-forest F ⊆ G ≡ for each tree T of F ;

page.14

P. Hliněný, JMM San Diego, 2013 9 / 14 On an odd case of an XP algorithm . . .

3 Poly. Canonical Partition for MinLOB3 Poly. Canonical Partition for MinLOB

Recall: Exp. strong signature of an out-forest F ⊆ G = for each tree of F ;
– the root label, and the labels of all active vertices (multiset).

F

How to “reduce” this strong signature?

Signature (reduced) of an out-forest F ⊆ G ≡ for each tree T of F ;

– the root label, and only the set of active v. labels occur. in T ,

→ i.e.,

←→
of fixed size(!),

page.14

P. Hliněný, JMM San Diego, 2013 9 / 14 On an odd case of an XP algorithm . . .

3 Poly. Canonical Partition for MinLOB3 Poly. Canonical Partition for MinLOB

Recall: Exp. strong signature of an out-forest F ⊆ G = for each tree of F ;
– the root label, and the labels of all active vertices (multiset).

F

How to “reduce” this strong signature?

Signature (reduced) of an out-forest F ⊆ G ≡ for each tree T of F ;

– the root label, and only the set of active v. labels occur. in T ,

→ i.e.,

←→
of fixed size(!),

– and, separately, the multiset of active v. labels over whole F .

page.14

P. Hliněný, JMM San Diego, 2013 9 / 14 On an odd case of an XP algorithm . . .

3 Poly. Canonical Partition for MinLOB3 Poly. Canonical Partition for MinLOB

Recall: Exp. strong signature of an out-forest F ⊆ G = for each tree of F ;
– the root label, and the labels of all active vertices (multiset).

F

How to “reduce” this strong signature?

Signature (reduced) of an out-forest F ⊆ G ≡ for each tree T of F ;

– the root label, and only the set of active v. labels occur. in T ,

→ i.e.,

←→
of fixed size(!),

– and, separately, the multiset of active v. labels over whole F .

Theorem. Even (reduced) signatures give canonical classes for MinLOB.

page.14

P. Hliněný, JMM San Diego, 2013 10 / 14 On an odd case of an XP algorithm . . .

ProofProof

Theorem. Even (red.) signatures give canonical classes for MinLOB.

• Assume same signatures and different strong signatures.

page.14

P. Hliněný, JMM San Diego, 2013 10 / 14 On an odd case of an XP algorithm . . .

ProofProof

Theorem. Even (red.) signatures give canonical classes for MinLOB.

• Assume same signatures and different strong signatures.

• Minim. the diff. to just to ±1 same-label occurrences in two trees:

←→

page.14

P. Hliněný, JMM San Diego, 2013 10 / 14 On an odd case of an XP algorithm . . .

ProofProof

Theorem. Even (red.) signatures give canonical classes for MinLOB.

• Assume same signatures and different strong signatures.

• Minim. the diff. to just to ±1 same-label occurrences in two trees:

←→

page.14

P. Hliněný, JMM San Diego, 2013 10 / 14 On an odd case of an XP algorithm . . .

ProofProof

Theorem. Even (red.) signatures give canonical classes for MinLOB.

• Assume same signatures and different strong signatures.

• Minim. the diff. to just to ±1 same-label occurrences in two trees:

←→

≡

page.14

P. Hliněný, JMM San Diego, 2013 10 / 14 On an odd case of an XP algorithm . . .

ProofProof

Theorem. Even (red.) signatures give canonical classes for MinLOB.

• Assume same signatures and different strong signatures.

• Minim. the diff. to just to ±1 same-label occurrences in two trees:

←→

≡
?

page.14

P. Hliněný, JMM San Diego, 2013 10 / 14 On an odd case of an XP algorithm . . .

ProofProof

Theorem. Even (red.) signatures give canonical classes for MinLOB.

• Assume same signatures and different strong signatures.

• Minim. the diff. to just to ±1 same-label occurrences in two trees:

←→

≡
?!!

Hence the upper two fragments are canonically equivalent, indeed. 2

page.14

P. Hliněný, JMM San Diego, 2013 11 / 14 On an odd case of an XP algorithm . . .

Now, What is Wrong?Now, What is Wrong?

Fact. Reduced signature is inconsistent with the labelled join ⊗ !

'MinLOB

page.14

P. Hliněný, JMM San Diego, 2013 11 / 14 On an odd case of an XP algorithm . . .

Now, What is Wrong?Now, What is Wrong?

Fact. Reduced signature is inconsistent with the labelled join ⊗ !

'MinLOB

page.14

P. Hliněný, JMM San Diego, 2013 11 / 14 On an odd case of an XP algorithm . . .

Now, What is Wrong?Now, What is Wrong?

Fact. Reduced signature is inconsistent with the labelled join ⊗ !

'MinLOB

≡
?

page.14

P. Hliněný, JMM San Diego, 2013 11 / 14 On an odd case of an XP algorithm . . .

Now, What is Wrong?Now, What is Wrong?

Fact. Reduced signature is inconsistent with the labelled join ⊗ !

'MinLOB

≡
?

Any resolution? Simply ignore this inconsistency in dyn. algorithm. . .

page.14

P. Hliněný, JMM San Diego, 2013 11 / 14 On an odd case of an XP algorithm . . .

Now, What is Wrong?Now, What is Wrong?

Fact. Reduced signature is inconsistent with the labelled join ⊗ !

'MinLOB

≡
?

Any resolution? Simply ignore this inconsistency in dyn. algorithm. . .

• Pretend like if active labels do “not disappear” from particular tree,
until all these labels are gone from the whole graph.

page.14

P. Hliněný, JMM San Diego, 2013 12 / 14 On an odd case of an XP algorithm . . .

4 The XP Algorithm of Mystery4 The XP Algorithm of Mystery

Tweaking the dynamic algorithm

• Active vertices → potentially active vertices:

– a notion bound to a particular recursive decomposition;
– roughly saying that a vertex has been active somewhere before,

and some other stays active with the same label.

page.14

P. Hliněný, JMM San Diego, 2013 12 / 14 On an odd case of an XP algorithm . . .

4 The XP Algorithm of Mystery4 The XP Algorithm of Mystery

Tweaking the dynamic algorithm

• Active vertices → potentially active vertices:

– a notion bound to a particular recursive decomposition;
– roughly saying that a vertex has been active somewhere before,

and some other stays active with the same label.

• Signature → weak signature tracing potentially active tree shapes:

– a notion suited right for dynamic processing on the decomp.

page.14

P. Hliněný, JMM San Diego, 2013 12 / 14 On an odd case of an XP algorithm . . .

4 The XP Algorithm of Mystery4 The XP Algorithm of Mystery

Tweaking the dynamic algorithm

• Active vertices → potentially active vertices:

– a notion bound to a particular recursive decomposition;
– roughly saying that a vertex has been active somewhere before,

and some other stays active with the same label.

• Signature → weak signature tracing potentially active tree shapes:

– a notion suited right for dynamic processing on the decomp.

Theorem. If a “singleton” weak signature is found on our decomposition,
then the whole graph really contains an out-branching

of the same number of leaves (constructively).

page.14

P. Hliněný, JMM San Diego, 2013 12 / 14 On an odd case of an XP algorithm . . .

4 The XP Algorithm of Mystery4 The XP Algorithm of Mystery

Tweaking the dynamic algorithm

• Active vertices → potentially active vertices:

– a notion bound to a particular recursive decomposition;
– roughly saying that a vertex has been active somewhere before,

and some other stays active with the same label.

• Signature → weak signature tracing potentially active tree shapes:

– a notion suited right for dynamic processing on the decomp.

Theorem. If a “singleton” weak signature is found on our decomposition,
then the whole graph really contains an out-branching

of the same number of leaves (constructively).!!

=⇒ There is an XP algorithm for the MinLOB problem on digraphs of
bounded clique-width, . . .

page.14

P. Hliněný, JMM San Diego, 2013 12 / 14 On an odd case of an XP algorithm . . .

4 The XP Algorithm of Mystery4 The XP Algorithm of Mystery

Tweaking the dynamic algorithm

• Active vertices → potentially active vertices:

– a notion bound to a particular recursive decomposition;
– roughly saying that a vertex has been active somewhere before,

and some other stays active with the same label.

• Signature → weak signature tracing potentially active tree shapes:

– a notion suited right for dynamic processing on the decomp.

Theorem. If a “singleton” weak signature is found on our decomposition,
then the whole graph really contains an out-branching

of the same number of leaves (constructively).!!

=⇒ There is an XP algorithm for the MinLOB problem on digraphs of
bounded clique-width, . . . but it does not fit into the dynamic
iterative Myhill–Nerode-based scheme. Why?

page.14

P. Hliněný, JMM San Diego, 2013 13 / 14 On an odd case of an XP algorithm . . .

Final Questions (and remarks)Final Questions (and remarks)

How to formulate our main question?

page.14

P. Hliněný, JMM San Diego, 2013 13 / 14 On an odd case of an XP algorithm . . .

Final Questions (and remarks)Final Questions (and remarks)

How to formulate our main question?

Can always (even for unbounded index) Myhill–Nerode be turned
into a dynamic algorithm. . . ? (by tabulation)

page.14

P. Hliněný, JMM San Diego, 2013 13 / 14 On an odd case of an XP algorithm . . .

Final Questions (and remarks)Final Questions (and remarks)

How to formulate our main question?

Can always (even for unbounded index) Myhill–Nerode be turned
into a dynamic algorithm. . . ? (by tabulation)

Particularly for MinLOB, is there any nice canonical partition
consistent with ⊗? (polynomially bounded!)

page.14

P. Hliněný, JMM San Diego, 2013 13 / 14 On an odd case of an XP algorithm . . .

Final Questions (and remarks)Final Questions (and remarks)

How to formulate our main question?

Can always (even for unbounded index) Myhill–Nerode be turned
into a dynamic algorithm. . . ? (by tabulation)

Particularly for MinLOB, is there any nice canonical partition
consistent with ⊗? (polynomially bounded!)

Even in finite-index case, one can create an inconsistent canonical
partition, but then this is “repaired” by automaton minimization.

page.14

P. Hliněný, JMM San Diego, 2013 13 / 14 On an odd case of an XP algorithm . . .

Final Questions (and remarks)Final Questions (and remarks)

How to formulate our main question?

Can always (even for unbounded index) Myhill–Nerode be turned
into a dynamic algorithm. . . ? (by tabulation)

Particularly for MinLOB, is there any nice canonical partition
consistent with ⊗? (polynomially bounded!)

Even in finite-index case, one can create an inconsistent canonical
partition, but then this is “repaired” by automaton minimization.

In our XP case, what would be the effect of “state minimization”?

page.14

P. Hliněný, JMM San Diego, 2013 13 / 14 On an odd case of an XP algorithm . . .

Final Questions (and remarks)Final Questions (and remarks)

How to formulate our main question?

Can always (even for unbounded index) Myhill–Nerode be turned
into a dynamic algorithm. . . ? (by tabulation)

Particularly for MinLOB, is there any nice canonical partition
consistent with ⊗? (polynomially bounded!)

Even in finite-index case, one can create an inconsistent canonical
partition, but then this is “repaired” by automaton minimization.

In our XP case, what would be the effect of “state minimization”?

So, which one is more likely to be true?

• One can always find an (asymptotically?) optimal canonical
partition consistent with ⊗.

page.14

P. Hliněný, JMM San Diego, 2013 13 / 14 On an odd case of an XP algorithm . . .

Final Questions (and remarks)Final Questions (and remarks)

How to formulate our main question?

Can always (even for unbounded index) Myhill–Nerode be turned
into a dynamic algorithm. . . ? (by tabulation)

Particularly for MinLOB, is there any nice canonical partition
consistent with ⊗? (polynomially bounded!)

Even in finite-index case, one can create an inconsistent canonical
partition, but then this is “repaired” by automaton minimization.

In our XP case, what would be the effect of “state minimization”?

So, which one is more likely to be true?

• One can always find an (asymptotically?) optimal canonical
partition consistent with ⊗.

• Or, there is something mysterious going on with Myhill–Nerode
for XP algorithms.

page.14

P. Hliněný, JMM San Diego, 2013 14 / 14 On an odd case of an XP algorithm . . .

T

h

a
n

k

Y

o

u

F

o

r

A

t
t

e
n

t

i

o

n

	Introduction: What is it about?
	The Odd Case: MinLOB
	Poly. Canonical Partition for MinLOB
	The XP Algorithm of Mystery

